


Chapter No.: 1 Title Name: <TITLENAME> ffirs.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:32:29 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: i

Integration of Omics Approaches  
and Systems Biology for  
Clinical Applications



Chapter No.: 1 Title Name: <TITLENAME> ffirs.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:32:29 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 
ii

WILEY SERIES ON MASS SPECTROMETRY

Series Editors
Dominic M. Desiderio
Departments of Neurology and Biochemistry  
University of Tennessee Health Science Center

Joseph A. Loo
Department of Chemistry and Biochemistry  
UCLA

Founding Editors
Nico M. M. Nibbering (1938–2014)
Dominic Desiderio

A complete list of the titles in this series appears at the end of this volume.



Chapter No.: 1 Title Name: <TITLENAME> ffirs.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:32:29 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 
iii

Integration of Omics Approaches and Systems Biology 
for Clinical Applications

Edited by

Antonia Vlahou
Staff Research Scientist
Biomedical Research Foundation Academy of Athens
Athens
Greece

Harald Mischak
Robertson Chair in Biotechnology, Professor of Proteomics
University of Glasgow
Glasgow
UK

Jerome Zoidakis
Senior Research Scientist
Biomedical Research Foundation Academy of Athens
Athens
Greece

Fulvio Magni
Professor
School of Medicine and Surgery, University of Milano Bicocca
Milan
Italy



Chapter No.: 1 Title Name: <TITLENAME> ffirs.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:32:29 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 
iv

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material 
from this title is available at http://www.wiley.com/go/permissions.

The right of Antonia Vlahou, Harald Mischak, Jerome Zoidakis, and Fulvio Magni to be identified as the authors of the editorial material in this 
work has been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of 
this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the 
use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert 
or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication 
of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they 
make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all 
warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created 
or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, 
or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors 
endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with 
the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this 
work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable 
for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging‐in‐Publication data applied for

ISBN: 9781119181149

Cover Design: Wiley
Cover Image: Designed by Theofilos Papadopoulos, PhD

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



Chapter No.: 1 Title Name: <TITLENAME> ftoc.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:33:33 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: v

v

Contents

List of Contributors xv
Preface xix
Acknowledgement xx

Part I Platforms for Molecular Data Acquisition and Analysis 1

1 Clinical Data Collection and Patient Phenotyping 3
Katerina Markoska and Goce Spasovski

1.1 Clinical Data Collection 3
1.1.1 Data Collection for Clinical Research 3
1.1.2 Clinical Data Management 3
1.1.3 Creating Data Forms 4
1.1.3.1 Different Data Forms According to the Type of Study 4
1.1.4 Case Report Form (CRF) 5
1.1.4.1 CRF Standards Characterization 5
1.1.4.2 Electronic and Paper CRFs 6
1.1.5 Methods and Forms for Clinical Data Collection and/or Extraction from Patient’s Records 6
1.1.5.1 Electronic Health Records (EHRs) 6
1.1.6 Data Collection Workflow 7
1.1.6.1 Defining Baseline and Follow‐Up Data 7
1.1.6.2 Medical Coding 7
1.1.6.3 Errors in Data Collection and Missing Data 8
1.1.6.4 Data Linkage, Storage, and Validation 8
1.2 Patient Phenotyping 8
1.2.1 Approaches in Defining Patient Phenotype 9
1.2.2 Phenotyping CKD Patients 9
1.3 Concluding Remarks 10
  References 10

2 Biobanking, Ethics, and Relevant Legal Issues 13
Brigitte Lohff, Thomas Illig, and Dieter Tröger

2.1 Introduction 13
2.2 Brief Historical Derivation to the Ethical Guidelines in Medical Research 13
2.2.1 1900: Directive to the Head of the Hospitals, Polyclinics, and Other Hospitals 14
2.2.2 1931: Guidelines for Novel Medical Treatments and Scientific Experimentation 14
2.2.3 1947: The Nuremberg Code 14
2.2.4 1964: The Declaration of Helsinki 14
2.2.5 The Declaration of Helsinki and Research on Human Materials and Data 15
2.2.6 2013: Current Valid Declaration of Helsinki in the 7th Revision 15
  References 15
2.3 Biobanking: Definition, Role, and Guidelines of National and International Biobanks 16
2.3.1 Introduction 16
2.3.2 Definition of Biobanks 17



Contentsvi

2.3.3 Human Biobank Types 17
2.3.4 Clinical Biobanks 17
2.3.5 Governance in HUB 18
2.3.6 Epidemiological Biobanks 18
2.3.7 Quality of Samples 19
2.3.8 Harmonization and Cooperation of Biobanks 19
2.3.9 Situation in Germany 20
2.3.10 Situation in Europe and Worldwide 20
2.3.11 Definition of Ownership, Access Rights, and Governance of Biobanks 20
2.3.12 IT in Biobanks 21
2.3.13 Financial Aspects and Sustainability 21
2.3.14 Conclusion 21
  References 22
2.4 Tasks of Ethics Committees in Research with Biobank Materials 23
2.4.1 General Basic Concept 23
2.4.1.1 The Application Procedure 23
2.4.2 About the Respective Ethics Commissions 23
2.4.3 The Establishment of Biobanks 24
 Further Reading 24

3 Nephrogenetics and Nephrodiagnostics: Contemporary Molecular Approaches in the Genomics Era 26
Constantinos Deltas

3.1 Introduction 26
3.2 Applications of Molecular Diagnostics 27
3.3 Aims of Present‐Day Molecular Genetic Investigations 28
3.4 Material Used for Genetic Testing 28
3.5 Clinical, Genetic, and Allelic Heterogeneity 29
3.6 Oligogenic Inheritance 31
3.7 ADPKD, Phenotypic Heterogeneity, and Genetic Modifiers 32
3.8 Collagen IV Nephropathies, Genetic and Phenotypic Heterogeneity, and Genetic Modifiers 33
3.9 CFHR5 Nephropathy, Phenotypic Heterogeneity, and Genetic Modifiers 36
3.10 Unilocus Mutational and Phenotypic Diversity (UMPD) 38
3.11 Next‐Generation Sequencing (NGS) 39
3.12 Conclusions 40
 Acknowledgments 41
  References 41

4 The Use of Transcriptomics in Clinical Applications 49
Daniel M. Borràs and Bart Janssen

4.1 Introduction 49
4.2 Clinical Applications of Transcriptomics: Cases and Potential Examples 53
4.2.1 PCR Applications 53
4.2.2 Microarrays 55
4.2.3 Sequencing 57
4.2.4 Discussion 60
 References 63
 Further Reading 66

5 miRNA Analysis 67
Theofilos Papadopoulos, Julie Klein, Jean‐Loup Bascands, and Joost P. Schanstra

5.1 miRNA Biogenesis, Function, and Annotation 67
5.2 Annotation of miRNAs 69
5.3 miRNAs: Location, Stability, and Research Methods 69
5.3.1 miRNA Analysis and Tissue Distribution 69
5.3.2 miRNAs in Body Fluids 69
5.3.3 Stability of miRNAs 71



Contents vii

5.3.4 Methods to Study miRNAs 71
5.3.4.1 Sampling 71
5.3.4.2 Extraction Protocols 71
5.3.4.3 miRNA Detection Techniques 72
5.3.4.4 Data Processing and Molecular Integration 73
5.3.4.5 In Vitro Target Validation 77
5.4 Use of miRNA In Vivo 79
5.4.1 Chemically Modified miRNAs 82
5.4.2 miRNA Sponges or Decoys 82
5.4.3 Modified Viruses 82
5.4.4 Microvesicles 82
5.4.5 The Polymers 83
5.4.6 Inorganic Nanoparticles 83
5.5 miRNAs as Potential Therapeutic Agents and Biomarkers: Lessons Learned So Far 83
5.5.1 miRNAs as Potential Therapeutic Agents 83
5.5.2 miRNAs as Potential Biomarkers 84
5.5.2.1 Cancer 84
5.5.2.2 Metabolic and Cardiovascular Diseases 84
5.5.2.3 Miscellaneous Diseases 84
5.6 Conclusion 84
  References 85

6 Proteomics of Body Fluids 93
Szymon Filip and Jerome Zoidakis

6.1 Introduction 93
6.2 General Workflow for Obtaining High‐Quality Proteomics Results 93
6.3 Body Fluids 95
6.3.1 Blood 95
6.3.1.1 Plasma 95
6.3.1.2 Serum 96
6.3.2 Urine 96
6.3.3 Cerebrospinal Fluid (CSF) 96
6.3.4 Saliva 96
6.4 Sample Collection and Storage 97
6.5 Sample Preparation for MS/MS Analysis 97
6.5.1 Protein Separation 97
6.5.1.1 Electrophoresis‐Based Methods 98
6.5.1.2 Liquid Chromatography Methods 98
6.5.2 Sample Preparation for MS/MS (Tryptic Digestion) 102
6.5.3 Separation of Peptides 102
6.6 Analytical Instruments 103
6.7 Data Processing and Bioinformatics Analysis 103
6.7.1 Peptide and Protein Identification 103
6.7.2 Protein Quantitation 103
6.7.3 Data Normalization (Example of Label‐Free Proteomics  

Using Ion Intensities) 104
6.7.4 Statistics in Proteomics Analysis 105
6.8 Validation of Findings 105
6.9 Clinical Applications of Body Fluid Proteomics 106
6.10 Conclusions 109
  References 109

7 Peptidomics of Body Fluids 113
Prathibha Reddy, Claudia Pontillo, Joachim Jankowski, and Harald Mischak

7.1 Introduction 113
7.2 Clinical Application of Peptidomics 113



Contentsviii

7.3 Different Types of Body Fluids Used in Biomarker Research 113
7.3.1 Blood 113
7.3.2 Urine 114
7.4 Sample Preparation and Separation Methods for Mass Spectrometric Analysis 115
7.4.1 Depletion Strategies 115
7.4.1.1 Ultrafiltration 115
7.4.1.2 Precipitation 116
7.4.1.3 Liquid Chromatography 116
7.4.1.4 Capillary Electrophoresis 116
7.4.1.5 Instrumentation 117
7.5 Identification of Peptides and Their Posttranslational Modifications 117
7.6 Urinary Peptidomics for Clinical Application 118
7.6.1 Kidney Disease 118
7.6.2 Urogenital Cancers 119
7.6.3 Blood Peptides as Source of Biomarkers 120
7.6.4 Proteases and Their Role in Renal Diseases and Cancer 120
7.7 Concluding Remarks 122
  References 122

8 Tissue Proteomics 129
Agnieszka Latosinska, Antonia Vlahou, and Manousos Makridakis

8.1 Introduction 129
8.2 Tissue Proteomics Workflow 130
8.3 Tissue Sample Collection and Storage 132
8.4 Sample Preparation 133
8.4.1 Homogenization of Fresh‐Frozen Tissue 133
8.4.1.1 Mechanical Methods of Tissue Homogenization 135
8.4.1.2 Chemical Methods of Tissue Homogenization 136
8.4.2 LCM 136
8.4.3 Protein Digestion 137
8.5 Overcoming Tissue Complexity and Protein Dynamic Range: Separation Techniques 138
8.5.1 Subcellular Fractionation 139
8.5.2 Gel‐Based Approaches 139
8.5.3 Gel‐Free Approaches 140
8.6 Instrumentation 141
8.6.1 LTQ Orbitrap 141
8.6.2 LTQ Orbitrap Velos 142
8.6.3 Q Exactive 142
8.7 Quantitative Proteomics 143
8.8 Functional Annotation of Proteomics Data 144
8.9 Application of MS‐Based Tissue Proteomics in Bladder Cancer Research 145
8.10 Conclusions 148
  References 148

9 Tissue MALDI Imaging 156
Andrew Smith, Niccolò Mosele, Vincenzo L’Imperio, Fabio Pagni, and Fulvio Magni

9.1 Introduction 156
9.1.1 MALDI‐MSI: General Principles 157
9.2 Experimental Procedures 159
9.2.1 Sample Handling: Storage, Embedding, and Sectioning 159
9.2.2 Matrix Application 160
9.2.3 Spectral Processing 162
9.2.3.1 Baseline Removal 162
9.2.3.2 Smoothing 164



Contents ix

9.2.3.3 Spectral Normalization 164
9.2.3.4 Spectral Realignment 166
9.2.3.5 Generating an Overview Spectrum 166
9.2.3.6 Peak Picking 166
9.2.4 Data Elaboration 168
9.2.4.1 Unsupervised Data Mining 168
9.2.4.2 Supervised Data Mining 168
9.2.5 Correlating MALDI‐MS Images with Pathology 169
9.3 Applications in Clinical Research 169
  References 171

10 Metabolomics of Body Fluids 173
Ryan B. Gill and Silke Heinzmann

10.1 Introduction to Metabolomics 173
10.2 Analytical Techniques 174
10.2.1 NMR 174
10.2.1.1 Sample Preparation for Urine 175
10.2.1.2 Sample Preparation for Blood 177
10.2.1.3 Sample Preparation for Tissue 177
10.2.1.4 Instrumental Setup 177
10.2.2 MS 178
10.2.2.1 Ionization 178
10.2.2.2 Mass Analyzers 179
10.2.2.3 Coupled Separation Methods 179
10.2.2.4 MS Sample Pretreatment Techniques 180
10.2.3 Protein Removal (PPT) 181
10.2.4 LLE 182
10.2.5 Solid‐Phase Extraction (SPE) 182
10.3 Statistical Tools and Systems Integration 182
10.3.1 Post‐Measurement Spectral Processing 183
10.3.2 Spectral Alignment 183
10.3.3 Normalization and Scaling 184
10.3.4 Peak Versus Feature Detection 184
10.3.5 Data Analysis 184
10.3.6 Unsupervised 184
10.3.7 Supervised 185
10.3.8 Spectral Databases and Metabolite Identification 185
10.3.9 Pathway Analysis 186
10.3.10 Validation and Performance Assessment 186
10.3.11 Application into Systems Biology 187
10.4 Metabolomics in CKD 187
10.4.1 Uremic Toxins and New Biomarkers of eGFR and CKD Stage 187
10.4.2 Dimethylarginine 188
10.4.3 p‐Cresol Sulfate (PCS) 188
10.4.4 Indoxyl Sulfate (IS) 188
10.4.5 Gut Microbiota 189
10.4.6 Osmolytes 190
10.5 Conclusions 190
  References 191

11 Statistical Inference in High‐Dimensional Omics Data 196
Eleni‐Ioanna Delatola and Mohammed Dakna

11.1 Introduction 196
11.2 From Raw Data to Expression Matrices 196



Contentsx

11.3 Brief Introduction R and Bioconductor 197
11.4 Feature Selection 197
11.5 Sample Classification 199
11.6 Real Data Example 200
11.7 Multi‐Platform Data Integration 200
11.7.1 Early‐Stage Integration 201
11.7.2 Late‐Stage Integration 201
11.7.3 Intermediate‐Stage Integration 202
11.7.4 Intermediate‐Stage Integration: Matrix Factorization 202
11.7.5 Intermediate‐Stage Integration: Unsupervised Methods 202
11.8 Discussion and Further Challenges 202
 References 203

12 Epidemiological Applications in ‐Omics Approaches 207
Elena Critselis and Hiddo Lambers Heerspink

12.1 Overview: Importance of Study Design and Methodology 207
12.2 Principles of Hypothesis Testing 207
12.2.1 Definition of Research Hypotheses and Clinical Questions 207
12.2.2 Hypothesis Testing in Relation to Types of Biomarkers Under Assessment 208
12.3 Selection of Appropriate Epidemiological Study Design for Hypothesis Testing 208
12.4 Types of Epidemiological Study Designs 209
12.4.1 Observational Studies 209
12.4.1.1 Cross‐Sectional Studies 209
12.4.1.2 Case‐Control Studies 210
12.4.1.3 Cohort Studies 211
12.4.1.4 Health Economics Assessment 211
12.5 Selection of Appropriate Statistical Analyses for Hypothesis Testing 211
12.6 Summary 212
  References 213

Part II Progressing Towards Systems Medicine 215

13 Introduction into the Concept of Systems Medicine 217
Stella Logotheti and Walter Kolch

13.1 Medicine of the Twenty‐First Century: From Empirical Medicine and Personalized Medicine  
to Systems Medicine 217

13.2 The Emerging Concept of Systems Medicine 218
13.2.1 The Need for Establishment of Systems Medicine and the Field of Application 218
13.2.2 Bridging the Gap: From Systems Biology to Systems Medicine 219
13.2.3 Attempting a Definition 220
13.2.4 The Network‐Within‐a‐Network Approach in Systems Medicine 220
13.2.4.1 Great Expectations for Systems Medicine: The P4 Vision 221
13.2.4.2 How Systems Medicine Will Transform Healthcare 222
13.2.4.3 The Five Pillars of Systems Medicine 223
13.2.4.4 The Stakeholders of Systems Medicine 223
13.2.4.5 The Key Areas for Successful Implementation 223
13.2.4.6 Improvement of the Design of Clinical Trials 223
13.2.4.7 Development of Methodology and Technology, with Emphasis on Modeling 224
13.2.4.8 Generation of Data 224
13.2.4.9 Investment on Technological Infrastructure 224
13.2.4.10 Improvement of Patient Stratification 224
13.2.4.11 Cooperation with the Industry 224
13.2.4.12 Defining Ethical and Regulatory Frameworks 224
13.2.4.13 Multidisciplinary Training 225



Contents xi

13.3 Networking Among All Key Stakeholders 225
13.4 Coordinated European Efforts for Dissemination and Implementation 225
13.5 The Contributions of Academia in Systems Medicine 226
13.6 Data Generation: Omics Technologies 226
13.7 Data Integration: Identifying Disease Modules and Multilayer Disease Modules 227
13.8 Modeling: Computational and Animal Disease Models for Understanding the Systemic Context 

of a Disease 228
13.9 Examples and Success Stories of Systems Medicine‐Based Approaches 228
13.10 Limitations, Considerations, and Future Challenges 229
  References 230

14 Knowledge Discovery and Data Mining 233
Magdalena Krochmal and Holger Husi

14.1 Introduction 233
14.2 Knowledge Discovery Process 233
14.2.1 Defining the Concept and Goals 234
14.2.2 Data Preparation/Preprocessing 235
14.2.3 Database Systems 236
14.2.4 Data Mining Tasks and Methods 236
14.2.4.1 Statistics 238
14.2.4.2 Machine Learning 239
14.2.4.3 Text Mining 241
14.2.5 Pattern Evaluation 242
14.3 Data Mining in Scientific Applications 242
14.3.1 Genomics Data Mining 243
14.3.2 Proteomics Data Mining 243
14.4 Bioinformatics Data Mining Tools 244
14.5 Conclusions 244
  References 245

15 -Omics and Clinical Data Integration 248
Gaia De Sanctis, Riccardo Colombo, Chiara Damiani, Elena Sacco, and Marco Vanoni

15.1 Introduction 248
15.2 Data Sources 249
15.3 Integration of Different Data Sources 252
15.4 Integration of Different ‐Omics Data 252
15.4.1 Integrating Transcriptomics and Proteomics 252
15.4.2 Integrating Transcriptomics and Interactomics 253
15.4.3 Integrating Transcriptomics and Metabolic Pathways 254
15.5 Visualization of Integrated ‐Omics Data 255
15.6 Integration of ‐Omics Data into Models 260
15.6.1 Multi‐Omics Data Integration into Genome‐Scale Constraint‐Based Models 262
15.7 Data Integration and Human Health 263
15.7.1 Applications to Metabolic Diseases 263
15.7.2 Applications to Cancer Research 264
15.8 Conclusions 265
  References 265

16 Generation of Molecular Models and Pathways 274
Amel Bekkar, Julien Dorier, Isaac Crespo, Anne Niknejad, Alan Bridge, and Ioannis Xenarios

16.1 Introduction 274
16.2 PKN Construction Through Expert Biocuration 274
16.3 Modeling and Simulating the Dynamical Behavior of Networks 276
16.3.1 Logic Models 276
16.3.1.1 Boolean Networks 276



Contentsxii

16.3.1.2 Probabilistic Boolean Networks (PBN) 278
16.3.1.3 Multiple Value Modeling 278
16.3.1.4 Fuzzy Logic‐Based Modeling 278
16.3.1.5 Contextualization of PKNs Using Experimental Data 279
16.3.1.6 Ordinary Differential Equations 280
16.3.1.7 Piecewise Linear Differential Equations 280
16.3.1.8 Constraint‐Based Modeling 281
16.3.1.9 Hybrid Models 282
16.4 Conclusions 283
  References 283

17 Database Creation and Utility 286
Magdalena Krochmal, Katryna Cisek, and Holger Husi

17.1 Introduction 286
17.2 Database Systems 286
17.2.1 Introduction to Databases 286
17.2.2 Data Life Cycle and Objectives of Database Systems 286
17.2.3 Advantages and Limitations 288
17.2.4 Database Design Models 288
17.2.5 Development Life Cycle 291
17.2.6 Database Transactions, Structured Query Language (SQL) 292
17.2.7 Data Analysis and Visualization 292
17.3 Biological Databases 293
17.3.1 Development Life Cycle 294
17.3.1.1 Data Extraction 294
17.3.1.2 Semantic Tools for ‐Omics 294
17.3.2 Existing Biological Repositories 295
17.3.2.1 Information Sources for ‐Omics 295
17.3.2.2 Renal Information Sources for ‐Omics 296
17.3.3 Application in Research 297
17.3.3.1 Data Mining on Large Multi‐Omics Datasets 297
17.3.3.2 Multi‐Omics Tools for Researchers 297
17.3.3.3 Limitations of Multi‐Omics Tools 297
17.3.3.4 Future Outlook for Multi‐Omics 298
17.4 Conclusions 298
  References 298

Part III Test Cases CKD and Bladder Carcinoma 301

18 Kidney Function, CKD Causes, and Histological Classification 303
Franco Ferrario, Fabio Pagni, Maddalena Bolognesi, Elena Ajello, Vincenzo L’Imperio, Cristina Masella, 
and Giovambattista Capasso

18.1 Introduction 303
18.2 The Evaluation of Glomerular Filtration Rate 303
18.3 Causes of CKD 305
18.3.1 Histological Classification of CKD 307
18.4 Assessment of Disease Progression and Response to Therapy for the Individual: Interval Renal Biopsy 310
18.5 Recent Advances: Pathology at the Molecular Level 310
18.6 Digital Pathology 313
18.7 Conclusions 315
  References 315



Contents xiii

19 CKD: Diagnostic and Other Clinical Needs 319
Alberto Ortiz

19.1 The Evolving Concept of Chronic Kidney Disease 319
19.2 A Growing Epidemic 320
19.3 Increasing Mortality from Chronic Kidney Disease 321
19.4 The Issue of Cause and Etiologic Therapy 322
19.5 Unmet Medical Needs: Biomarkers and Therapy 323
19.6 Conclusions 324
 Acknowledgments 324
  References 324

20 Molecular Model for CKD 327
Marco Fernandes, Katryna Cisek, and Holger Husi

20.1 Introduction 327
20.2 Data‐Driven Approaches and Multiomics Data Integration 327
20.2.1 Database Resources 328
20.2.2 Software Tools and Solutions 330
20.2.2.1 Gene Ontology (GO) and Pathway‐Term Enrichment 331
20.2.2.2 Disease–Gene Associations 331
20.2.2.3 Resolving Molecular Interactions (Protein–Protein Interaction, 

Metabolite–Reaction–Protein–Gene) 332
20.2.2.4 Transcription Factor(TF)‐Driven Modules and microRNA–Target Regulation 332
20.2.2.5 Pathway Visualization and Mapping 333
20.2.2.6 Data Harmonization: Merging and Mapping 333
20.2.3 Computational Drug Discovery 334
20.2.3.1 High‐Throughput Virtual Screening (HTVS) 334
20.2.3.2 Advantages and Limitations of HTVS 334
20.3 Chronic Kidney Disease (CKD) Case Study 335
20.3.1 Dataspace Description: Demographics and Omics Platforms Information 337
20.3.2 Dataspace Description: No. of Associated Molecules Per Omics Platform 337
20.3.3 Data Reduction by Principal Component Analysis (PCA) 338
20.3.4 Gene Ontology (GO) and Pathway‐Term Clustering 339
20.3.5 Interactome Analysis: PPIs and Regulatory Interactions 342
20.3.5.1 Protein–Protein Interactions (PPIs) 342
20.3.5.2 Regulatory Interactions 343
20.3.6 Interactome Analysis: Metabolic Reactions 343
20.4 Final Remarks 343
 Acknowledgments 343
  Conflict of Interest Statement 343
  References 345

21 Application of Omics and Systems Medicine in Bladder Cancer 347
Maria Frantzi, Agnieszka Latosinska, Murat Akand, and Axel S. Merseburger

21.1 Introduction 347
21.2 Bladder Cancer Pathology and Clinical Needs 348
21.2.1 Epidemiological Facts and Histological Classification 348
21.2.2 Current Diagnostic Means 348
21.2.3 Treatment Options 349
21.2.4 Recurrence and Progression 349
21.2.5 Molecular Classification 350
21.2.6 Biomarkers for Bladder Cancer 350
21.2.7 Considerations on Patient Management 351



Contentsxiv

21.2.8 Defining the Disease‐Associated Clinical Needs 351
21.3 Systems Medicine in Bladder Cancer 351
21.3.1 Omics Datasets for Biomarker Research 353
21.3.1.1 Diagnostic Biomarkers for Disease Detection/Monitoring 353
21.3.1.2 Prognostic Signatures 354
21.3.1.3 Predictive Molecular Profiles 355
21.3.1.4 Molecular Sub‐Classification 356
21.4 Outlook 357
 Acknowledgments 357
  References 358

Index 361



Chapter No.: 1 Title Name: <TITLENAME> fbetw.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:33:38 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xv

xv

Elena Ajello
Nephropathology Center
University of Milano-Bicocca
San Gerardo Hospital
Monza, Italy

Murat Akand
Department of Urology
School of Medicine
Selcuk University
Konya
Turkey
and
Department of Urology
School of Medicine
Katholieke Universiteit Leuven
Leuven, Belgium

Jean‐Loup Bascands
Institut National de la Santé et de la Recherche 
Médicale (INSERM)
U1188- DéTROI- Université de La Réunion
France

Amel Bekkar
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne
Switzerland

Maddalena Bolognesi
Nephropathology Center
University of Milano-Bicocca
San Gerardo Hospital
Monza
Italy

Daniel M. Borràs
GenomeScan B.V.
Leiden
The Netherlands

Alan Bridge
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne
Switzerland

Giovambattista Capasso
Nephrology and Dialysis Unit
Second University of Naples
Policlinico Nuovo Napoli
Naples
Italy

Katryna Cisek
Mosaiques Diagnostics GmbH
Hannover
Germany

Riccardo Colombo
SYSBIO
Centre of Systems Biology
and Department of Informatics
Systems and Communication
University of Milano-Bicocca
Milan
Italy

Isaac Crespo
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne
Switzerland

Elena Critselis
Proteomics Laboratory, Biotechnology Division,
Biomedical Research Foundation of the Academy 
of Athens
Athens
Greece

List of Contributors



List of Contributorsxvi

Mohammed Dakna
Mosaiques Diagnostics GmbH
Hannover, Germany

Chiara Damiani
SYSBIO
Centre of Systems Biology
and Department of Informatics  
Systems and Communication
University of Milano‐Bicocca
Milan, Italy

Eleni‐Ioanna Delatola
Systems Biology Ireland
University College Dublin
Dublin, Ireland

Constantinos Deltas
Director, Molecular Medicine Research Center
Laboratory of Molecular and Medical Genetics
Department of Biological Sciences
University of Cyprus
Nicosia, Cyprus

Gaia De Sanctis
SYSBIO
Centre of Systems Biology
and
Department of Biotechnology and Biosciences
University of Milano‐Bicocca
Milan, Italy

Julien Dorier
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne, Switzerland

Marco Fernandes
Institute of Cardiovascular and Medical Sciences
BHF Glasgow Cardiovascular Research Centre
University of Glasgow
Glasgow, UK

Franco Ferrario
Nephropathology Center
University of Milano-Bicocca
San Gerardo Hospital
Monza, Italy

Szymon Filip
Proteomics Laboratory, Biomedical Research 
Foundation
Academy of Athens
Athens, Greece

Maria Frantzi
Mosaiques Diagnostics GmbH
Hannover, Germany

Ryan B. Gil
Research Unit Analytical BioGeoChemistry
Helmholtz Zentrum München, German Research 
Center for Environment Health
Neuherberg, Germany

Hiddo Lambers Heerspink
Department of Clinical Pharmacy and Pharmacology
University of Groningen, University Medical 
Center Groningen
Groningen
The Netherlands

Silke Heinzmann
Research Unit Analytical BioGeoChemistry
Helmholtz Zentrum München, German Research 
Center for Environment Health
Neuherberg, Germany

Holger Husi
Institute of Cardiovascular and Medical Sciences
BHF Glasgow Cardiovascular Research Centre 
University of Glasgow
Glasgow, UK
and 
Department of Diabetes and Cardiovascular Science
Centre for Health Science
University of the Highlands and Islands
Inverness, UK

Thomas Illig
CEO, Hannover Unified Biobank (HUB) MHH
Research Ethical Committee
Hanover
Germany

Joachim Jankowski
Institute for Molecular Cardiovascular Research
University Hospital RWTH Aachen
Aachen
Germany

Bart Janssen
GenomeScan B.V.
Leiden
The Netherlands

Julie Klein
Renal Fibrosis Laboratory
Institut National de la Santé et de la Recherche 
Médicale (INSERM), U1048
Institute of Cardiovascular and Metabolic Disease



List of Contributors xvii

and
Renal Fibrosis Laboratory
Université Toulouse III Paul‐Sabatier
Toulouse, France

Walter Kolch
Systems Biology Ireland
and
Conway Institute of Biomolecular & 
Biomedical Research
and
School of Medicine
University College Dublin
Dublin, Ireland

Magdalena Krochmal
Proteomics Laboratory
Biomedical Research Foundation
Academy of Athens
Athens, Greece

Agnieszka Latosinska
Mosaiques Diagnostics GmbH
Hannover
Germany
and
Biotechnology Division
Biomedical Research Foundation
Academy of Athens
Athens, Greece

Vincenzo L’Imperio
Department of Medicine and Surgery, Pathology
University of Milano‐Bicocca
San Gerardo Hospital
and
Nephropathology Center
University of Milano-Bicocca
San Gerardo Hospital
Monza, Italy

Stella Logotheti
Proteomics Laboratory
Biomedical Research Foundation
Academy of Athens
Athens
Greece

Brigitte Lohff
Institute of History, Ethics and Philosophy 
of Medicine MHH
Research Ethical Committee
Hanover, Germany

Fulvio Magni
Department of Medicine and Surgery, 
Proteomics and Metabolomics Unit
University of Milano‐Bicocca
Monza, Italy

Manousos Makridakis
Biotechnology Division
Biomedical Research Foundation
Academy of Athens
Athens
Greece

Katerina Markoska
Medical Faculty
University “Ss. Cyril and Methodius” of Skopje
Skopje
Republic of Macedonia

Cristina Masella
Nephrology and Dialysis Unit
Second University of Naples
Policlinico Nuovo Napoli
Naples
Italy

Axel S. Merseburger
Department of Urology
University of Lübeck
Lübeck
Germany

Harald Mischak
Mosaiques Diagnostics GmbH
Hannover
Germany

Niccolò Mosele
Department of Medicine and Surgery, Proteomics and 
Metabolomics Unit
University of Milano‐Bicocca
Monza
Italy

Anne Niknejad
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne
Switzerland



List of Contributorsxviii

Alberto Ortiz
Laboratory of Nephrology
IIS‐Fundacion Jimenez Diaz, School  
of Medicine, UAM
and
REDinREN
and
Pathology
IIS‐Fundacion Jimenez Diaz, School of Medicine, UAM
and
IRSIN, Madrid
Spain

Fabio Pagni
Department of Medicine and Surgery, Pathology
University of Milano‐Bicocca
San Gerardo Hospital
and
Nephropathology Center
University of Milano-Bicocca
San Gerardo Hospital
Monza, Italy

Theofilos Papadopoulos
Renal Fibrosis Laboratory
Institut National de la Santé et de la Recherche 
Médicale (INSERM), U1048
Institute of Cardiovascular and Metabolic Disease
and
Renal Fibrosis Laboratory
Université Toulouse III Paul‐Sabatier
Toulouse
France

Claudia Pontillo
Mosaiques Diagnostics GmbH
Hannover
Germany

Prathibha Reddy
Institute for Molecular Cardiovascular Research
University Hospital RWTH Aachen
Aachen, Germany

Elena Sacco
SYSBIO
Centre of Systems Biology
and
Department of Biotechnology and Biosciences
University of Milano‐Bicocca
Milan, Italy

Joost P. Schanstra
Renal Fibrosis Laboratory
Institut National de la Santé et de la Recherche 
Médicale (INSERM), U1048
Institute of Cardiovascular and Metabolic Disease

and
Renal Fibrosis Laboratory
Université Toulouse III Paul‐Sabatier
Toulouse
France

Andrew Smith
Department of Medicine and Surgery, Proteomics and 
Metabolomics Unit
University of Milano‐Bicocca
Monza
Italy

Goce Spasovski
Department of Nephrology
University “Ss. Cyril and Methodius,” Medical Faculty
Skopje
Republic of Macedonia

Dieter Tröger
Institute for Forensic Medicine MHH
Research Ethical Committee MHH
Hanover
Germany

Marco Vanoni
SYSBIO
Centre of Systems Biology
and
Department of Biotechnology and Biosciences
University of Milano‐Bicocca
Milan, Italy

Antonia Vlahou
Biotechnology Division
Biomedical Research Foundation
Academy of Athens
Athens, Greece

Ioannis Xenarios
Vital‐IT
SIB Swiss Institute of Bioinformatics
University of Lausanne
Lausanne
Switzerland

Jerome Zoidakis
Proteomics Laboratory, Biomedical Research 
Foundation
Academy of Athens
Athens
Greece



Chapter No.: 1 Title Name: <TITLENAME> fpref.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:33:43 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: xix

xix

Preface

This book presents high‐throughput analytical approaches 
used to investigate biological samples and omics data 
integration approaches that aim to offer novel solutions 
to clinical needs, along with two examples of their 
implementation in biomedical studies. Currently, there 
are many different experimental approaches available, 
and each of them provides an insight of the biological 
topic from a different perspective (genomics, transcrip-
tomics, proteomics, peptidomics, metabolomics, etc.). 
To fully exploit the information contained in these large 
datasets, novel bioinformatics tools are applied. The 
combination of classical and computational biology 
has led to the development of a new discipline: systems 
biology. Its aim is to study biological entities globally 
(holistic view) rather than concentrating on their particu-
lar aspects (reductionist view).

The topics covered in this book are as follows:

a) An overview of state‐of‐the‐art ‐omics techniques 
currently used to obtain a comprehensive molecular 
profile of biological specimens

b) Computational tools used for organization of these 
multisource data and their integration toward devel-
oping molecular models for disease pathophysiology.

As test cases the investigation of chronic kidney 
 disease (CKD) and bladder cancer are used. These rep-
resent multifactorial, highly heterogeneous diseases 
and are among the most significant health issues in 
developed countries with a rapidly aging population. In 
this book, novel insights on CKD and bladder cancer 
obtained by “omics” data integration are presented as an 
example of the application of systems biology in the 
clinical setting.

The book is suitable for university students, researchers, 
and clinicians interested in clinical omics applications. 
The breadth of topics covered allows the reader to 
acquire a global view of the available omics approaches 
and their integration and potential for biomedical 
applications.
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1.1  Clinical Data Collection

1.1.1 Data Collection for Clinical Research

The goal of clinical studies is the evaluation of interven
tions on clinically relevant parameters [1]. Conducting a 
clinical study is a major undertaking accompanied with 
heavy and extensive responsibilities. Good primary 
research calls for constant dedication by practicing 
physicians and patients willing to participate for the sake 
of knowledge and better treatment of future patients [2].

The study design is the investigator’s map from 
which data collection follows and which enables the 
investigators to thoughtfully produce the necessary 
data forms. The formulation of a good research ques
tion, up front, informs the clinician or researcher about 
the most appropriate data elements to be collected [2]. 
Investigators often believe that collecting more data is 
better and that it is important to collect information 
on as many scientifically “interesting” factors as 
 possible. Therefore, it is imperative to distinguish 
between those data elements that are essential and 
those that are academically “interesting” but may not be 
considered of interest to the key study hypothesis. This 
should greatly assist in narrowing down one’s study 
questions and collecting data more efficiently [3].

1.1.2 Clinical Data Management

Clinical data management (CDM) is the process of 
collection, cleaning, and management of subject data in 
compliance with regulatory standards. The primary 
objective of CDM processes is to provide high‐quality 
data by keeping the number of errors and missing data as 
low as possible and gather the maximum amount of data 
for analysis [4].

High‐quality data should be absolutely accurate, have 
minimal or no missing points, and should be suitable for 
statistical analysis. The data should meet the applicable 
regulatory requirements specified for data quality and 
comply with the protocol requirements. In case of a devi
ation or not meeting the protocol specifications, we may 
think of excluding the patient from the final database [5].

Current technological developments have accelerated 
the rate of data collection and positively impacted the 
CDM process and systems by improving their quality. 
From the regulatory perspective, the biggest challenge 
would be the standardization of data management pro
cesses across organizations and development of regula
tions to define the procedures that has to be followed. 
From the industry perspective, the challenge would be 
the planning and implementation of data management 
systems in a changing operational environment. CDM is 
evolving to become a standard‐based clinical research 
entity, balancing between the expectations from and 
constraints in the existing systems, driven by technologi
cal developments and business demands [5].

The Society for Clinical Data Management (SCDM) 
publishes Good Clinical Data Management Practices 
(GCDMP) guidelines that highlight the minimum stand
ards and best practices, providing assistance to clinical 
data managers in their implementation of high‐quality 
CDM [5]. If data have to be submitted to regulatory 
authorities, it should be entered and processed in accord
ance with the Code of Federal Regulations (CFR), Title 
21, Volume 1 of Part 11, Food and Drug Administration 
(FDA) regulations on electronic records and electronic 
signatures (ERES), cited as 21CFR11.10 [6].

Many clinical data management systems (CDMS) are 
available for data management. Most of the CDM sys
tems available meet these criteria, and pharmaceutical 
companies as well as contract research organizations 
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ensure this compliance. In multicentric trials, a CDMS 
has become essential to handle the huge amount of data. 
These CDM tools ensure the audit trail and help in the 
management of discrepancies [5].

One should leave sufficient time for planning and devel
opment of system and study database for the follow‐up 
and tracking of patients throughout the study. The 
following issues should be defined in advance: determi
nation of the mechanism and processes for data collection 
if a patient misses a scheduled appointment, implementa
tion of quality checks, preparation and collection of 
patient informed consent, and institutional review board 
(IRB) approval. Inclusion and exclusion criteria should be 
defined as well as data collection elements [2].

1.1.3 Creating Data Forms

The limited focus of disease‐specific consortia makes 
comprehensive coverage of individual areas more likely. 
Researchers should benefit from a clear understanding 
of the extensive overlap of various clinical terminologies, 
as well as advice regarding which standards are appropri
ate for a particular research context. They should also be 
able to address relationships between clinical research 
data collection standards and electronic health records 
(EHR) specifications, as well as the broad issue of secondary 
use of clinical data for research. Additional tasks could 
include the review of standards and their scope and 
relating them to needs of clinical research [7].

Item repositories can reduce the burden on new 
investigators to create their own items, because exist
ing validated items or sets of items can be reused [8]. 
Pilot testing of data forms completed by patients allows 
investigators to react to suggestions from patients as well 
as from staff and personnel and provides more realistic 
estimates of data collection times [2].

1.1.3.1 Different Data Forms According 
to the Type of Study
Data form development is a collaborative effort among 
the investigators and often takes months of planning and 
preparation. It should be undertaken by investigators 
and/or stakeholders experienced in form construction 
and familiar with the methods of data collection, data 
processing, and content necessary for the study [2]. It is 
facilitated by review of the literature for instruments 
used in similar studies, also including the Clinical Data 
Acquisition Standards Harmonization (CDASH) recom
mendations, which give useful general guidance on 
constructing yes/no questions, scale direction, date/time 
formats, scope of CRF data collection, pre‐populated 
data, and collection of calculated or derived data. Certain 
items (especially questionnaire‐based ones) have a discrete 

set of permissible values (also called “responses” or 
“answers”), for example, the use of cigarettes (never/ 
former/current), amount (less than 3 per day/3–10 per 
day/more than 10 per day), and fasting (no/yes) [7].

Study details like objectives, intervals, visits, investiga
tors, sites, and patients should be defined in the database, 
and CRF layouts have to be designed for data entry [5]. 
In order to simplify the data collection, some answers 
can be coded. For example, 1 = yes and 2 = no, but these 
codes should be consistent throughout the CRF booklet 
(Table 1.1) [9].

The forms should be well designed in order to avoid 
variation in the responses and the site personnel can 
understand the format (Table 1.2) [9].

Much of the information collected in observational 
epidemiologic studies is collected in the form of patient/
participant self‐reports on standardized questionnaires 
that are self‐administered or administered in person by 
an interviewer, by phone, or via mail or the Internet. The 
factors on which information is routinely collected in 
these studies include sociodemographic characteristics, 
lifestyle practices, medical history, and use of prescribed 
or over‐the‐counter medications [3].

Surveys are tools of great value for epidemiological 
research and clinical practice. They can be used as a 
study design, at same time serving as definitive data 
collection tool. On the other hand, clinical registries 

Table 1.1 Coding on the case report form module.

Demography

Date of birth (DD/MM/YYYY) □□/□□/□□□□

Gender Male □ 1 Female □ 2
Height (cm) □□□.□
Weight (kg) □□□.□□
Smoker Yes □ 1 No □ 2
Family history Yes □ 1 No □ 2

Table 1.2 Well‐designed and poorly designed data fields.

Poorly designed Well designed

Date of visit:______ Date of visit: □□/□□/□□□□
(DD/MM/YYYY)

Blood pressure:____/____ Blood pressure: □□□/□□□ 
(mmHg)

Pulse: _______ Pulse: □□□ (beats/min)
Temperature:_______ Temperature: □□.□ (°C)
Respiration: ________ Respiration: □□ (/min)
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can be also used to obtain specific data within a more 
comprehensive design [10].

Ideally, patient‐reported outcomes are measured using 
standardized, validated instruments that promote the 
collection of high‐quality data and allow meaningful com
parisons across observational studies or randomized trials. 
National Institutes of Health Toolbox (www.nihtoolbox.
org) and Patient‐Reported Outcomes Measurement 
Information System (www.nihpromis.org) have highlighted 
the importance of harmonization of patient‐reported 
outcomes data collection instruments [3].

Clinical Document Architecture templates— 
archetypes—are agreed‐upon specifications that  support 
rigorous computable definitions of clinical concepts like 
type of measure, measurement conditions, and measure
ment units [11].

OpenEHR, by contrast, allows the semantic model’s 
structure to vary with the parameter being described. 
Clinical researchers have been specifying parameter 
measurement with precision long before “archetypes” 
were conceived [7].

CDASH addresses data collection standards through 
standardized CRFs. Initial CDASH standards focused on 
cross‐specialty areas such as clinical trial safety.

The Clinical Data Interchange Standards Consortium 
(CDISC) (http://www.cdisc.org) is an international 
standards organization that aims to develop and support 
global, platform‐independent data standards. The con
sortium has proposed standards valuable for general 
areas such as drug safety, focusing primarily on regulated 
studies, and does not address broader issues of clinical 
research. They also have CDISC Operational Data Model 
(ODM) for exchanging and archiving clinical study data 
[12]. Another clinical information model is the Health 
Level 7 (HL7) Reference Information Model (RIM), 
which use terminologies differently than the research‐
oriented CDISC (ODM) format. HL7 depends on map
ping data elements to concepts in standard terminologies, 
while ODM does not support mapping of data elements 
themselves (e.g., serum total cholesterol, systolic BP) to 
terminologies and only cares that a terminology may act 
as a source for a data element’s contents [13].

1.1.4 Case Report Form (CRF)

1.1.4.1 CRF Standards Characterization
Data collection for clinical research involves gathering 
variables relevant to research hypotheses. These varia
bles (“patient parameters,” “data items,” “data elements,” 
or “questions”) are incorporated into data collection 
forms (“case report forms” (CRFs)) for study implemen
tation [4].

CRF may exist in the form of a paper or an electronic 
version. The traditional method is to employ paper case 

report forms (pCRFs) to collect the data responses, 
which are translated to the database. These pCRFs are 
filled up by the investigator according to the completion 
guidelines. In the electronic case report form (eCRF)‐
based CDM, the investigator or a designee will be 
entering the data directly at the site. In the case of eCRF, 
the probability of erroneous data entry is lower, and the 
resolution of discrepancies faster [5].

A CRF is designed by the CDM team, as this is the first 
step in translating the protocol‐specific activities into 
data being generated. The units in which measurements 
have to be made should also be mentioned next to the 
data field [5].

Because of the protocol‐centric nature of clinical 
research, opportunities for shared standards at levels 
higher than individual items are relatively limited. 
Nevertheless, disease‐specific CRF standardization 
efforts have helped identify standard pools of data items 
within focused research and professional communities 
and consequently helped achieve research efficiencies 
within their application areas. Of more immediate and 
widespread relevance are standardization efforts toward 
the development of section and workflow for CRF, as 
well as data collection and validation. The structure and 
content of individual CRFs/sections can be left reasona
bly flexible to allow adaptation to individual protocol 
requirements [7].

Little consensus exists on the choice and content 
of  CRF standardization candidates. Few CRFs can be 
reused unchanged across all protocols. Within a specific 
disease domain, standard CRFs seem feasible and  useful. 
But the segregation of data items relevant to a research 
protocol into individual CRFs is often based on consid
erations other than logical grouping and may vary with 
the study design. One concern about “standard” CRF use 
is that users should not be pressured to collect parame
ters defined within the CRF that are not directly related 
to a given protocol’s research objectives. Dynamic CRF 
rendering offers one way out of this dilemma: protocol‐
specific CRF customization allows individual investiga
tors to specify, at design time, the subset of parameters 
that they consider relevant. Also, web application software 
can read the customization metadata and render only 
applicable items [7].

Generally, a programmer/designer performs the CRF 
annotation, creates the study database, and programs 
the edit checks for data validation. He/she is also respon
sible for designing of data entry screens in the database 
and validating the edit checks with dummy data [5]. 
Databases are the clinical software applications, which 
are built to facilitate the CDM tasks to carry out multiple 
studies [14].

CRFs can be used in groups of semantically closely 
related parameters, which can be considered as a series 
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of observations. A section encompasses one or more 
groups. The division of CRFs into sections is often 
 arbitrary. In paper‐based data entry, CRFs consisting of 
a single, oversize section are sometimes used. Real‐time 
electronic data capture (EDC) subdivision into smaller 
sections is generally preferred. Section headings and 
explanations that serve to describe the section’s purpose 
are usually left to individual investigators [7].

1.1.4.2 Electronic and Paper CRFs
CRFs support either primary (real‐time) data collection 
or secondarily recorded data originating elsewhere (e.g., 
the electronic or paper health records). Historically, 
CRFs were paper based. The existence of secondary EDC 
also influences manual workflow processes related to 
verification of paper‐based primary data (e.g., checks for 
completeness, legibility, and valid codes) [7].

Although the use of validated, standardized instru
ments is preferred, those data collection tools are not 
always available. If standardized instruments do not exist 
for measuring a specific construct, investigators will 
often create “homegrown” scales, which require pilot 
test before using them in a formal research study. These 
pilot efforts ideally would involve validation of the instru
ment against a gold standard (e.g., clinical diagnosis) or 
important study outcome [3].

Collection of individual patient data on CRFs in clinical 
research has traditionally been done by investigators in 
their offices summarizing medical charts on paper forms 
(pCRFs), a tedious method that could result in data entry 
errors and wrong conclusions [15, 16].

eCRFs have improved data quality and completeness, 
reducing losses and transport logistics, especially for multi
center trials [17]. The choice between pCRF and eCRF is 
a significant step in the design of clinical studies and 
should be discussed with the involved stakeholders [18].

EHR and research data collection differ in that the 
latter records a subset of patient parameters and variables 
defined with the research protocol. Data are recorded 
in maximally structured form, avoiding narrative text, 
except if there is a need to record unanticipated 
 information [7].

Le Jeannic et  al. have compared the application of 
eCRF and pCRF and their results showed that eCRF 
studies were mostly used in large multicenter, national, 
and phase 3 clinical trials while pCRF studies were used 
for trials with few patients and centers. The majority of 
pCRFs were used in drug trials, and eCRFs were more 
often used in trials with a significantly higher number of 
patients and fewer data. The number of patients was the 
only explanatory variable for CRF choice. They found 
no difference in the average duration of recruitment. 
Use of eCRF and the smaller number of centers were 
associated with shorter study durations. The total average 

cost of a trial was higher with eCRFs than with pCRFs, 
but the mean cost per patient was lower with eCRFs. 
Overall, stakeholders were as satisfied with eCRFs as 
with pCRFs. When asked for their preference of one 
over the other, a majority of stakeholders chose eCRF. 
Preference for pCRFs is reported in monocentric trials 
and for eCRFs in multicentric trials. Additional advantages 
of eCRFs are the prevention of data entry errors by auto
matic checks, easier storage, and the ability of researches 
to oversee data collection from their offices [18].

1.1.5 Methods and Forms for Clinical Data Collection 
and/or Extraction from Patient’s Records

In particular, a patient summary has been seen as the 
most appropriate way to establish eHealth interoperability. 
A patient summary includes patient history, allergies, 
active problems, test results, and medications. However, 
further information can be included, depending on the 
intended purpose of the summary and the anticipated 
context of use [19].

Because of the ubiquity and abundance of high‐quality 
data embedded within medical records, they are a com
monly used source of information in clinical research 
studies. Medical records can be important sources of 
information that can reliably document participants’ 
medical history, clinical, laboratory, or physiologic pro
file at varying time points in a cost‐efficient manner. 
On the other hand, the data contained in medical records 
can be difficult to use and, in some cases, conflicting or 
of questionable accuracy because of the nonstandardized 
manner in which this information is collected, recorded, 
and extracted by various healthcare professionals and 
members of research teams. The increasing use of elec
tronic medical records (EMR) and their combination 
with administrative data have eased data extraction 
efforts. Moreover, the increasing use of standardized 
data entry sets reduced data heterogeneity [3].

1.1.5.1 Electronic Health Records (EHRs)
EHRs are basically seen as a centralized compilation 
of information on the patient’s health [20]. The data 
included in paper‐based patient records has provided 
the golden standard against which the reliability of EHRs 
has been assessed. The success of EHRs depends on the 
quality of the information available to healthcare profes
sionals in making decisions about patient care and in 
the communication between healthcare professionals 
during patient care [19]. It has been shown that data 
from EHRs are reliable when compared with manual 
records [21, 22].

One challenge is to standardize health information 
systems, which also means standardization of the content 
and structure of EHRs [23]. EHRs have so far consisted 
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of unstructured narrative text but also contain structured 
coded data [19]. EHR contains retrospective, concurrent, 
and prospective information, and its primary purpose is 
to support continuing, efficient, and quality‐integrated 
healthcare [24]. An EHR is used primarily for purposes 
of setting objectives and planning patient care, docu
menting the delivery of care, and assessing the outcomes 
of care. It includes information regarding patient needs 
during episodes of care provided by different healthcare 
professionals [25, 26]. The EHR is used by different 
healthcare professionals and also by administrative staff. 
Among the various healthcare professionals who use 
different components of the EHR are physicians, nurses, 
radiologists, pharmacists, laboratory technicians, and 
radiographers [19]. EHRs are used by many different 
healthcare professionals, and the needs and require
ments of all these professionals must be taken into 
account in the development of the information systems. 
Nursing documentation, or documentation by other 
healthcare professionals such as physiotherapists, is an 
important part of the EHR and must not be excluded from 
medical documentation. Patients can also do parts of the 
documentation themselves. Patient self‐documentation 
also reduces the workload of healthcare professionals, 
but it is obviously important that self‐documented data 
components are validated by professionals [19].

Previously EHRs were classified as time oriented, 
problem oriented, and source oriented. Nowadays EHRs 
combine all three elements. In the time‐oriented EMR, 
the data are presented in chronological order. In the 
problem‐oriented medical record, notes are taken for 
each problem assigned to the patient, and each problem 
is described according to the subjective information, 
objective information, assessments, and plan. In the 
source‐oriented record, the content of the record is 
arranged according to the method by which the informa
tion was obtained, for example, notes of visits, X‐ray 
reports, and blood tests [19].

Electronic clinical records, such as conventional clinical 
histories, can display major shortcomings in terms of 
quality of information, lack of data, incomplete infor
mation, and use of multiple free terms. Before electronic 
clinical records can replace registries or surveys, a 
common terminology and set of standards must be 
established to encode and classify the information, and a 
change must be brought about in the attitude of health 
professionals tasked with data collection [10].

The possibility of using electronic clinical histories as 
a data source may depend upon the degree to which this 
is used within the health organization and/or system 
(sole data collection source, data also recorded in paper 
format, etc.), the completeness and coding of recorded 
data, and also the software available for data collection 
and transfer [27].

Introducing an online medical record system could 
play an important role in improving data collection and 
data quality [28].

1.1.6 Data Collection Workflow

1.1.6.1 Defining Baseline and Follow‐Up Data
Before data collection begins, investigators must agree 
on the details of the data collection items and the process 
by which data collection will occur. Investigators must 
define the schedule according to which patients will 
participate in the study and outline the specific data 
elements to be collected each time the patient is exam
ined. If the researcher understands office flow and can 
organize the follow‐up process, then his or her office can 
map data collection in a simple and efficient manner [2].

In most cases, it is best to collect all the required initial 
data for a subject during a single visit at the clinic. Several 
steps and design features are recommended to optimize 
follow‐up rates [2].

In order to minimize the respondent burden, follow‐up 
questionnaires and tests should be kept to a minimum. 
Contact information should be collected at baseline and 
updated at every visit for data collection, whereas subjects 
with no telephone or who plan to move in the near future 
should be excluded. Clinicians need to plan multiple 
efforts at phone contact, both during and after working 
hours, and provide reminders for appointments. Follow‐
up forms should include information about treatment 
compliance and the exposure of patients to various oper
ative and nonoperative treatments. Follow‐up forms 
must also include data regarding side effects and compli
cations of treatment (e.g., monitored events) and whether 
they are related to the study treatment(s). In addition to 
baseline and follow‐up patient data, information regarding 
treatment must be collected [2].

1.1.6.2 Medical Coding
Pre‐ or coexisting illnesses are coded using the available 
medical dictionaries. Medical Dictionary for Regulatory 
Activities (MedDRA) is used for the coding of adverse 
events as well as other illnesses. The World Health 
Organization Drug Dictionary Enhanced (WHODDE) is 
used for coding the medications. Medical coding helps in 
classifying reported medical terms on the CRF to standard 
dictionary terms in order to achieve data consistency and 
avoid unnecessary duplication. The right coding and clas
sification of adverse events and medication is crucial as an 
incorrect coding may lead to masking of safety issues or 
highlight the wrong safety concerns related to the drug [5].

It also is important to note that factors (e.g., medica
tion use) must be defined only by clinicians, and not by 
study staff or study participants, in order to ensure that 
variables will be accurately coded [3].
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1.1.6.3 Errors in Data Collection and Missing Data
If the data are inaccurate or incomplete, they will have no 
worth for decision‐making, research, statistical, or health 
policy purposes [15].

One common cause of errors is not dedicating enough 
time in the development of data forms (i.e., in identifying 
the data elements and in the construction and testing of 
forms). An important problem is the desire of clinicians not 
only to create forms to meet the research goals of the study 
but also to provide data for routine patient care. Certain 
measurements needed for routine patient care are not 
justifiable for research forms, and vice versa. The researcher 
should be clear about the data necessary for assessing the 
primary and secondary outcomes of the study. Data items 
that cannot be justified should be deleted [2].

Double data entry is performed wherein the data is 
entered by two operators separately. The second pass 
entry helps in data verification by identifying the tran
scription errors and discrepancies caused by illegible 
data. Double data entry helps in getting a cleaner data
base compared with a single data entry. Double data 
entry ensures better consistency with pCRF as denoted 
by a lesser error rate [29, 30].

It is difficult to gather the necessary data elements at the 
appropriate times while avoiding missing data. It is even 
more difficult to collect primary data according to a very 
strict protocol, wherein chance, bias, and confounding 
factors can be addressed. No matter how sophisticated the 
data elements and data collection systems, human factors 
make or break any good research effort [2].

With increasing duration of a study, the number of 
participating patients usually declines, so the problem of 
missing data is magnified. Thus, data interpretation for 
long‐term studies is challenging [31].

A frequently employed approach for data analysis of 
clinical (long‐term) studies is the interpretation of missing 
data as therapeutic success (missing equals success (MES)) 
or as therapeutic failure (missing equals failure (MEF)/
nonresponder imputation). A third option the exclusion of 
missing data (missing equals excluded (MEX)/as‐treated) 
stands between these two extremes. Another frequently 
employed method for long‐term studies that is criticized 
by statisticians is equating the last observed value with the 
result at the end of the study (last observation carried 
forward (LOCF)). The selection of the analysis method 
has a great impact on the results and interpretation of a 
study. It is recommended to combine several data analysis 
approaches in order to correctly interpret long‐term 
studies and reach valid conclusions. A comparison of the 
characteristics of test subjects with complete as opposed to 
those with incomplete datasets might be helpful, in order 
to get indications on the possible reasons for dropping out 
of the study or for missing data [1].

1.1.6.4 Data Linkage, Storage, and Validation
The data management group (those responsible for 
data retrieval and processing) needs to link records by 
using a unique identifier for each patient. For example, 
they might use the patient hospital identification (for 
purposes of confidentiality, patient identification can 
be deleted later) plus check digits that identify the 
patient, the center from which the patient comes, and 
the type of visit [2].

The data bank must be backed up regularly. Data collec
tion is too difficult and expensive to repeat, and patients’ 
time is too valuable to have data lost or destroyed [2].

Data validation is the process of testing the validity of 
data in accordance with the protocol specifications. 
Discrepancy is defined as a data point that fails to pass 
a validation check, and it may be due to inconsistent 
data, missing data, range checks, and deviations from 
the protocol. Ongoing quality control of data process
ing is undertaken at regular intervals during the course 
of CDM. Data clarification forms (DCFs) containing 
queries pertaining to the discrepancies identified can 
be also generated [5].

In order to prevent errors from being entered, data 
validation rules should be implemented into the eCRF’s 
prior to commencement of the NPC clinical trial. These 
data validation rules assess whether certain prespecified 
conditions are valid and can therefore pinpoint omis
sions or erroneous data [28].

The clinical trial data management system (CTDMS) 
prevents us from missing data or ending up with poor 
quality data at the end of the study, which often at that 
point cannot be resolved anymore [28].

Clearly, the CTDMS encourages local data managers 
to verify the entered data and, if necessary, ask the doctor 
whether the information is correct [28].

Discrepancy management helps in cleaning the data 
and gathers enough evidence for the deviations observed. 
Discrepancy management is the most critical activity in 
the CDM process. Being the vital activity in cleaning up 
the data, utmost attention must be observed while 
handling the discrepancies [5].

After a proper quality check and assurance, the final 
data validation is run. Database is locked and clean data 
is extracted for statistical analysis. Data extraction is 
done from the final database after locking. This is 
followed by its archival [5].

1.2  Patient Phenotyping

In clinical care settings, a wealth of longitudinal data is 
available through International Statistical Classifi
cation of Diseases v9 (ICD‐9) codes, laboratory results, 
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test reports, and notes written by the physicians during 
multiple patient visits over several years. Essential point 
in improving the formation of research cohorts has been 
the creation of EMR‐linked biobanks and enrolment of 
individuals from routine clinical care settings. With 
patient’s consent and by making their data anonymous, 
EMRs can make a large amount of information available 
for research purposes, allowing studying the evolution 
and progression of the disease [32–34]. In this regard, 
using large number of patient’s data from EMRs can 
markedly reduce the time and effort needed to identify 
specific phenotypes and/or markers associated with 
 disease development, progression, and response to 
 treatment [34–36].

1.2.1 Approaches in Defining Patient Phenotype

The Electronic Medical Records and Genomics 
(eMERGE) Network is a National Human Genome 
Research Institute (NHGRI)‐funded consortium 
tasked with developing methods and best practices for 
the  utilization of the EMR as a tool for genomic 
research. The network is developing phenotyping 
algorithms that are processing EMR data in order 
to  identify cases and controls with a high degree of 
accuracy and con fidence [37]. However, identification 
of particular  phenotypes, especially chronic complex 
diseases, is challenging because of the complexity 
of  data itself and the way in which it is recorded in 
EMR [38].

There has been significant debate about the optimal 
way to identify phenotypes in the EMR. Automated 
approaches using electronic phenotyping and statistical 
analyses are popular as compared with simpler rule‐
based systems. Such phenotyping algorithms are used 
in various applications including discovering novel 
genetic associations of complex diseases, tracking their 
natural history, isolating patients for clinical trials, and 
ensuring quality control in large institutions by ensur
ing that standard‐of‐care guidelines are met in these 
patients [38, 39].

Phenotyping algorithms are dedicated to mining 
biobank resources, which is essential for trial designs, 
and need to enable automatic identification of patients 
that match the research criteria. They contain keywords 
designed to facilitate natural language processing (NLP) 
and access the primarily semi‐structured data fields in 
EHRs—procedure codes, ICD‐9 codes, laboratory 
results, and medication data [40].

NLP content is required for enormous unstructured 
narrative clinical documentation that is considered to 
be the best resource. This is the most difficult part in 
phenotype algorithm construction, and although there 

are many NLP tools for medical domains, human 
involvement is still required [40].

The V‐Model is a temporal model that enables visu
alization of textual information in a timeline, which 
helps in monitoring and understanding a patient’s 
history. The model separately structures causal prob
lems from related actions, representing apparent 
problems–actions (P‐A) relations, and enables to 
extrapolate that problems occurred before actions. 
It enables a user to trace patient history considering 
semantic, temporal, and causality information in a 
short time. Consequently the V‐Model should play a 
crucial role in phenotype definition and algorithm 
development [41].

For several relatively common conditions, such as 
heart failure and stroke, independently and exten
sively validated algorithms have been developed to 
ascertain the presence of these important chronic 
diseases [42]. eMERGE Network developed 14 robust 
algorithms that were extensively tested over multiple 
iterations (Table 1.3). The core elements of the algo
rithms are the administrative data (ICD‐9 and CPT 
codes), laboratory data, and medication data (RxNorm 
codes), with NLP rules as an additional layer to dis
ambiguate and refine the core data elements. Most of 
the developed algorithms rely on ICD‐9 disease codes 
and use CPT procedure codes. Only two algorithms 
used UMLS codes (due to site‐specific processing 
needs) [40].

1.2.2 Phenotyping CKD Patients

Clinical decision making is challenging due to variability 
in the rates of progression and lack of widely accepted 
guidelines to identify patients most at risk of progression 
to ESRD [43, 44].

Currently the only way of identifying CKD cases/
controls is by manually reviewing laboratory values, 
which is cumbersome, or through ICD‐9 codes. To 
accomplish these goals, researchers need robust phe
notyping algorithms to effectively leverage disparate 
data sources in the EMR [38].

Nadkarni et  al. developed and validated an auto
mated algorithm for identifying diabetic/hypertensive 
CKD cases and controls. Their algorithm over‐per
formed the traditional identification using ICD‐9 
diagnostic codes, which enabled identification of 
40.1% of cases and 75.0% of controls. Their algo
rithm correctly identified 93.4% of cases and 95.8% 
of controls, indicating that it could be used for both 
research and clinical purposes, where rapid and 
accurate identification of a specific target cohort is 
needed [38].
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1.3  Concluding Remarks

Recommendations for standardization of CRF and transition 
from paper to electronic health records have significantly 
improved and accelerated the process of clinical data collec
tion. Technological developments in the field of CDM have 

enabled fast, accurate, and simplified extraction of informa
tion from enormous clinical documentations for best quality 
of data generated. NLP tools that are used for extracting 
unstructured narrative clinical data and EHR‐oriented 
phenotyping algorithms should enable automatic selec
tion of cases for clinical trials and other research purposes.
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3.1  Introduction

The identification of all kinds of causative mutations by 
traditional and more contemporary technologies of 
DNA sequencing in monogenic disorders has become 
the gold standard in molecular genetic diagnosis during 
the past couple of decades. It is true though that there are 
still numerous occasions where, especially in smaller 
research or diagnostics laboratories, the indirect approach 
of DNA linkage analysis is a very useful alternative. This 
is especially the case when DNA samples are available 
from multiple family members and the gene or genes 
under investigation are very large or difficult to negotiate 
by direct sequence analysis, in the absence of contempo
rary technology such as next‐generation sequencing 
(NGS) equipment. This practice is used in the author’s 
laboratory. The situation is progressively changing as 
technology improvements enable smaller laboratories to 
acquire and use robust technology for DNA analysis or 
have access to core facilities for doing so. Also, the recent 
development that enables whole‐genome sequencing 
(WGS) or whole‐exome sequencing (WES) is a revolu
tionary improvement that is rapidly shaping the field and 
has already entered clinical practice and contributes to 
realizing a long‐sought goal for personalized or precision 
medicine. Here, a word of caution should be mentioned 
as the 1000‐dollar genome sequencing approach in most 
places is still accompanied by a greater analysis cost, let 
alone the complexity and the difficulty in interpreting 
a huge volume of data [1–3]. Even this, though, is 
changing rapidly. During the preparation of the last draft 
of this chapter, Veritas Genetics, a company in Boston, 
United States, announced the service of WGS for a price 
that broke the barrier of $1000; they offer the sequencing 
and the interpretation of data for $999 to participants 
in the Personal Genome Project (PGP) (http://www.
veritasgenetics.com/).

At the same time, the advent of technologies that 
enable one to test simultaneously for a great number 
of single nucleotide polymorphisms (SNPs) or disease‐
causing mutations by using microchip arrays or other 
high‐throughput technologies has contributed to the 
field of molecular diagnostics in a different way. This 
takes advantage of the known mutations that are respon
sible for certain monogenic disease phenotypes or for 
SNPs of pharmacogenetic significance and especially 
so in populations and for diseases where a significant 
percentage of patients inherit one of several known more 
prevalent mutations or sequence variants.

Good examples include the repertoire of mutations for 
cystic fibrosis, β‐thalassemia, and familial Mediterranean 
fever. In most cases, especially for autosomal dominant 
or X‐linked disorders, where most families have their 
own private mutation, one needs to take advantage of 
high‐throughput mutation screening methods and direct 
automated DNA sequencing in order to achieve provi
sion of a molecular genetic diagnostic result of high 
confidence and practical usefulness. Knowledge of ele
mentary genomics and genetics as applied to the human 
medical genetics field is becoming indispensable for the 
current and next generation of medical clinicians and 
other medical practitioners. The understanding of the 
mode of inheritance of disease‐causing mutations as 
well as the role of predisposing variants, and coming to 
an understanding of the new generation of laboratory 
genetics, is going to be a sine qua non in order for the 
laboratory geneticist and clinical geneticist to communi
cate. This is going to be an even more indispensable 
skill if one would like to be able to follow contemporary 
genetics and genomics literature. Of course, the revolu
tionary advent of, and implementation of parallel massive 
NGS approaches, enabled scientists and researchers in 
many cases to get away from the targeted search of muta
tions in single genes. Examples are the many multiple gene 
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panels that have been developed and used already by 
numerous diagnostic and research laboratories in the 
search for new variants and new mutations associated 
with specific phenotypes, aimed at better understanding 
of disease pathomechanisms [4–6].

Kenneth I. Berns, former editor in chief of Genetic Testing 
and director of the University of Florida’s Genetics 
Institute, College of Medicine in Gainesville, Florida, has 
stated:

As we learn more about the underlying causes of 
disease and link this knowledge to the emerging 
realization that in the not too distant future good 
healthcare will include information about one’s 
genomic profile, the importance of genetic testing 
in clinical medicine will continue to grow.

I would like to add that in my personal view, the sacred 
purpose of our work as geneticists is to make a link 
from the dramatic picture of the affected individual—
the patient as a human macroentity—to the patient as a 
molecular biological microentity. The next feat is the pre
vention or correction of the molecular malady. Therefore, 
deep understanding of the behavior of genetic phenomena 
and the mode of action of the myriads of human genetic 
variants is also becoming a sine qua non knowledge.

Genetic complexity at various levels is the norm 
and  perhaps 20 years ago we could have predicted it. 
Notwithstanding this, the ability to uncover the myster
ies, the interdependencies, and the cross‐talk of protein 
coding as well as noncoding genes has led to a new level 
of satisfaction in regard to our achievements in providing 
useful information to the patients and their relatives, 
even though it has not become possible yet to offer 
genetic therapy, a dream that drove a generation of genet
icists. One more word concerning complexity must be 
said about the emerging role of epigenetic phenomena. 
The regulation of gene expression by DNA methylation 
and histone modification is playing crucial roles in health 
and disease, including cancer, although we will not elabo
rate any further in this chapter.

3.2  Applications of Molecular Diagnostics

During the past two decades, nephrogenetics research 
has been extremely fruitful and productive as medical 
and molecular genetic investigations have led to the 
discovery and characterization of a great deal of disease‐
causing genes and mutations that result in X‐linked, 
autosomal dominant, or autosomal recessive, in addition 
to mitochondrially inherited renal conditions. This has 
undeniably improved substantially the understanding of 
their clinical and molecular pathology, the diagnosis 

and/or prognosis, and the genetic counseling accompa
nying these feats and naturally the clinical intervention 
for a targeted design of better treatments. Equally impor
tant is the fact that more and more human maladies 
are recognized to have a genetic component. It is worth 
mentioning that an older survey using the British 
Columbia Health Surveillance Registry, which included 
more than one million consecutive births, showed that 
the frequency of individuals younger than 25 years of 
age who develop a disease with an important genetic 
component was 5.3% [7]. Of the 5.3%, single gene disor
ders represented 0.36% and multifactorial conditions 
such as cleft lip or diabetes represented 4.6%. Clearly, 
when considering genetic disorders as a whole, they 
become relatively common, although each one of them 
alone can be extremely rare. Rare or orphan diseases 
(population prevalence of <5 : 10 000) have attracted 
special attention in recent years, with both the United 
States and the European Union announcing dedicated 
calls for funding research aimed at better diagnosis, 
treatment, and drug discovery for these conditions. 
In Europe, a disease is defined as rare if it has a preva
lence of fewer than 5 : 10 000, while in the United States a 
disorder is defined as rare when it affects fewer than 
200 000 Americans at any given time (Orphanet: http://
www.orpha.net/consor/cgi‐bin/index.php). Most inher
ited monogenic renal disorders satisfy this definition. 
Perhaps the only two exceptions are the autosomal dom
inant form of polycystic kidney disease (ADPKD), which 
is reported to have a prevalence of 1 : 400 to 1 : 1000 [8], 
and the thin basement membrane nephropathy (TBMN), 
which is estimated to have a prevalence as high as 1% in 
the general population ([9] and references therein).

It is not always obvious or easy to verify that a condi
tion has a familial nature. How does one validate the 
existence of a heritable disease component in a family or 
in the index patient proband? I am sure most if not all 
geneticists agree and know firsthand that specifically as 
regards the genetic investigation of the index patient and 
their family, the most effective, cheapest, painless, non
invasive, and most informative genetic investigation one 
can do is the accurate drawing of a detailed family pedi
gree. It is not unusual for people to reveal the existence 
of family members, either close or distantly related, that 
have not previously been considered to be affected by the 
condition under investigation. Of course this approach 
does not always enable one to identify the genetic and 
heritable nature of the disease, especially in sporadic 
cases, which in many instances represent autosomal 
recessive or X‐linked diseases with no known positive 
family history. The fact that modern kindred are usually 
small with only 1–3 offspring, compared with 5–10 in 
older generations, adds to the difficulty in identifying 
other affected first‐ or second‐degree relatives.
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3.3  Aims of Present‐Day Molecular 
Genetic Investigations

What are usually the aims of contemporary molecular 
genetic investigation?
1) Facilitation of narrowing the clinical differential diag

nosis and confirmation or exclusion of the clinical 
diagnosis or suspected disease entity

2) Presymptomatic genetic diagnosis
3) Investigation of the inheritance of a genetic predis

position for a certain condition
4) Pharmacogenetic application (many are in place and 

more are being developed)
5) Prenatal or preimplantation genetic diagnosis (PGD)
6) Investigation for basic science research purposes 

within the framework of an approved clinical protocol
For 1–4 above, molecular genetic investigation and 

provision of genetic results should aim at assisting clini
cians in reaching a defined diagnosis during their differ
ential approach and dictate the best possible therapeutic 
intervention. It is equally important to be able to use the 
produced data for interrupting an equivocal therapy that 
had been instituted based on wrong assumptions or for 
the reduction of the general morbidity and mortality or 
the risk for the specific patient. Occasionally genetic 
results can help to reduce the likely adverse reactions 
and avoid the suffering owing to uncertainty and to avoid 
drug trials and interventions that are inadequate and 
destined to fail. The pharmacogenetic application aims 
at preventing the under‐ or overdose of drugs, the acting 
ingredient of which is susceptible to a metabolic pathway 
by a gene product that is highly polymorphic or of a 
variable enzyme genetics. Consider, for example, the 
toxicity ensued when a patient is overtreated with a 
medication, where its metabolism is unknowingly slowed 
due to a genetic variant. There are numerous examples 
of enzymes encoded by the P450 family of genes that 
play a significant role for different classes of (potentially 
toxic) medical substances that are administered for 
treating renal conditions or for immunosuppression 
aimed at preventing rejection after kidney transplantation. 
A prime example is the enzyme encoded by gene P450 
3A5 (CYP3A5), variants of which affect substantially the 
kinetics of metabolism of tacrolimus, a frequently used 
calcineurin inhibitor [10–12].

Certainly, it seems likely that molecular tests will be 
implemented, which, in conjunction with collecting a 
doctor’s prescription from the pharmacy store, are going 
to allow personalized dose adjustments [13, 14]. These 
adjustments are going to be based on genotyping related 
to adverse drug reactions and side effects and will allow 
the most effective class or brand of medicine among 
several similar candidates to be dispensed.

3.4  Material Used for Genetic Testing

Which biological material should be used for molecular 
genetic diagnostics? For purely clinical routine diagnostic 
purposes, the overwhelming majority of cases require 
genomic DNA that is isolated from various sources. 
Most frequently, DNA is isolated from peripheral blood 
mononuclear cells (PBMCs), from a whole blood sample 
(typically 3–5 ml), collected in the presence of EDTA as 
anticoagulant. Saliva or a mouth wash, or material from 
a tissue biopsy, or cells from a tissue culture that has 
been established in the context of the investigation of the 
patient, can be alternative sources of genetic material. 
Obtaining genomic DNA could be part of a routine 
clinical investigation of the patient or under an ethically 
approved research program, following signed informed 
consent. Once obtained, anticoagulated whole blood is 
processed for isolation of genomic DNA using routine 
protocols after selective lysis of the red blood cells and 
removal of the proteins. Subsequent lysis of the PBMCs 
allows extraction of the genomic material by a popular 
salting‐out procedure [15] or by older phenol/chloro
form extraction methods [16]. The use of these organic 
solvents is presently avoided in most applications unless 
specific subsequent research protocols demand for it. 
In present‐day procedures, commercial kits containing 
columns and requiring a series of centrifugations allow 
easy isolation of good quality DNA. Final washes with 
chilled 70% ethanol ensure removal of excess salts and 
other low molecular weight inorganic molecules. Stand
ardization of downstream procedures, most probably 
polymerase chain reaction (PCR) amplification of DNA 
for diagnostic purposes, requires the examination of the 
concentration and the quality of the DNA isolated by 
quick agarose gel electrophoresis and/or spectrophoto
metric analysis at 260 and 280 nm. The ratio of the 
260/280 absorbencies should be 1.8–2.0. DNA isolation 
procedures that require forcing the biological material 
through the columns perhaps result in obtaining cleaner 
but fragmented DNA with relatively smaller molecular 
size, on average on the order of 30000–50000 Da. This 
might not be an option if one wanted to proceed with 
other analytical techniques, like normal Southern blotting 
or pulsed‐field gel electrophoresis, for detecting higher 
molecular weight fragments, searching for large deletions 
and insertions or DNA rearrangements. Fortunately, 
nowadays the PCR technique, which can work and 
amplify the sequence of interest using very fragmented 
DNA as template, is used in the overwhelming majority 
of molecular diagnostics investigations, very frequently 
followed up by restriction enzyme digests and size 
fractionation by agarose or polyacrylamide gel electro
phoresis. Selected applications require long‐range PCR 
amplifications during which DNA fragments on the 
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order of a few thousand base pairs (e.g., 10 kb) can be 
obtained, followed by nested PCR amplifications of 
smaller fragments. An excellent example of such an appli
cation concerns the PKD1 gene (coding for polycystin 1), 
which because of existing additional homologous 
pseudogenes (with up to 90% homology to its nearly 75% 
5′ region at the nucleotide level) long‐range PCR is a 
 successful approach, with the use of primers carefully 
designed within regions of least homology [17–20].

In some cases, depending on the examined gene (e.g., 
very large genes with large numbers of exons) or disease, it 
is probable that the geneticist might prefer to isolate and 
analyze mRNA instead of DNA, provided an easy source 
of expressed mRNA is available. Unfortunately not all 
genes are expressed in peripheral blood leukocytes. Where 
mRNA is more desirable, PCR follows after a prior step of 
converting mRNA into complementary DNA (cDNA) 
with the use of a viral reverse transcriptase enzyme (RT‐
PCR). There is one major advantage as well as one major 
pitfall when analyzing cDNA for mutations. The advan
tage is that one limits the analysis to the spliced exonic 
sequence and one is able to cover these large sequence 
genes in a much smaller number of PCR reactions, cross
ing many exon–exon junctions simultaneously. This saves 
time and reagents, especially when dealing with genes of 
many exons, examples of which are the autosomal domi
nant PKD1 (47 exons), the autosomal recessive PKHD1 
(87 exons, coding for fibrocystin/polyductin), and the 
collagen IV genes of basement membranes (48–52 exons). 
The disadvantage is that this approach may miss larger 
genomic aberrations such as insertions or deletions and 
rearrangements. For example, if one entire allele or a large 
part of it is heterozygously deleted, the patient will be 
falsely diagnosed as homozygous normal (in reality being 
hemizygous), because only the normal allele will be ampli
fied and analyzed. Even with the ability nowadays to use 
more readily the gold standard method for mutation 
detection, which is direct DNA re‐sequencing, the use of 
the Sanger sequencing method may miss them. Other 
techniques such as comparative genomic hybridization 
(CGH) and multiplex ligation‐dependent probe amplifica
tion (MLPA) [21] are better suited to detect such genomic 
aberrations. A recent example of a renal monogenic disor
der with a genomic aberration was the identification of an 
exon 2–3 duplication in the CFHR5 gene in patients with an 
autosomal dominant form of C3 glomerulopathy [22, 23].

3.5  Clinical, Genetic, and Allelic 
Heterogeneity

When the gene or genes at fault are known, the genetic 
investigation of a patient can be a relatively simple pro
cedure of collecting peripheral blood samples, isolating 

genomic DNA, and performing simple PCR‐based 
genetic tests. It is even simpler when the individual has 
a known family history, for example, of ADPKD (an 
inherited polycystic nephropathy with severe symp
toms usually after the fourth or fifth decade) and belongs 
to a family with a previously identified mutation, for 
example, in the PKD1 or the PKD2 gene. Under these 
circumstances, by screening for the identical genetic 
change in the previously identified exon, a molecular 
genetic diagnosis can be produced within a few hours. 
A negative result can relieve existing anxiety and spare 
the patient from unnecessary frequent doctor visits, 
while a positive result will direct the doctor to the correct 
decisions for close follow‐up and perhaps intervention, 
either through the administration of proper medication 
or otherwise. Another especially useful application of 
molecular diagnostics for late‐onset diseases is when 
testing a living‐related potential kidney donor for a 
mutation that segregates in the family. Sometimes, in the 
absence of confident pathognomonic features that 
would enable a clear clinical diagnosis, only genetics 
can provide the answer and give the green light for the 
donor to donate his/her kidney.

Unfortunately in many cases things are more compli
cated, and it is required to have a close collaboration and 
exchange of information between the nephrologist and 
the geneticist, who needs to be an expert in his/her field 
if he/she is to be of help to the clinician. As in every other 
scientific field, the good geneticist will help evaluate the 
difficult cases that require multiple approaches.

The performance of a molecular test and the report
ing of a test result, even a negative one, is an act that 
demonstrates to the doctor and the person/family under 
investigation that certain action has been taken up and a 
worthwhile result has been produced. The issued report, 
however, may give an erroneous impression especially if 
it is not accompanied by adequate interpretation of the 
result or if the clinician is unable to comprehend the 
result and he does not seek further detailed explanation. 
When a mutation is found that was previously verified 
and reported by others or when a stop codon mutation 
or a frameshift or splice site defect is detected, it is usu
ally straightforward. However, if a sporadic patient with 
a suspicion for cystinuria, for example, without a family 
history, is investigated by DNA sequencing of the 
SLC3A1 gene alone and no mutation is detected, the 
diagnosis for cystinuria is still not excluded. This is 
because cystinuria, as with many other inherited condi
tions, is genetically heterogeneous and may be caused 
by mutations in either of two genes—SLC3A1 or 
SLC7A9—resulting in similar phenotypes, even though 
the cystine concentration in the urine of heterozygote 
individuals can produce suspicion in favor of one or the 
other gene (http://omim.org/entry/220100). Situations 
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like this represent phenocopies because of clinical 
heterogeneity, that is, mutations in more than one gene 
producing the same heritable monogenic disorder, a 
phenomenon which is common. Other examples include 
autosomal dominant polycystic kidney disease (PKD), 
autosomal dominant medullary cystic kidney disease, 
nephronophthisis, renal tubular acidosis, Alport syn
drome, Bartter’s syndrome, and steroid‐resistant and 
congenital nephrotic syndromes. On clinical grounds 
it is often impossible to dissect out which one of the 
candidate genes is at fault, even though there may be 
reasonable suspicions. In ADPKD, for example, it was 
shown that if there is a family history of all patients 
reaching end‐stage renal disease (ESRD) after the age of 
70 years, this is strong indication for involvement of the 
PKD2 gene [24]. Torra et al. [25] had earlier shown that 
there was increased prevalence of PKD type 2 among 
elderly PKD patients [25]. However, if one is to offer a 
presymptomatic molecular diagnosis for a potential 
living‐related kidney donor, testing of both genes is 
absolutely advised for reaching a firm conclusion.

Usually the screening for mutations is focused within 
the exonic coding regions and 10–20 bp of the flanking 
sequences that contain the invariably conserved splicing 
signals. Consequently, a negative molecular test may be 
attributed to other factors such as the presence of muta
tions in gene regions not routinely searched for, such as 
the promoter region, the 3′UTR or deep intronic regions, 
distant from the exon/intron splice site junctions, per
haps leading to activation of cryptic splice sites. Indicative 
examples, among many, of mutations that on first sight 
seem benign but proved to be deleterious, are those found 
in intronic sequences: (i) the IVS1‐110 single nucleotide 
substitution at position 110 of the first intron of the β‐glo
bin gene, resulting in partly aberrant splicing that includes 
additional sequences and partly normally spliced β‐glo
bin mRNA; (ii) the 3849 + 10 kb C > T transition mutation 
deep in intron 19 of the CFTR gene, resulting in inclusion 
of a cryptic exon of 84 bp, responsible for cystic fibrosis; 
and (iii) the exceptionally frequent recurrent synony
mous mutation in an exon of the LMNA/C gene of lamin 
A/C, which creates a cryptic splice site and results in 
severe Hutchinson–Gilford progeria syndrome [26–28].

Similar scenarios apply to numerous other gene sys
tems and heritable conditions, including genes that are 
implicated in several inherited renal diseases. Examples 
include mutations in the PKD1 gene where mutations in 
noncoding regions cause aberrant splicing of a small 
75‐bp intron [29], intronic mutations in the SLC12A1 
gene of type 1 Bartter syndrome [30], a missense mutation 
altering the first nucleotide of PKD2 exon 6 and resulting 
in aberrant splicing [31], and many others.

A particularly challenging situation concerns the 
highly heterogeneous group of childhood and adoles
cent syndromes of focal segmental glomerulosclerosis 

(FSGS) that result in steroid‐resistant or steroid‐sensitive 
nephrotic syndromes. The number of genes involved is 
already large and it is more than certain that more will 
be identified. It is hoped that the specific clinical or his
tological characteristics, age of presentation or yet 
other biomarkers of each one, will direct the investiga
tions of the geneticist, a situation nevertheless that 
emphasizes again the necessity for close collaboration 
between the genetics laboratory and the clinic. It is 
 fascinating that causative mutations have been identi
fied in genes that encode proteins located in the slit 
 diaphragm, or the podocyte membrane, the podocyte 
cytoskeleton, or even the nucleus and the mitochon
drion, a situation that highlights the complexity and the 
interdependence of biological processes in the glomer
ulus [32]. Recent investigations of large cohorts of fami
lies with steroid‐resistant nephrotic syndrome (SRNS) 
have been revealing. Panels of 27 genes that are impli
cated in this condition have been examined by NGS in 
1783 unrelated international families, and a single 
gene  cause was determined in 29.5% [33]. Others 
showed that NPHS2 mutations account for only 15% of 
nephrotic syndrome, emphasizing again that more 
genes are expected to be found in monogenic SRNS 
patients [34]. Here it should be mentioned that in addi
tion to the more traditional distinct glomerulopathy 
genes that are being investigated for SRNS and FSGS, 
mutations have been reported initially by our group in 
the COL4A3/COL4A4 genes in a large Greek–Cypriot 
cohort of patients who presented with familial micro
scopic hematuria (MH) and the dual diagnosis of 
TBMN and FSGS [35]. This fact allows the hypothesis 
that the collagen IV mutations link familial hematuria 
and FSGS while providing insight relating glomerular 
epithelium destruction via basement membrane thin
ning [9, 35–37]. Several other groups supported and 
corroborated these results [38, 39].

The role of putative modifier genes and perhaps of 
environmental factors certainly cannot be excluded (see 
following text). As regards the discrimination between 
steroid‐sensitive and steroid‐resistant patients, a recent 
publication showed that neutrophil gelatinase‐associated 
lipocalin (NGAL) levels in urine could differentiate the 
two forms of nephrotic syndrome with higher levels 
correlating with disease severity in SRNS [40].

In addition to the multiplicity of genes mutated and 
causing the same phenotype, allelic heterogeneity is 
another level of complexity for all monogenic disorders 
regardless of mode of inheritance, although there are 
notable exceptions for recessive conditions with a small 
number of mutations accounting for the great majority 
of mutant alleles (e.g., the large deletion in the NPHS1 
gene causing the Finnish‐type nephrotic syndrome) [41]. 
Allelic heterogeneity has been invoked to explain the 
variable expressivity, and many researchers have tried to 
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reach a genotype/phenotype correlation algorithm for 
each gene. Despite the initial hopes by the scientific 
community that every mutation or classes of muta
tions would enable us easily to predict disease outcome 
and prognosis and act accordingly (allelic heterogene
ity), it turned out that we can only partially trust this 
line of evaluation. It is well known, for instance, that 
mutations in the PKD2 gene cause a milder form of 
ADPKD compared with mutations in the PKD1 gene, 
as evidenced by later age of onset of ESRD and a smaller 
overall percentage of patients reaching ESRD [42, 43]. 
This explains, to some extent, the significant interfa
milial clinical variability observed among the popula
tion of patients with ADPKD but certainly cannot 
explain the variability among patients with type 1 or 
type 2 ADPKD and, even worse, among patients within 
the same family who share the exact same mutation. 
Several works attempted to address these important 
issues. Magistroni et al. showed that the site of the PKD2 
mutation does not play a role, while surprisingly patients 
with splice site mutations appeared to have milder renal 
symptoms compared with patients with other types of 
mutations [44]. The group of Peter Harris at Mayo 
Clinic, MN, United States, showed that mutations in the 
5′ half of the PKD1 gene confer more severe disease 
compared with mutations in the 3′ half. Importantly, 
they also showed that mutations located further 5′ of 
the gene are associated with significant risk for devel
oping intracranial aneurysms [45]. Hateboer et al. had 
shown that different groups of mutations and the loca
tion of the mutation within the PKD2 gene do influence 
clinical outcome [46, 47]. Most recent work by Hwang 
et al. showed in a large cohort of ADPKD patients that 
PKD1 in‐frame insertion/deletion or non‐truncating 
PKD1 mutations or mutations in the PKD2 gene have 
smaller height‐adjusted total kidney volume and 
reduced risks for ESRD and death [48].

Promising results for genotype/phenotype correlation 
have been published for other gene systems, including 
the collagen IV genes, mutations in which cause X‐linked 
(COL4A5) or autosomal recessive Alport syndrome 
(COL4A3/COL4A4). Large deletions/insertions and 
gene rearrangements have been associated with earlier 
age at onset of ESRD and/or with more frequent estab
lishment of hearing loss, while glycine substitutions in 
the collagenous domain have been associated with vari
able expressivity depending on exact position along the 
triple helical domain or relative to the position of natural 
interruptions of the collagenous domain. However, it is 
not always possible to predict the disease outcome for 
the patient before you with absolute certainty. Especially 
in regard to TBMN, the experience by several research
ers has been that even within families with the same 
mutation, different patients progress to kidney function 
decline with different rate [49–52].

3.6  Oligogenic Inheritance

To make things more complex, digenic inheritance or 
even triallelic inheritance, although rare, cannot be 
excluded. In cases where the clinical presentation is the 
result of digenic inheritance, there is indeed an interest
ing phenomenon that attracts added attention. This has 
been documented to be the case in Bardet–Biedl syn
drome (BBS) [53] and more recently in patients with 
SRNS and Alport Syndrome where heterozygous muta
tions in different genes account for the phenotype. 
More specifically, Löwik et al. [54], in a cohort of 19 non‐
familial childhood‐onset steroid‐resistant FSGS patients, 
reported that two patients showed mutations in the 
CD2AP gene, one combined with an NPHS2 (podocin) 
mutation [54]. Another patient carried three mutations, 
as the patient was compound heterozygous for NPHS2 
mutations and heterozygous for a NPHS1 (nephrin) 
mutation. Yet another patient carried a de novo WT‐1 
(Wilms’ tumor 1) mutation that was combined with a 
heterozygous NPHS1 mutation, while two other patients 
showed three heterozygous PLCE1 (phospholipase C 
epsilon 1) mutations. All aforementioned mutated genes 
are expressed in the podocytes that are crucial cells for 
the maintenance of the glomerular filtration barrier and 
especially the slit diaphragm between interdigitating 
podocyte processes. These findings, therefore, empha
size that combined gene defects are capable of causing 
FSGS and consequently complicating things for the 
genetics laboratory.

Meckel syndrome (MKS) is a genetically heterogene
ous ciliopathy where mutations in six genes have been 
described. It is embryonic lethal and characterized by 
polycystic kidneys, central nervous system defects, poly
dactyly, and liver fibrosis. Genetic analysis of additional 
ciliopathy candidates by exon‐enriched NGS revealed a 
splice donor mutation in one allele of the B9D1 gene 
that abolished exon 4 and a large genomic deletion that 
removed the entire second B9D1 allele. In the same 
patient a substitution mutation (p.R2210C) was found in 
another MKS gene, CEP290, thereby suggesting oligo
genic inheritance [55].

Chen et al. screened 20 genes (15 BBS plus RPGRIP1L, 
CC2D2A, NPHP3, TMEM67, and INPP5E) for mutations 
in BBS patients and found causative and probably causa
tive mutations in ten of the genes in 46/55 families studied 
(84%) [56]. Importantly, once again the authors reported 
triallelic inheritance suggesting oligogenic inheritance in 
Caucasian and Arabian families, thereby complicating 
approaches for molecular genetic testing for diagnostic 
purposes. The role of a third allele in modifying the phe
notype rests in the borderline between the requirement for 
oligogenic inheritance for disease expression and genetic 
modifiers that add to the severity of already clinically 
expressed diseases (see next section).
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As regards ADPKD, normally inherited as an autoso
mal dominant nephropathy, hypomorphic alleles with 
incomplete penetrance were previously shown to exert 
a dose effect where two alleles were needed to cause a 
phenotype. Also, it has been known for many years that 
a small subset of about 1% of ADPKD patients present 
with an early and severe phenotype more reminiscent 
to the autosomal recessive form of PKD that is normally 
caused by mutations in the PKHD1 gene. A few years 
back it was shown that at the cellular level ADPKD 
might behave as a recessive disease because several 
groups documented that the PKD1 or PKD2 heterozy
gous  germinal mutations were necessary but not suffi
cient to cause cystogenesis. Instead, acquired somatic 
second hits, producing trans‐heterozygosity with a 
mutation on the other allele of the same gene, or even 
in one allele of the other PKD gene, are necessary for 
cystogenesis. The timing, the nature, and the multiplic
ity of these second hits might clearly be important 
 factors in determining the age at onset and the overall 
severity of disease [57–60]. More recently Bergmann 
et al. showed that at least part of the variable expressivity 
in patients with the ADPKD can be attributed to the 
co‐inheritance of mutations in multiple PKD genes, 
including PKD1, PKD2, PKHD1 (mutated in autosomal 
recessive PKD), and HNF‐1β (mutated in the renal cysts 
and diabetes syndrome (RCAD)) [61]. They showed 
that co‐inheritance of two or even three genetic variants 
is another mechanism that could explain early onset 
and severe phenotypes, thereby supporting a pattern 
of oligogenic inheritance. Patients with HNF‐1β muta
tions do develop cysts, among other symptoms. Finally, 
digenic inheritance was shown for Alport syndrome. 
Specifically, co‐inheritance of two heterozygous muta
tions in the COL4A3 and COL4A4 genes was documented 
in patients who had an intermediate phenotype with 
respect to the autosomal dominant form and the auto
somal recessive one, thus reflecting the dose of the final 
wild‐type collagen IV triple helix [62].

3.7  ADPKD, Phenotypic Heterogeneity, 
and Genetic Modifiers

Phenotypic heterogeneity exemplified as disparate 
spectrum of symptoms is the norm, and it can be based 
on allelic heterogeneity, nature, and position of a muta
tion in a given gene, while more recently an additive 
role is attributed to mostly unknown modifier genes. 
The implication of modifier genes that somehow affect 
the function or the outcome of the primary genes 
through a cross‐talk mechanism, which is not always 
clear or apparent, has become a necessary prerequisite 

for interpreting the intrafamilial variable expressivity 
or phenotypic heterogeneity of many diseases. In these 
cases, it is obvious that the disease inheritance is 
dependent on a single gene with a defined mode of 
inheritance, yet one or more genes, perhaps in concert 
with environmental factors, have an effect on the 
severity of symptoms or the age at onset of the disease. 
In a way, even classical monogenic disorders have an 
element of multifactorial or polygenic inheritance as 
regards the full spectrum of clinical presentation. Fain 
et al. demonstrated that up to 18–59% of the phenotypic 
expression of PKD1 mutations can be attributed to 
genetic modifiers [63]. A similar study by Paterson et al. 
showed that for patients before reaching ESRD the 
 heritability of phenotypic variation was 42%, whereas 
for patients with ESRD it was estimated to 78% [64]. 
Also, Persu et al. first and subsequently Lamnisou et al. 
suggested a modifier role for an ENOS (endothelial 
nitric oxide synthase) polymorphism on the age at 
onset or rate of progression of ADPKD [65, 66] 
(Table  3.1). However other publications had mixed 
results. Finally, a meta‐analysis for the role of the ACE 
I/D (angiotensin‐converting enzyme, insertion/deletion) 
polymorphism failed to confirm any association with 
ADPKD phenotype [76].

In the largest study thus far, in search for genetic 
modifiers, Liu et  al. studied two separate cohorts of 
PKD1 patients, investigating the potential role of 173 
biological candidate genes [69]. The first cohort included 
794 white patients from 227 families and the second 472 
white patients from 229 families. They found statistical 
significance for three SNPs in the DKK3 gene that is 
supposed to play a role in regulating the Wnt/β‐catenin 
signaling, thereby modulating renal cyst growth. The 
modification was significant for eGFR as a primary out
come but not for ESRD. The SNP with the strongest 
association was rs3750940 (p = 4.6 × 10−5) and accounts 
for only 1.4% of the total variance of eGFR. This SNP is 
in partial linkage disequilibrium (LD) with the other 
two, all being intronic, thereby raising the possibility 
that they are in LD with another yet unknown functional 
variant. These data indicate that more genetic modifiers 
of eGFR and renal survival should exist with variable 
contribution, which can only be detected using large 
enough cohorts (Table 3.1).

The search for identifying true modifier genes has 
added difficulties, similar to the ones encountered 
when searching for genes implicated in polygenic 
 conditions. In such studies there is a need for large 
patient cohorts and accurate detailed diagnosis of 
patients who, after all, may develop some of the more 
severe symptoms at older ages, because age‐dependent 
penetrance is the norm in many late‐onset heritable 
conditions.
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3.8  Collagen IV Nephropathies, 
Genetic and Phenotypic Heterogeneity, 
and Genetic Modifiers

Mutations in COL4A5 are known to cause the classical 
X‐linked form of Alport Syndrome, a hereditary 
 progressive glomerulopathy, usually with onset in 
childhood and adolescence. In addition to characteris
tic histological findings, 82.5% of male patients develop 
sensorineural hearing loss, and a minority of 44% of 
patients develop ocular abnormalities, in the form of 
dot and fleck retinopathy and anterior lenticonus. 
Interestingly though, a subset of patients follow a more 
benign course, more reminiscent to TBMN rather than 
Alport. These patients develop ESRD at ages after 40 
or even 50 years and may or may not develop hearing 
loss or ocular defects. Several studies attempted to 
explain this heterogeneity by attributing the variable 
phenotypes to the nature and position of the COL4A5 
mutation [51, 77–81].

Gross et al. [50] proposed the following classification 
of phenotypes of X‐linked Alport patients:

a) Type S (severe), characterized by juvenile‐onset ESRD 
(~20 years of age), 80% incidence of hearing loss and 
40% incidence of ocular lesions. This classical picture 
is caused by large rearrangements, premature stop, 
frameshift, donor splice site, and mutations in the 
carboxy‐terminal non‐collagenous globular NC1 
domain.

b) Type MS (moderate–severe), including patients that 
progress to ESRD at age ~26 and present lower fre
quencies of the extrarenal manifestations, implicating 
non‐glycine missense mutations, glycine substitutions 
in exons 21–47, and in‐frame and acceptor splice site 
mutations.

c) Type M (moderate), associated with glycine substitu
tions in exons 1–20 and characterized by late‐onset 
ESRD (after the age of 30), 70% hearing loss, and less 
than 30% ocular lesions.

Bekheirnia et al. [49], in a large cohort of US patients 
with X‐linked Alport, support the proposition of Gross 
et al. [50] that the most aggressive phenotypes are caused 
by truncating mutations, large and small deletions, and 
splice mutations; however they make the point that the 
position of Gly‐X‐Y mutations may not always predict 
the age of onset of ESRD [49]. Additionally, in a work 
where we evaluated male patients with COL4A5 glycine 
substitution mutations in the collagenous domain, we 
showed that the age at onset of ESRD decreased with 
increasing number of side‐chain carbon atoms in the 
substituting residue (r2 : 0.1362; p : 0.0017) [52].

Notwithstanding the aforementioned findings, there 
are reports, including recent work from our laboratory, 
describing mutations in COL4A5 that are associated 
with milder phenotypes that are not easily recognized as 
X‐linked Alport syndrome, even when the inheritance is 
suggestive of this diagnosis [82–87]. Prime examples 
among several are the mutations p.G624D and p.P628L 

Table 3.1 Genes with evidence that they modify the disease outcome of monogenic renal conditions.

Gene (protein) Renal disease Modifying effect Significance Reference

RPGRIP1L (retinitis 
pigmentosa GTPase 
regulator interacting
protein‐1 like)

Ciliopathies: Meckel–Gruber 
syndrome, Joubert syndrome, 
Bardet–Biedl syndrome, Senior–
Løken syndrome, nephronophthisis

Retinal 
degeneration

p = 7.35E−05 [67]

AHI1 Nephronophthisis Retinal 
degeneration

p = 5.36E−06, 
RR = 7.5

[68]

DKK3 (Dickkopf 3) Autosomal dominant polycystic 
kidney disease

Lowers age of 
ESRD onset

p = 4.6 × 10−5 [69]

ENOS (endothelial nitric 
oxide synthase)

Autosomal dominant polycystic 
kidney disease

Lowers age of 
ESRD onset

p = 0.006
p = 0.048
p = 0.018

[65, 66, 70]

ACE (angiotensin‐
converting enzyme)

IgA nephropathy Progression to 
CKD

p < 0.001 [71]
(Confirmed by at least 7 
more publications)

NPHS2 (podocin) TBMN, familial hematuria Proteinuria, CKD p < 0.05 [72–74]
HBEGF 3′UTR target 
for miRNA 
miR‐1207‐5p

CFHR5 nephropathy Proteinuria, CKD p = 0.038 [75]

IgA nephropathy is not a monogenic condition, but it is included based on the strong association found by several studies.
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in COL4A5 that were described in Caucasian patients of 
several centers. In our setting, onset of ESRD varied 
from 30 to 57 years in seven males. In a Hellenic family, 
GR4209, a male patient reached ESRD at the age of 39 
with sensorineural hearing loss. Another affected male 
showed hematuria and proteinuria accompanied by 
sensorineural hearing loss, but his serum creatinine was 
normal at 1.03 mg/dl, at the age of 30 years. In another 
family GR4211, two brothers carry the mutation, one of 
which reached ESRD at 50 years without hearing loss, 
with FSGS on biopsy and uniform thinning of the glo
merular basement membrane (GBM) that included focal 
splitting. His brother is proteinuric with mildly reduced 
GFR and no hearing loss at 55 years. No EM results are 
available. All findings in these families differed from classic, 
adolescence onset, and adult type X‐linked Alport. Both 
mutations are near the 12th natural interruption of the 
collagenous domain of COL4A5, which is of G1G type 
and is converted to G4G type, a fact we hypothesized may 
explain the milder course of disease, as it may affect less 
drastically the triple helix formation and the structural 
function of the collagen IV mature trimer [83, 84]. It is 
interesting to note that mutation p.G624D may represent 
an old founder effect because it  has been reported in 
several populations of Caucasian origin, including seven 
Greek families ([84, 88] and unpublished results).

Another striking example of the wide spectrum of 
symptoms caused by mutations in the same gene is the 
one involving mutations in genes COL4A3/COL4A4 on 
chromosome 2q36‐37 that encode the alpha 3 and alpha 
4 chains of GBM collagen IV molecules. Homozygous 
or compound heterozygous mutations in either of these 
genes cause classical full‐blown autosomal recessive 
Alport syndrome whereas heterozygous mutations were 
shown and considered to be responsible for benign 
familial MH, most of the times an isolated symptom, as a 
consequence of TBMN [89–92]. Apart from occasional 
episodes of macroscopic hematuria and low‐grade pro
teinuria, heterozygous patients have been considered to 
follow a benign course with excellent prognosis. Earlier 
reports had alluded to patients who had developed more 
severe glomerulopathy in the presence of TBMN, but no 
molecular testing had been performed to document the 
cause of TBMN [93]. More recent work in our laboratory 
described a large cohort of Greek–Cypriot families with 
TBMN that segregated heterozygous mutations in the 
COL4A3/COL4A4 genes. One mutation, COL4A3‐p.
G1334E, is a founder with more than 150 carriers. 
Among 228 Greek–Cypriot patients, nearly half of 
patients will experience a reduction in their glomerular 
filtration rate of variable degree by the age of 70 years, 
while 30% of them will progress to ESRD, a fact that 
clearly challenges the formerly thought benign nature of 
the disease, at least in this cohort [35, 37, 94, 95].

Based on selected renal biopsies from patients who 
had developed proteinuria and kidney function decline 
in the studied families, the cause of the severe kidney 
function impairment was focal and segmental glomeru
losclerosis, thereby satisfying a dual diagnosis [35]. This 
obscure finding cannot be explained by the kind of the 
mutation as 134 of the patients share the same exact het
erozygous mutation in the COL4A3 gene, p.Gly1334Glu 
(substitution of glycine by glutamate), as a result of a 
strong founder effect (Figure 3.1a). Consequently, it was 
reasonable to hypothesize the putative effect of a modi
fier gene (or genes) that when co‐inherited with the 
aforementioned mutation predisposes a subset of these 
patients to a more severe clinical outcome and chronic 
kidney function decline. It was also reasonable to assume 
that the putative modifier might be a gene playing a role 
in the glomerular filtration barrier environment, affecting 
the podocyte supporting function. Without knowledge 
about the identity and the exact role of putative genetic 
modifiers that somehow predispose to more severe 
phenotype, it is impossible to make predictions of the 
phenotype of a monogenic disorder, which is primarily 
caused by a causative mutation in a responsible gene.

To this end we set out to investigate the putative role 
of a previous suspect, the p.Arg229Gln variant in the 
podocin (NPHS2 gene) that was shown to predispose to 
proteinuria on the background of TBMN and to microal
buminuria in the general population [72, 96]. We should 
also mention that Kottgen et al. [97] did not corroborate 
any significant association between p.Arg229Gln and 
eGFR in either white or black individuals, while 
Franceschini et  al. [98] had concluded that the same 
variant confers a nonsignificant increased risk for FSGS 
by 20–70%, in European descent populations, based on a 
very detailed review and meta‐analysis.

We used a cohort of 147 patients with a familial form 
of MH, of whom 102 had TBMN and 45 had C3 glomer
ulopathy as a result of CFHR5 nephropathy (see next 
section), all with known mutations. The patients were 
categorized as “mild” or “severe,” based on the presence 
of microhematuria only, or proteinuria and renal impair
ment. Nine p.Arg229Gln carriers were found in the 
“severe” category and none in the “mild” (p = 0.010 for 
genotypic association; p = 0.043 for allelic association, 
adjusted for patients’ relatedness), thus supporting the 
possible contribution of 229Gln allele in disease pro
gress. These results offer more evidence that in patients 
with familial hematuria, NPHS2‐ p.Arg229Gln predis
poses to proteinuria and ESRD. Subsequent work in our 
lab corroborated this finding and implicated the role of 
another NPHS2 variant, p.Glu237Gln, as predisposing 
to more severe disease when co‐inherited on the back
ground of TBMN in our cohort. This series of experi
ments was supported by cell culture functional studies 
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Figure 3.1 (a) The thin basement membrane nephropathy (TBMN) genetic map of Cyprus. Shown are villages and cities where 26 families of 
TBMN have been detected so far. All patients carry founder mutations in the COL4A3/COL4A4 genes. Families in villages shown with blue dots 
carry the founder mutation in the COL4A3 gene, p.G1334E. (b) The CFHR5 genetic map of Cyprus. Shown are 12 villages where 23 families of 
CFHR5 nephropathy have been detected. All patients carry the same CFHR5 exon 2–3 duplication, as a result of a founder effect.
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that showed that these two NPHS2 variants interfered with 
normal trafficking of podocin and nephrin, demonstrating 
perinuclear staining. Immunoprecipitation experiments 
showed stronger binding of mutant podocin to WT 
podocin or nephrin, thus adding support for their negative 
effect when co‐inherited with COL4A3/A4 mutations [99].

In conclusion, these two variants, p.Arg229Gln and 
p.Glu237Gln, may be good prognostic markers for young 
hematuric patients, predicting future progressive kidney 
function decline on long follow‐up, through the develop
ment of FSGS [9]. These findings, however, make only 
one piece of a larger puzzle, because we found these vari
ants in only 10.6 or 8.5% of the severely affected patients 
[73, 74]. Clearly, therefore, there are more gene modifiers 
expected to be found, likely genes encoding for compo
nents or regulators of the glomerular filtration barrier, 
the damage of which creates the preconditions for loss of 
protein, admittedly a grave development.

3.9  CFHR5 Nephropathy, Phenotypic 
Heterogeneity, and Genetic Modifiers

As a first line of defense against pathogens, the comple
ment system constitutes a significant part of innate 
immunity in humans. While the classical complement 
system requires immune complexes that act as the 
triggers for its activation, the alternative complement 
pathway requires no immune complexes, is independent 
of the presence of antibodies, and may be active on a 
permanent basis. Recognition that in CFHR5 nephropathy 
a mutation in the CFHR5 gene is responsible for familial 
C3 glomerulonephritis has suggested that this gene plays 
an important role in regulation of the alternative com
plement pathway in the kidney [23, 100].

This new hereditary form of MH had been described 
before, but its hereditary nature and pathophysiological 
connection to the complement alternate pathway system 
had not been recognized [101–103]. Similarly, in regard 
to its histology, mesangial C3 glomerulopathy has been 
known at least since 1980 from published reports in 
Europe and Japan, while more recently, loss‐of‐function 
mutations in important regulatory proteins such as CFH, 
complement factor I, and membrane cofactor protein 
have been detected in patients with inherited nephropa
thies characterized by isolated C3 mesangial and sub
endothelial deposits [104–108]. There may be also mild 
mesangial proliferation, and it may or may not be 
accompanied by mild membranoproliferative glomeru
lonephritis (MPGN). In fact, Abrera‐Abeleda et al. first 
tried to associate DNA variations in the CFH and the 
CFHR5 genes with MPGN type II (also known as dense 
deposit disease (DDD)) [104]. No clearly pathogenic 
mutations were reported.

The association of CFHR5 mutations with this familial 
form of MH was the occurrence of two parallel events. 
The first was that D. Gale, then a research fellow taking 
off from his residency in Nephrology at UCL, embarked 
on the study of a few patients of Cypriot origin living in 
London whom he encountered in clinical practice and 
who were observed by the histopathologist T. Cook to 
manifest a highly unusual form of familial glomerulone
phritis. The second event has been the ongoing collec
tion of samples and preparation of a DNA biobank from 
Cypriot families with inherited kidney disorders, at the 
Laboratory of Molecular and Medical Genetics and more 
recently at the Molecular Medicine Research Center of 
the University of Cyprus, by our group [22, 23].

The index patient and affected relatives with the  disease 
presented with MH as well as episodes of macroscopic 
hematuria following upper respiratory tract infections 
(a pattern termed “synpharyngitic macroscopic hematu
ria”). Based on this presentation it was reasonable to 
 suspect IgA nephropathy that however was rejected based 
on renal biopsy results, which did not show glomerular 
deposition of IgA. Additionally, IgA nephropathy is spo
radic in the overwhelming majority of cases. Some familial 
cases have been reported and a locus has been mapped, 
although no gene has been cloned as yet [109].

Histology showed that the biopsies were highly unusual: 
there was mild MPGN, also referred to as mesangiocap
illary glomerulonephritis, with slight increase in mesan
gial cells and matrix. Some cells had slight capillary wall 
thickening. The EM showed subendothelial GBM electron‐
dense C3 deposition. Importantly, there was no deposition 
of immune complexes. It is worth mentioning that not all 
the biopsies in CFHR5 nephropathy actually show 
MPGN (Figure 3.2) (see also [110]).

These appearances, which are now termed C3 glomer
ulonephritis, implicated dysregulation of the comple
ment alternative pathway [23]. Molecular investigation 
of this potentially monogenic disorder was commenced 
in the initial two families in whom there was autosomal 
dominant inheritance of the disease (Figure 3.3). Initial 
molecular studies resulted in identifying a copy number 
variation in the CFHR5 gene, where exons 2–3 were 
duplicated in all patients and in none of healthy family 
members or a number of other healthy subjects. Further 
extensive investigation in London and Cyprus identified 
23 families in total, thus far, with >150 affected subjects 
and clear autosomal dominant segregation of the con
dition. This specific mutation appears to be endemic to 
Cyprus [22]. For the sake of completeness, only very few 
other hereditary C3 glomerulopathies have been described 
in other populations, in small nuclear families, some with 
a mutation involving the CFHR5 [111].

The largest family is CY5308 with 37 mutation carriers, 
and this mutation represents yet another strong founder 
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phenomenon in Cyprus (Figure  3.1b). This inherited 
glomerulopathy is characterized by impressive variable 
expressivity, exemplified as a broad spectrum of symp
toms in the cohort of the patients. There is clear evidence 
for reduced penetrance, 90%, as 14 of 136 patients tested 
are negative on urine findings. 59% of the patients have 
hematuria only, 4% hematuria and proteinuria but no 
kidney function decline, and 50% (30/61, 24 M) of patients 
over 50 years have progressed to renal impairment. In 
total, 19 patients reached ESRD (14%), 16 of them, all 
males, after the age of 50 years. It is of great interest that 
of all 19 patients who progressed to ESRD, only 3 (16%) 
are females. It is also interesting that all males who pro
gressed to ESRD had demonstrated  episodes of macro
scopic hematuria during childhood and adolescence after 
upper respiratory tract infections. This was indeed a 

finding that complicated the clinical diagnosis as it was 
occasionally confused with IgA nephropathy that also 
presents with episodes of synpharyngitic macroscopic 
hematuria, associated with infection and pyrexia [22].

Similarly to TBMN, CFHR5 nephropathy is a progressive 
later‐onset disease, as patients who carry this mutation 
in CFHR5 are nearly asymptomatic until the age of 
about 30 years, with only isolated MH or negative urine 
findings. After the age of 30, proteinuria develops in 
most patients, and once this occurs, patients may pro
gress to kidney function decline [22, 23]. It is presently 
unknown what protects women from reaching a more 
severe phenotype. This great phenotypic heterogeneity 
observed among patients within same families is hypoth
esized to be attributed to unknown modifier genes and 
perhaps environmental factors. A couple of candidate 

(a) (b)

(c)

Figure 3.2 (a) Patient with CFHR5 nephropathy. Light micrograph from a representative kidney biopsy in family CY5308 stained with PAS 
showing mesangial hypercellularity (arrows) (×400). (b) Immunofluorescence from a representative kidney biopsy in family CY5308 
showing diffuse granular C3 staining on the mesangium and capillary wall. (c) Electron micrograph from a representative kidney biopsy in 
family CY5308 showing the presence of subendothelial deposits (SD) as well as mesangial deposits (MD). A red blood cell (RBC) is seen in 
Bowman’s capsule (×8000). Source: Athanasiou et al. [22]. Reproduced with permission of American Society of Nephrology.
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modifier genes are under investigation in our laboratory 
in Cyprus at the Molecular Medicine Research Center. 
We recently reported our evidence that the glutamine 
variant of the p.Arg229Gln podocin (NPHS2) mutation 
may act as a high‐risk genetic factor predisposing 
patients with familial hematuria (TBMN or CFHR5 
nephropathy) to a more severe disease [74]. We had 
similar findings for another genetic modifier, this time a 
polymorphism in the target sequence of miRNA gene 
hsa‐miR‐1207‐5p, in the 3′ UTR of HBEGF (miRSNP 
C1936T, rs13385) [75]. Importantly, its significance was 
demonstrated by functional studies in undifferentiated 
cultured podocytes and by association studies in two 
cohorts of patients. Specifically, in the presence of a 
mimic for miRNA hsa‐miR‐1207‐5p, there was down
regulation of the HBEGF expression, judged by Western 
blot analysis. This was corroborated by the use of lucif
erase sensor constructs of both alleles, where the 1936T 
allele demonstrated abrogation of miRNA binding. 
Most interestingly, the 1936T allele was shown to act as 
a genetic modifier, as it was genetically associated with a 
higher risk for progression to severe renal disease in the 
presence of a primary glomerulopathy, C3 glomerulone
phritis. The exact mechanism by which HBEGF can alter 
disease phenotype is currently unknown. However, we 
hypothesize that the role of HBEGF in proliferation and 
fibrosis of mesangial cells is very critical to this end [75].

3.10  Unilocus Mutational 
and Phenotypic Diversity (UMPD)

We first referred to this phenomenon in 1993, in an 
attempt to describe the situation where allelic mutations 
in the same gene resulted in so diverse and distinct phe
notypes that they were described with a different clinical 
diagnosis, if as though they represented diverse disease 
entities [112, 113]. An overlap in symptomatology is not 
entirely excluded.

Based on the previous sections, it should be no surprise 
to have patients with mutations in the same gene present
ing with same diagnosis and symptoms fitting on a broad 
spectrum of diverse phenotypes. However, it is intriguing 
to have patients with mutations in the same gene present
ing with overlapping phenotypes and disparate clinical 
diagnoses. Put another way, the phenomenon of unilocus 
mutational and phenotypic diversity (UMPD) is the 
extreme exhibition of variable expressivity.

A good example of this phenomenon in nephrogenet
ics is the MCKD2 gene (coding for uromodulin), where 
patients carrying mutations can present with one of 
three rare renal autosomal dominant conditions, those 
being medullary cystic kidney disease type II [114], 
familial juvenile hyperuricemic nephropathy (HNFJ1) 
[115], or glomerulocystic kidney disease [116]. In HNFJ1, 
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Figure 3.3 Pedigrees of the two original Greek–Cypriot families segregating CFHR5 nephropathy that were described in London. 
Source: Gale et al. [23]. Reproduced with permission of Elsevier.
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Bowman’s space is dilated forming cysts and glomerular 
tuft collapses. Predominant features of HNFJ1 resemble 
MCKD2, with hyperuricemia‐associated gouty arthritis 
and early progression to renal impairment [117]. The 
major clinical manifestations of glomerulocystic kidney 
disease are reduced fractional excretion of uric acid, 
while there is impaired urine concentration ability of 
the kidneys, which either appear hypoplastic or have a 
normal size [118]. Based on overlapping features though, 
Scolari et al. suggested referring to these conditions as 
“uromodulin storage diseases,” as uromodulin is shown 
to be retained in the endoplasmic reticulum and perhaps 
demonstrating a major role in determining tubulointer
stitial fibrosis and renal impairment [119]. A similar 
suggestion had been done earlier by Hart et  al., who 
based on the fact that MCKD2 and HNFJ1 are allelic dis
orders they designated them as “uromodulin‐associated 
kidney diseases” [115]. More recently, a Kidney Disease 
Improving Global Outcomes (KDIGO) consensus report 
grouped these conditions under a common heading that 
includes additional diseases, as “Autosomal Dominant 
Tubulointerstitial Kidney Disease (ADTKD)” [120].

Another, even more radical example is the complement 
factor H (CFH) gene, a major regulator of the alternative 
pathway of complement [121]. Depending on the loca
tion and nature of the mutation, the phenotype can range 
from DDD (formerly considered as a form of MPGN II) 
to atypical hemolytic uremic syndrome (aHUS) or basal 
laminar drusen. Also, mutations in the same gene have 
been documented to confer a significantly increased 
predisposition and high risk for an ocular condition of 
late onset, the age‐related macular degeneration (AMD). 
High risk for AMD is specifically conferred by a substitu
tion at amino acid residue 402 from histidine to tyrosine 
(His402Tyr) [122, 123]. DDD and aHUS certainly have 
overlapping features; however the clinical differences are 
striking, the cardinal symptom of DDD being the deposi
tion of complement C3 in the GBM and the cardinal 
symptoms of aHUS being thrombotic microangiopathy 
and thrombocytopenia. Most mutations resulting in 
aHUS are crowded in the short consensus repeats toward 
the carboxy‐terminal end of the protein [124].

Collagen IV nephropathies are caused by mutations in 
the collagen IV genes (see previous section). Specific 
mutations in COL4A3/COL4A4 result in TBMN and 
MH since childhood, with a varying likelihood for 
progressing to kidney function decline and even ESRD. 
In fact some authors refer to these severe heterozygous 
cases as autosomal dominant Alport syndrome, mostly 
without extrarenal manifestations. Also, a large series of 
patients from Cyprus was reported where there was a 
dual diagnosis of TBMN and FSGS, as a cardinal histo
logical feature. Equally important is the finding of male 
patients with hypomorphic COL4A5 mutations who 

develop a much milder form of Alport syndrome and 
very late age at onset of ESRD, mostly presenting as a 
phenocopy of TBMN.

On the opposite end, Becknell et al. [125] reported on a 
large American family with mutation p.Phe222Cys in the 
COL4A5 gene, where male patients presented with a novel 
severe glomerulopathy that rapidly progressed to ESRD 
at 10–22 years old. The mutation was within a G4G 
interruption of the collagenous domain, substituting a 
conserved phenylalanine residue, thereby attributing an 
unknown functional role. Interestingly, the authors 
emphasize the absence of typical Alport syndrome clinical 
and biopsy findings. The symptoms included proteinuria 
and variable hematuria, while the biopsy showed global 
and segmental glomerulosclerosis, mesangial hypercel
lularity, and GBM immune complex deposition, quite 
unusual for Alport. There were no typical Alport biopsy 
findings such as GBM alternate thinning and thickening 
nor any GBM splitting and lamellation.

Possible explanations for these extreme phenotypes 
that support the UMPD as a phenomenon arising from 
allelic mutations could be that responsible mutations 
occur in distinct functional domains with disparate inter
acting partners, perhaps relating to posttranslational 
modifications of the domains harboring the mutation, or 
contribution of confounding defects and genetic modi
fiers in different patients. Take into consideration, for 
example, a recent review publication by Parkin et al., who 
presented the interactome of collagen IV, where they 
described the various domains and the multiple interacting 
partners of the protein moieties [126].

Finally, an exemplified system of UMPD is the one 
related to mutations in the lamin A/C gene. Here, different 
mutations have been found in patients with a clinical 
diagnosis as disparate as Hutchinson–Gilford progeria 
syndrome and several neuropathies or lipodystrophies 
or even cardiac defects, collectively referred to as lami
nopathies, not to be discussed in this chapter [127].

3.11  Next‐Generation Sequencing (NGS)

During the past few years, there has been a great 
 competition and a race for achieving what until recently 
was totally unimaginable, that is, the $1000‐genome 
sequencing. The objective has been to enable the 
sequencing of  one’s entire human genome with a cost 
under $1000 within a few days, with trusty worthwhile 
results [3]. In addition to its usefulness in numerous 
research settings, this technology has already revolu
tionized clinical diagnostics regimens. Useful applica
tions are going to be to determine one’s overall morbid 
genetic load at birth or search for new mutations in 
unknown genes or search for mutations in one of several 
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candidate genes owing to extreme genetic heterogeneity, 
where tens or hundreds of coding exons will need to be 
analyzed. Consider, for example, a case of nephronoph
thisis or BBS or inherited nephrotic syndromes, with 
more than 10–30 genes implicated in each. This massive 
and robust approach will clearly be beneficial although 
in cases of WGS or even WES the complexity of the 
derived data requires time‐consuming and expensive 
software for analysis. In most diagnostic scenarios, the 
genes at fault are known beforehand, and in many fre
quent autosomal recessive conditions, the repertoire of 
existing causative mutations is also known in the popula
tions under study. In fact, in the overwhelming majority 
of such cases, there are well‐established protocols for 
mutation detection. Practically speaking therefore, 
knowing one’s population under study and the previous 
determination of the mutation repertoire is of clinical 
utility in the clinical routine environment, making NGS 
more of a research, at least for the present, that the 
logistics are still complicated [3].

There are, however, numerous occasions where specific 
panels of genes, implicated, for example, in inherited 
kidney disorders, have been verified and are in use for 
diagnostic purposes. Such panels concern Alport syn
drome and collagen IV nephropathies [5, 6, 128], nephrotic 
syndrome [33, 129], congenital anomalies of the kidney 
and urinary tract (CAKUT) [130], and others. The same 
reservations are applied here in regard to identifying and 
verifying the disease‐causing variants, distinguishing them 
from neutral variants with the help of comprehensive 
DNA variant databases, robust bioinformatics approaches, 
and deep knowledge of human genetics.

In this respect, WGS will certainly reveal thousands 
of  DNA variants of unknown functional significance. 
In  the effort to document the pathogenic nature of a 
DNA variant in the absence of trusty robust functional 
tests, certain axioms need to be satisfied: the presence of 
the variant only in affected members in a family and in 
no healthy subjects (occasions of incomplete penetrance 
are exceptions) and the absence of the variant in 50–100, 
if not more, subjects of the general population. It is 
well known though that not all patients belong to large 
families with additional patients. Especially for rare 
monogenic recessive conditions, most patients repre
sent sporadic cases, making things even more intricate. 
In the case of pathogenic variants linked to recessive 
conditions, things are not clear because they may be of 
high population frequency in healthy heterozygous 
carriers. Several software are useful and supportive in 
assessing the functional significance when consider
ing the nature of a single nucleotide substitution, but 
one can never place absolute confidence in them because 
there are many exceptions. Such software in use are the 
following:

SNPs3D: http://www.ncbi.nlm.nih.gov/pubmed/16551372
CLC Bioinformatics Database: (http://www.clcbio.com/

index.php?id=1243)
SIFT: www.ncbi.nlm.nih.gov/pmc/articles/PMC168916/
MutationTaster: http://www.mutationtaster.org/

A word of caution deserves to be mentioned on the 
fact that even though the actual determination of the 
DNA sequence has become or is becoming available 
with acceptable cost, the analysis of the results is still a 
complex, expensive, and highly demanding task by a 
number of bioinformatics experts. Hopefully, new elec
tronic and software tools will make it easier and allow it 
to enter clinical practice sooner than anticipated. In 
regard to research, the impact upon it is enormous, and 
recent publications described elegant work that included 
a combination of technologies for studying clear cell 
renal cell carcinoma, including single‐cell WES [131, 132]. 
The complexity of tumor DNA variation at single cell 
level could only be effectively investigated with technol
ogies such as NGS, thereby deriving useful and decisive 
new information pertaining to tumor initiation and 
progression. The scientific society should not disregard 
that NGS results and interpretation will be accompanied 
by important social, ethical, and legal dilemmas, and 
therefore appropriate measures and studies will need to 
be undertaken when implementing this revolutionary 
technology as a routine diagnostic or prognostic tool. 
Associated with this development is the issue of incidental 
findings whereby laboratory people who are searching 
for mutations in specific genes find important actionable 
mutations in other genes that are responsible for severe 
phenotypes. Several papers have been published that 
offer solutions to these dilemmas, but apparently one 
safe approach is informing all concerned beforehand and 
signing an informed consent, stating whether the inter
ested party wish to know of such findings (see, e.g., the 
relevant position of the American College of Medical 
Genetics and Genomics) [133].

3.12  Conclusions

The molecular genetic approach is a very strong tool in 
the armamentarium of modern science; in many cases 
it can work on its own and provide confirmation of the 
clinical diagnosis or dispute and even reject the clinical 
diagnosis. However, in most cases the combination of 
the clinical data and the guidance the geneticist can 
have from the clinician will save money, time, and 
effort. An early biopsy, when indicated, could be of 
paramount importance in designating candidate genes 
to analyze or preclude others. At the same time, either 
in the presence or the absence of a biopsy, from the 
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practical point of view, once a causative mutation is 
found, other members of the family will be readily 
tested in a targeted manner, thereby avoiding addi
tional invasive procedures for diagnostic purposes. 
And let us not forget that a negative molecular out
come upon testing a subject at risk of developing a her
itable disorder later in life is of equal significance to 
identifying a positive result, both from the medical and 
the ethical perspective.

The previous work of others as well as our work proves 
once again the benefit a whole society can derive from 
genetics studies that identify likely common mutations 
in the respective populations we serve. Knowing the rep
ertoire of mutations in the gene pool under study facili
tates tremendously the genetic diagnosis, while the 
identification of a causative DNA defect may obviate the 
need for another biopsy.

The last word of this chapter is dedicated to the genetic 
modifiers that are arising as new promising factors to 
explain part of the variability observed in nearly all 
genetic disorders, so much for the monogenic as well as 
the multifactorial. Despite all the problems and the com
plexity of biological systems, one wishes that at least in 
some cases common variants will be identified that will 
prove to confer a strong modifying effect and hopefully 
better personalized treatments will be designed or dis
covered in the near future. The identification of such 
likely modifiers is now becoming easier based on newer 
more robust technologies that make research discovery 
faster, cheaper, and more effective. We anticipate that in 
the near future all this information on potential modifi
ers as well as the knowledge on pharmacogenetics appli
cations will find their way into the general medical 
practice for the benefit of patients.

It is unfortunate that in most cases of genetic modifi
ers, no gene is found to exert a major modifying effect 
and also being of high frequency, thereby satisfying the 
desired original common variant‐strong effect hypoth
esis. On the contrary, we keep finding rare variants with 
small effects, with exemplary example being variants 
found to predispose to chronic kidney disease and the 
ones we described here for the familial hematurias, 
among others. Occasionally, rare variants are found that 
exert strong effects. One cannot exclude, however, that 
more targeted approaches in the future may identify 
such more frequent modifiers of disease outcome.
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2.1  Introduction

Basic medical research allows development of new 
therapeutic modalities and requires the use of human 
biomaterials. Since the development of new therapeu
tics involves clinical trials, an issue of moral limits and 
ethical norms appear, which need to be considered, 
when experiments with patients and healthy individu
als are planned.

Clinical trials involve not only research‐oriented 
physicians but also experts from the laboratories, the 
pharmaceutical industry, and developers of medical 
devices. There is a consensus among all these groups 
involved in medical research about the necessity of 
development of new diagnostics and therapeutics; 
however the opinions, whether a study is still ethically 
acceptable, may differ. The knowledge of the benefits 
versus risks, to which the enrolled study individuals 
are exposed, plays a big role in shaping the opinions 
on ethical issues. Although it may suffer from lack of 
objectivity, each opinion is relevant and shall be 
respected, as it represents moral values of a person 
stating it.

Three aspects of medical research will be discussed 
hereby:

1) Brief historical derivation to the ethical guidelines in 
medical research

2) Biobanking: definition, role, and guidelines of national 
and European biobanks

3) Fundamentals and tasks of ethics committees in 
research with biobank materials

2.2  Brief Historical Derivation to the 
Ethical Guidelines in Medical Research

Brigitte Lohff

Over the past decades it has become increasingly common 
that an approval by an operationally independent ethics 
commission must be obtained before starting any clinical 
study. Many clinical trial applications, which are submitted 
to the competent ethics commission, refer often to the 
Declaration of Helsinki. Indeed this declaration was 
adopted at the 18th General Assembly of the World 
Medical Association (WMA) in June 1964 in Helsinki, 
Finland. In the last 50 years it has been revised several 
times. The additions and adaptations aimed to adjust it to 
the current state of medical research [2]. The goal was to 
consider the development of research‐based medicine and 
to unify the different national and international standards. 
Currently any clinical research must agree with the guide
lines of the 7th revision of the  Declaration of Helsinki, 
signed in Fortaleza, Brazil, in 2013 [3].

Meanwhile gaining an approval by an ethics commission 
to perform a clinical study has become standard. Yet, it is 
often unclear why an approval of the respective ethics 
commission needs to be obtained for studies involving 
human materials from biobanks and how long obtaining a 
permission to perform such studies takes place and why 
doctors have agreed worldwide in June 1964 to evaluate 
clinical research not solely based on scientific criteria but 
also on ethical criteria. This can be understood only when 
considering the recent history of tests on humans, having 
taken into account Germany in particular [4].
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2.2.1 1900: Directive to the Head of the Hospitals, 
Polyclinics, and Other Hospitals

Since the end of the nineteenth century, a public contro
versy had begun whether a physician without any restric
tion and alone can decide on carrying a study with 
patients to satisfy his scientific interests or curiosity [5]. 
Initially medical doctors sought to find answers to such 
questions like the route of infection in infectious diseases 
or whether cancer can be transmitted by cells with onco
genic phenotype. On the one hand, the doctors’ freedom 
allowed promising innovative experiments, such as with 
“immunization” of sick and healthy people. On the other 
hand, it resulted in many futile experiments, including 
those of the Breslauer dermatologists Albrecht Neisser, 
who infected children and prostitutes with syphilis, in 
order to test on them blood serum used previously 
against diphtheria.

In 1900 a collection of essays and newspaper articles 
appeared under the title “Poor people in the hospital” 
about the unimaginable inhuman experiments in hospitals. 
The subsequent public debate led to a first “Instruction 
to the head of the hospitals, polyclinics and other hospi
tals” (1900 12. 29.) by the Prussian Ministry of Culture [1]. 
The following rules were established:

 ● Medical investigations are permitted only for diagnostic 
and immunization purposes.

 ● Minors or not qualified for legal acts persons have to 
be excluded from experimental medical procedures.

 ● Patients who do not declare consent cannot be included.
 ● The same applies if no proper instructions on adverse 

consequences were given to the patients.
 ● Such interventions may be only performed by the head 

of a clinic or authorized by him/her.

2.2.2 1931: Guidelines for Novel Medical 
Treatments and Scientific Experimentation

The 1900 issued instructions were ineffective and not 
implemented by the medical professionals. The experi
ments with mentally and physically disabled children and 
socially disadvantaged and excluded people were not 
stopped. So finally, on February 28, 1931, the Reich 
Ministry of the Interior formulated “Guidelines for novel 
medical treatments and scientific experimentation.” These 
guidelines were published in the widely read by medical 
doctors’ journal Deutsche Medizinische Wochenschrift 
[12]. Since these guidelines were—as Gabriele Moser 
could prove—published in 1935, 1938, and 1942 in the so‐
called doctor’s etiquette, they were supposed to apply over 
the period of Nazi dictatorship [8, p. 193]!

In these guidelines, a clear distinction between thera
peutic trial and medical test was made for the first time. 
It was also made clear that medical tests are necessary. 

In addition, the directive from 1900 was supplemented 
with the following points:

 ● Tests must always be carried out according to the prin
ciples of medical ethics.

 ● New therapies must have been previously tested in 
animal experiments.

 ● There must be the consent of the person concerned.
 ● Social hardship must not be exploited.
 ● Records of the tests must be prepared.
 ● The publication of the results should not infringe upon 

the rights of the sick.
 ● Experiments on children and adolescents as well as the 

dying are not permitted.

2.2.3 1947: The Nuremberg Code

It is clear that the guidelines from 1931, which aimed to 
strengthen the rights of patients and to instruct on ethical 
standards on the part of the doctors, were not followed in 
the years 1933–1945; on the contrary these guidelines 
were repeatedly and intentionally violated [7]. The 
Nuremberg doctors’ trials (October 25, 1946—August 20, 
1947) revealed that various experiments were planned and 
carried out with inhuman cruelty by hundreds of doctors, 
nurses, and assistants at the concentration camps and 
children’s and psychiatric hospitals. Parts of the verdicts of 
Nuremberg trials 1947 comprised criteria for “permitted 
medical experiments.” This formed the basis of medical 
discourse in the postwar period.

The Nuremberg Code [9, 15] introduced, in addition 
to those named already in the former directives, new 
points to prevent the permanent violation of fundamen
tal rights of the human subjects or patients:

 ● The necessity of a voluntary consent of the person 
before enrollment in the study.

 ● Clear definition of the nature, length, and purpose of 
the trial.

 ● All measures to avoid unnecessary physical and mental 
suffering/injury of the subjects must be undertaken.

 ● A subject can stop participating in the trial at any time.
 ● Tests shall be conducted only by scientifically trained 

staff.

2.2.4 1964: The Declaration of Helsinki

It took a few more years with occurrences of violations of 
human rights in the medical context until an interna
tional agreement was signed to adopt binding guidelines 
for the doctors and all personnel involved in biomedical 
research.

Looking back, the historical experience had shown 
that a commitment of the medical profession to abide by 
basic ethical values in research involving human subjects 
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is not an obvious matter [6]. The Declaration of Helsinki 
1964 became the first internationally recognized regu
latory framework with ethical principles for medical 
research involving human subjects [14]. Based on the 
Nuremberg Code of 1947, in 1964—in addition to the 
principles laid down already in the older ethical guide
lines for  research in medicine—new guidelines have 
been stated:

 ● Experiments should be terminated when the risk 
outweighs the benefit for research interests.

 ● Studies should not be performed if confirmed results 
are already available from other studies.

 ● Even if an informed consent of a person is there, the 
responsibility lies always with the doctor.

Until this declaration became part of the self‐evident 
basis for all categories of people involved in medical 
research, it took some time and some revisions of these 
guidelines. In the first revision in 1975 of the Declaration 
of Helsinki in Tokyo, it was recommended and adopted 
that the approval of an independent ethics committees 
for clinical trial (§23) must be obtained before the start 
of the studies. In the course of a few years, this body has 
become gradually necessary for everyone involved in 
clinical trials.

2.2.5 The Declaration of Helsinki 
and Research on Human Materials and Data

Some of the established rules are of importance also in 
terms of research with materials from biobanks. At the 
General Assembly of WMA in October 2000 in 
Edinburgh, it was decided that:

 ● Experiments with persons unable to provide consent 
may only take place if there are no other  adequate sub
jects with “informed consent” and the research would 
bring benefits to the affected group (§30) [16].

 ● It is necessary for the progress of the research and also 
for the protection of patients that negative results are 
published (§36); the freedom of the researcher to pub
lish the results is of higher value than the economic 
interests of contracting entity.

The continuously improved guidelines were expanded 
to research on identifiable human material and data 
(§25) in 2008. It was fixed from the perspective of the 
WMA that the doctor/researcher must inform patients 

completely on the research‐related aspects of the 
treatment. This applied also the use and the further 
 handling of human biomaterials and the resulting data. 
The refusal of a patient to participate in a study or the 
decision of the patient to withdraw from the study must 
never adversely affect the relationship between patient 
and physician (§31).

2.2.6 2013: Current Valid Declaration 
of Helsinki in the 7th Revision

The new version from 2013 for the first time includes 
binding regulations in respect to biobanks:

 ● §32 specifies that the same principles, as the ones used 
for the collection of materials and data from human 
subjects, should apply also to human materials from 
biobanks.

 ● Patients must give their informed consent for “collection, 
storage, and/or reuse.”

 ● §32 provides further that the informed consent can be 
avoided, if impossible or impractical to obtain.

 ● In these situations, it requires the consent of an ethics 
commission!

 ● §35 requires registration of all studies involving 
humans or human material from biobanks, not only—
as previously—clinical trials.

There are good reasons for significant extension of 
registration of studies—which also applies to nonclinical 
studies. An important argument is that unnecessary 
research and thus unnecessary risks to study participants 
can be avoided by this registration.

All individuals involved in the research should regard 
it as something meaningful and necessary in order to 
adhere to the guidelines for biomedical research derived 
from the Declaration of Helsinki.

Research today is based on the implementation of 
the  Declaration of Helsinki at the European level and 
the respective national legal regulations. After long dis
cussions, the principle “a clinical trial cannot be carried 
out without an affirmative vote of an ethics committee” 
stated by the European guidelines for the ethics committee 
from 2013 applies also to research with biobank  materials 
[17]. This principle should apply to multicenter studies, 
that is, studies where several centers from different 
countries are involved.
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2.3  Biobanking: Definition, Role, and 
Guidelines of National and International 
Biobanks

Thomas Illig

2.3.1 Introduction

Biobanks were presented in a 2009 issue of the American 
Time Magazine as one of ten ideas that can substan
tially change the world [1]. This illustrates the enor
mous potential of biobanks in the future to impact 
medical research, as well as diagnostic and therapeutic 
approaches, especially taking into consideration the 
significant development of molecular methods that 
enable analysis of thousands of molecules in parallel 
(OMICS approaches). Understanding the molecular and 
environmental foundations of human diseases, in order 
to improve diagnosis and treatment, is a top priority 
both for biomedical research and for society. A very 
important prerequisite for this project is the develop
ment of infrastructures, which are crucial for biomedical 
research. One of these central infrastructures is biobanks, 

which store biomaterials and associated data. Therefore, 
they form the basis for a large part of biomedical research.

New methods for biomarkers and therapeutic research 
offer a great potential for individual preventative and 
therapeutic measures (personalized medicine). In recent 
years, new common DNA risk variants for numerous 
widespread diseases have been discovered and could be 
at least partially functionally characterized. Currently, 
mutations for rare diseases are being identified by exome 
and whole‐genome sequencing approaches. The metab
olome and proteome are investigated in order to discover 
novel biomarkers. Due to these new partially very sensi
tive molecular analyses, there is a necessity for large 
studies with high number of individuals and improved 
cooperation between existing biobanks that allow smooth 
sample and data exchange. The lack of sufficient high‐
quality biomaterials within the Cancer Genome Atlas 
project constitutes a serious problem [2]. There are 
significant efforts in several countries to standardize 
biobanks (e.g., International Organization for Stand
ardization (ISO) 9001, OECD Good Practices) and to 
implement policies for biomaterials used in research. 
The German Institute for Standardization (DIN) has in 
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the ISO successfully sought to provide internationally 
accepted standards for the accreditation and certifica
tion of biobanks. The Technical Committee (ISO TC 
276) has already begun its work to create an international 
standard (IS) since 2016.

In recent years biobank projects in the focus of public 
attention are those, which have been most comprehen
sively established (have gathered particularly large 
number of data and samples from subjects or donors) or 
are focusing on genetic issues, with emphasis on future 
predictions with probability of disease occurrence and/
or particularly wide‐ranging (new) formulated medical 
uses as targets. Such biobanks serve mainly as a basis for 
research on common diseases. With the development, 
the construction, and operation of biobanks, a variety of 
questions arise, which are mainly relative to the collection, 
storage, use, and transfer of samples and data, as well as 
the social aspects of these processes. In numerous coun
tries (including Germany) and institutions, biobanks are 
attracting increasing attention from politics, science, 
economics, and advisory commissions.

In addition to the definition of human biobanks, various 
types of human biobanks, the quality of the samples, IT 
aspects, type of harmonization efforts within biobanks, 
cooperation and the access rights, and financial aspects 
and sustainability of biobanks will be described in this 
chapter.

Legal privacy and ethical factors also play a very 
important role in biobanks. It cannot be ruled out with 
the new sequencing methods (next‐generation sequenc
ing (NGS)) that persons can be clearly identified solely 
on the basis of genetic information. This part will be 
discussed in a separate section of this chapter.

2.3.2 Definition of Biobanks

The word “biobank” is only a little less than two decades 
old [3] and has recently been defined by the OECD [4] 
as “a collection of biological material and associated 
data and information.” However, the definition remains 
controversial.

There is a consensus that the term biobank refers to 
biological collections of human, animal, plant, or micro
bial samples and that associated sample data must be 
available. Moreover, biobanks must operate according to 
professional standards. But there is so far no consensus 
whether the purpose of the collection, size, or access 
rights determine the concept of a biobank. It is probably 
appropriate that a general, broad definition of a biobank 
will be accepted, and the next step will be to pay atten
tion to a widely accepted universal classification of 
different types of biobanks (organism, type of material 
(tissue, liquid, clinical, epidemiological)) [5]. The estab
lishment and operation of biobanks in Germany are not 

subjected to a general approval requirement. It is also 
stated by the National Ethics Council that “The collec
tion and use of human bodily substances and personal 
data is part of the normal medical research. Usually it 
harbours no special risks for donors and is recognized by 
the established standards of medical research. Therefore 
it does not require widespread official preliminary 
control.”

2.3.3 Human Biobank Types

In Germany, as well as in many European and non‐
European countries, there are large numbers of 
biobanks, each with different characteristics regarding 
their organizational and legal form and their research 
practice. Biobanks may be designed either for a specific 
disease or without disease focus, take into account envi
ronmental factors, store liquid or tissue samples, be 
population representative or not, and include samples 
from children or adults.

Biobanks have been established by research institutions, 
pharmaceutical industrial enterprises, commercial com
panies (e.g., Vita 34, Indivumed), and other  authorities. 
Clinical biobanks had in the past often a disease focus. 
Nearly every university hospital in the Western world has 
established several different biomaterial collections. 
There are significant differences in quality, size, and other 
important variables between biobanks. In recent years, 
many universities have decided to establish central 
biobanks in order to increase the quality of biomaterial 
collection and adapt to the IS. So in 2011 five (Aachen, 
Berlin, Heidelberg, Kiel, and Würzburg) central biomate
rials banks (cBMBs) were selected by the Federal Ministry 
of Education and Research (BMBF)‐funded initiative 
and  were provided for 5 years with a total budget of 
€18   million. A central objective of the BMBF was that 
these five cBMBs provide biomaterials and clinical data 
for  scientists outside the respective university. Central 
biobanks have been established also in other universities 
(e.g., Hannover, Jena, Leipzig, Mannheim, and Munich). 
Many other  medical faculties in Germany also plan to set 
up central biobanks.

2.3.4 Clinical Biobanks

Different biomaterials are stored in clinical biobanks. 
In addition to the tissues, body fluids (e.g., blood and 
blood derivatives, urine, lung lavage, cerebrospinal fluid, 
saliva), stool, hair, or various swabs (e.g., skin, mouth, and 
nose) are collected and stored. Hannover Unified Biobank 
(HUB) of Hannover Medical School (MHH) is an example 
of a clinical centralized biobank. Scientific and clinical 
projects at the MHH generate large amounts of samples, 
including tissue, blood, living cells, cell cultures, urine, 
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swabs, stool, bile, bronchoalveolar lavage (BAL), and other 
biological samples. To ensure maximum comparability of 
the samples, it is necessary to ensure maximum harmoni
zation in the pre‐analysis, archiving, and publication of 
the samples. Therefore, the samples are in accordance 
with strict instructions processed and stored (standard 
operation procedures (SOPs)). In order to achieve an 
optimization of the sample quality, the HUB works with 
the following principles:

 ● Accurate, detailed, and harmonized SOPs to the highest 
quality of biomaterials

 ● High degree of automation in the pre‐analysis, storage, 
and retrieval of samples and complete sample tracking 
through laboratory and biobank information manage
ment systems (LIMS/BIMS) to exclude contamination 
or incorrect labeling of samples

 ● Storage of most samples in the gas phase of liquid 
nitrogen in order to ensure high quality of biological 
samples even after prolonged storage

 ● Pseudonymization of samples and high data security 
to protect patients

 ● Harmonization of patient consent forms
 ● Further development of the biobank software/database 

and link with relevant clinical data

The transfer of all sample collections from MHH to the 
central biobank HUB is planned.

HUB acts as administrator of the samples; however 
the access rights remain with the principal investigators 
(PIs) of the studies, the so‐called gatekeepers. The stor
age, management, and release of the samples will be 
provided to biobank users invoiced according to a defined 
cost key. The relevant data for the biomaterials are man
aged by a biobank software. HUB manages and supports 
different types of samples (e.g., tissue, cells, cell lines, 
microorganisms, body fluids). It is possible to apply for 
biomaterials research projects. However, a prerequisite 
for obtaining samples is the agreement of an access com
mittee and of the gatekeeper.

The gatekeepers can request “their own” samples at 
any time without the consent of the access committee. In 
addition to the storage of biomaterials, the HUB services 
provide DNA and RNA isolations.

2.3.5 Governance in HUB

The gatekeepers choose a governing body (steering 
committee), consisting of several members of the MHH. 
The steering committee may establish working groups 
to support the HUB staff with scientific expertise in the 
SOP development, ethical issues, and data security con
cepts. It shall appoint an access committee that verifies 
the sample and data for their scientific merit and feasibility 
and recommends certain sample release. The external 

scientific advisory board of the HUB consists of national 
and international experts (e.g., data security experts, 
experts in bioethics, experts in quality of biomaterials). 
Other examples of large clinical biobanks are EuroBioBank 
(rare diseases), Biobank Graz University (mainly patho
logical samples), Biobank of Pathology, Charité (mainly 
pathological samples), and many more.

2.3.6 Epidemiological Biobanks

Some European countries have or will establish very 
large epidemiological biobanks. The first recruitment 
phase has recently been completed in England. The UK 
Biobank comprises 500 000 adult participants [6]. Similar 
activities have been initiated in Germany. The National 
Cohort was initiated by a network of German research 
institutions of the Helmholtz Association, numerous 
universities, the Leibniz Association, and other partners. 
The goal is to build a large‐scale long‐term population 
study focused on the causes of common diseases such as 
cardiovascular disease, cancer, diabetes, and dementia 
and infectious diseases in order to identify risk factors, 
discover effective preventive actions, and develop 
approaches for early detection of diseases. In this 
(cohort) study of 200 000 people, aged 20–69 years, 
participants from all the regions of Germany will be 
medically examined and interviewed about life habits 
(e.g., physical activity, smoking, diet, occupation). In 
addition, the blood samples and other biomaterials from 
participants will be stored at a central “biorepository,” 
which is located at the Helmholtz Centre in Munich 
(HMGU). After 5 years all participants will be invited 
again for an examination and second survey in the 18 
study centers. Over 10–20 years, some participants will 
naturally experience diseases, which can then be corre
lated with the data collected. The study thus offers a 
unique potential for a variety of scientific studies. The 
researchers will obtain information on genetic factors, 
environmental conditions, social environment, and life
style that are all interconnected and play a role in the 
development of diseases. Based on this information the 
researchers can develop strategies for improved preven
tion and treatment of major public diseases [7]. The UK 
Biobank and the National Cohort were confronted with 
ethical and data protection issues. In particular, guide
lines or standards were formulated in regard to partici
pation, consent, confidentiality, data and sample access 
and ownership, access policy, management of biobanks, 
accountability, dissemination, and patenting. Both 
biobanks agree that there should be regular information 
on scientific results through newsletters, websites, 
 helplines, and events. Scientists who want to use the 
database are invited to publish all data, both positive 
and negative. The publication should go through a peer 
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review process. The participants should be tracked 
over a longer period in both studies. Such very large, 
long‐running studies with well‐characterized pheno
types offer numerous advantages. Since the cohorts are 
established prospectively, predictive biomarkers can be 
discovered and in the future employed to identify high‐
risk persons. Furthermore, subtle molecular signatures 
associated with diseases can be uncovered. These molec
ular features often characterize lifestyle diseases, such as 
type 2 diabetes, heart disease, asthma, and Alzheimer’s 
disease. Additionally, due to the enormous size of the 
studies, the specific environment and lifestyle factors can 
be examined. However, large epidemiological studies 
generally collect only body fluids, smears, stools, and no 
tissues. Other major epidemiological biobank projects 
are European Prospective Investigation into Cancer and 
Nutrition (EPIC), MORGAM (cardiovascular disease), 
National Biobank Estonia, Iceland Biobank, BioBank 
Japan, CARTaGENE (Canada), and SAPALDIA 
(Switzerland), to name just a few.

2.3.7 Quality of Samples

Biomaterials form the basis for biomedical research. 
They can be significantly altered during the extraction, 
processing, long‐term storage, and retrieval. It is there
fore necessary to optimize these processes and standard
ize them among different biobanks by establishing SOPs. 
It is also important in the process of sample collection, 
processing, and storage to document every step. In the 
processing (pre‐analytics) of whole blood to serum 
(obtained from clotted blood) or plasma (obtained from 
blood treated with anticoagulant substances), many 
factors play an important role. Samples should be taken, 
whenever possible, always in the same position (seated). 
During further processing the cellular blood constituents 
shall be quickly separated from the plasma or serum 
(within hours). In tissue samples, ischemia plays a 
 central role for the sample quality. The word ischemia 
refers to the time period in which a transplanted organ 
or  tissue is cut from the normal blood supply and is 
therefore no longer supplied with oxygen. A distinction 
is made between cold ischemia time, in which the blood‐
free organ is kept on ice, and warm ischemia, in which 
the organ remains at room temperature, but is not sup
plied with blood. The plasma, serum, or tissue should 
then be frozen as quickly as possible at −80°C or in the 
gas phase of liquid nitrogen (within minutes or hours). 
The long‐term storage should be at −80°C or colder. 
Recently, fully automated freeze and sorting robots are 
available for this purpose, which leads to a significant 
improvement in the quality of the samples.

The pre‐analytical variability of the sample prepara
tion causes substantial changes of various molecules 

such as peptides, proteins, metabolites, or enzymes [8, 9]. 
These modifications may not only affect [10] diagnostic 
tests but also have an effect on multiparametric tests 
(omics) and can interfere with biomarker identification 
for diseases or even make it impossible for a meaningful 
interpretation of data [11, 12]. If the quality of the sam
ples is unclear, there are certain markers that can indi
cate the quality of the samples. There are different quality 
markers for different tissues or body fluids [9, 13, 14]. 
The control of pre‐analytical variables, however, is 
highly complex because it is dependent not only on the 
influence of the sample quality and on the class of the 
biomolecules (DNA, RNA, protein, peptide, metabolite) 
but also on the nature of the analytical method and its 
specificity, sensitivity, and robustness.

Additional drawbacks are the natural variations in 
markers within a study group, which can be difficult to 
distinguish from variations caused by the quality of the 
biomaterial. Thus, one should attempt to maintain the 
optimal biomaterial quality. Yet, this turns out quite often 
to be extremely difficult in clinical settings. The samples 
should be tested with quality markers. Recently, a method 
has been presented, in which an addition of a synthetic 
peptide reporter to blood samples is followed by relative 
quantification of the produced proteolytic peptide frag
ments. Thus, pre‐analytical variability can be recorded. The 
method enables assessment of serum and plasma quality. 
This method, however, requires availability of synthetic 
reporter peptides, in a laboratory involved in a clinical or 
epidemiological study, and is associated with huge addi
tional effort [9]. In the future, blood tubes could be 
preloaded by manufacturers with these peptide markers.

2.3.8 Harmonization and Cooperation of Biobanks

The collaboration among biobanks is becoming increas
ingly important because initial research results obtained 
using samples from a biobank must be validated in an 
independent set of samples obtained from another 
biobank in order to verify the accuracy, validity, and 
transferability of the results. Furthermore, the funding 
bodies in medical research support large multicentric 
projects. For better comparability of the results among 
different biobanks, similar standard procedures should 
be followed. In addition, the following factors require 
harmonization:

 ● The analytical molecular high‐throughput technologies
 ● The procedures of data and sample collection
 ● The rules for the protection and safeguarding of the 

rights of patients and volunteers

For this reason, various national and international 
consortia have been formed to define those standards 
and to facilitate data exchange between biobanks.
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2.3.9 Situation in Germany

In Germany, the Working Group Biomaterial has taken a 
leading role in the harmonization and standardization 
of biobanks and biobank processes in the frame of 
Technology, Methods, and Infrastructure for Networked 
Medical Research (TMF). It has been already recognized 
early within the TMF that the harmonization and stand
ardization of biobanks is a key challenge for the net
worked medical research and thus an important common 
field of action. After the first inventory from 2003/2004 
to 2005, a large‐scale project to clarify the legal, ethical, 
and organizational framework for the establishment and 
operation has been carried out. Action guidelines and 
templates are available in the form of advice for the 
researchers on various aspects:

 ● Categorization and modeling of biobank projects
 ● Regulatory frameworks
 ● Data protection concepts
 ● Patient consent forms
 ● Quality assurance of biomaterial

The medical collaborative research projects go beyond 
national borders. The Working Group Biomaterial within 
the TMF has therefore launched a project to clarify rules 
for the disclosure of materials from German donors 
to  cooperating biobanks—the legal basis for European 
partner countries. Another current project aims to 
create a German register of medical biobanks.

In another research project high‐dimensional molecular 
data are linked to clinical data from patients, type of 
studies, and centers. Under the umbrella of the TMF, the 
researchers are working together to ensure the quality 
control of molecular data on the stages of the production, 
interpretation, storage, and validation.

The specific data protection requirements, which arise in 
connection with the storage, management, and dissemina
tion of molecular, in particular genetic data, are the subject 
of cross‐border activities [15]. The German Biobank Registry 
(DBR) was established in the frame of TMF, in which all 
German biobanks can register. Thus, the DBR provides 
good overview of the majority of biobanks in Germany and 
about what materials and data they contain [16].

2.3.10 Situation in Europe and Worldwide

Biobanking and Biomolecular Resources Research Infra
structure (BBMRI) has been promoted as one of the first 
EU infrastructure projects by the European Commission. 
Since 2011 it has grown to 54 members from over 30 
countries, with more than 225 associated organizations, 
mainly biobanks. Thus it represents one of the largest EU‐
funded infrastructure projects. This project aims to build a 
coordinated, large‐scale pan‐European infrastructure for 

biobanks to improve the treatment and prevention of 
common and rare diseases [17]. In addition to instruc
tions for the harmonization and standardization of 
biobanks, a register has been set up, in which more than 
200 biobanks across Europe are already registered.

Under the 6th EU Research Framework Program, a 
cooperation project of the P3G consortium leading 18 
European and Canadian research institutions had been 
funded. The project entitled “Harmonising population‐
based biobanks and cohort studies to strengthen the 
foundation of European biomedical science in the post‐
genome era” has the following objectives [18]:

 ● To categorize population‐based biobanks and cohort 
studies in Europe systematically. Particular attention 
should therefore fall on studies that contribute to 
research on the genetic and environmental causes of 
complex diseases.

 ● To identify genetically isolated populations with 
special consideration of new possibilities for the 
construction of biobanks in Europe.

 ● To establish standardized criteria for the selection and 
collection of sample collections in genetically isolated 
populations.

 ● To build an infrastructure for the exchange of methods 
of genotyping in large cohorts.

 ● To prepare a communication forum and to discuss the 
selection of markers, quality control, database structure, 
and analysis.

 ● To develop a standard for the determination of 
complex phenotypes and lifestyle factors.

 ● To work on the solution of the statistical–methodological 
problems with the study design and analysis and the 
merging of data from different studies. An expert 
platform will be built to develop mathematical models 
integrating genetic epidemiology and statistics.

Apart from the aforementioned, there are many other 
projects that deal with the harmonization of biobanks, 
such as regional and international organizations (IARC, 
FIBO, ESBB, ISBER), further research and infrastruc
ture initiatives (caHUB, caBIG, Biomarkers Consortium, 
BioSHaRE‐EU, HuGENet, PHOEBE), and Internet 
databases (dbGaP, datSHaPER, DataShield, HapMap, 
HumGen, OBiBa, and OBO).

2.3.11 Definition of Ownership, Access 
Rights, and Governance of Biobanks

The access rights are different among biobanks. While cer
tain biobanks do not even provide insight into the existing 
samples and data—not to mention to provide material for 
the research of other research groups—there are efforts in 
Germany to make those biomaterials and their associated 
data accessible for scientists.
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Prerequisites therefore are as follows:

 ● A request of the potential sample user, which describes 
the planned project, the scientific background, and 
the number and type of samples and data (material 
and data transfer agreement) required

 ● The patients/volunteers’ informed consent
 ● Permission of the access committee and biobank PIs

The “gatekeeper” (scientist/clinician) has a right of 
veto over the samples or data transfer.

Assessing the compliance of cBMBs, a prerequisite of 
the funding agencies was that the biomaterials, which 
will be stored, will be available for the broad scientific 
community. A similar approach is envisaged in the 
National Cohort. Currently it is discussed how to deal 
with biomaterials, which are very valuable and limited in 
amount (e.g., fresh tissues, cells, serum, plasma). A final 
consensus could not be achieved here. Furthermore, a 
patient consent text was drafted recently by the working 
group of medical ethics committees that gives the con
sent for the broadest possible medical research and 
ensures that as many researchers as possible can obtain 
access to these data and samples.

This so‐called broad consent or open consent is 
currently being discussed or implemented in several 
university hospitals or in large research associations 
(German Centres for Health Research) or large epide
miological studies (National Cohort).

The ownership of biomaterial samples in a medical 
context is legally not uncontroversial (at least when there 
is no explicit transfer of ownership from the donor to 
the collector of the samples or the biobank). Also it is 
important to distinguish between those samples that fall 
in context of pure treatment and those that are already 
procured for the purpose of research. The former enter 
the laboratory (pathology) for treating or providing diag
nosis, where they are held and used for the institution’s 
own research without the need for consent. If samples 
are intended to be used in research, the patient or clinical 
trial participant consent is required; but this refers to 
date in most cases only on the right of use for research, 
but not on the transfer of property.

2.3.12 IT in Biobanks

The value of biobanks increases enormously by the 
presence of a professional, high‐quality IT system. The 
IT system, by connecting the sample data with clinical or 
laboratory data, has to cope with various tasks that range 
from the “consent management” (management of informed 
consent), specimen collection, processing, storage, and 
distribution to quality control [19]. Factors like data 
security, data access, and reporting play a central role. 
Different biobank information management systems, 

such as BIMS or LIMS, were developed for this purpose 
from different companies or by biobanks.

These systems play an absolutely critical role in 
monitoring the sample quality for different processes 
of sample collection, sample processing, storage, and 
utilization. To ensure complete documentation of sam
ples, all equipment involved in the sample processing 
and storage must be integrated into the BIMS inter
faces. The use of 2D barcodes is recommended during 
sample handling and reduces the mismanagement of 
samples dramatically. In addition, such management 
systems can cope with the huge amounts of data that 
can be generated with the samples. This is of increasing 
importance, facing the availability of the new “omics” 
approaches, such as the whole‐genome sequencing. A 
well‐functioning IT system is able to integrate large 
amounts of data from different sources (clinical data, 
sample quality, sequencing, and other laboratory data). 
It is increasingly important to harmonize database 
structures and use standard formats for exchange 
between biobanks and different institutions, as well as 
for joint analysis [20]. Another important aspect is the 
IT data protection compliance. In Germany a generic 
data protection concept for biomaterial was developed 
by TMF e.V. that serves as the basis for numerous data 
protection concepts [15].

2.3.13 Financial Aspects and Sustainability

The establishment and maintenance of biobanks is very 
costly. Main costs are due to staff, infrastructure (auto
mated freeze storage robots, manual liquid nitrogen 
tanks, manual −80°C storage, and transport vessels), 
biobank IT structure (BIMS, LIMS), and consumables 
(2D barcode tubes, electricity, and liquid nitrogen). 
Biobanks are often set up without elaborate long‐term 
plans for operational sustainability [21, 22]. Whereas a 
large part of the costs is associated with building the 
entire infrastructure at the beginning, significant costs 
arise from sample storage and establishment of proce
dures allowing access to the data and to the biological 
samples. Currently, full‐cost models are created for 
different biobanks but also at the level of the TMF. 
Specific prices for services by biobanks are not yet 
published. Different models are pursued for biobank 
operations, ranging from institutional support to third‐
party funding and user fees. Most of the time, mixed 
financing takes place [22].

2.3.14 Conclusion

In the age of personalized medicine, high‐quality 
biobanks can support the medical/molecular biological 
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research and operate to optimize the personal protection 
of the sample donor. Studies using biobank materials and 
data can help to better understand diseases, to optimize 
biomarker discovery and validation, and to identify new 
treatment options, including tailored therapies specific 
for a patient group.

Currently, large, harmonized, professional, and 
modern biobanks are created in many areas. Numerous 
universities are in the process of setting up centralized 
biobanks. Even larger multicenter projects of biobanks 
in Germany harmonize their activities, as it is done in 
the whole world. Despite these positive developments, 

there are still many tasks to be solved, such as the 
 sustainable funding of biobanks, the challenge of 
 different legal systems for biobanks in cooperating 
countries, and tightening of data protection in Europe, 
which complicates the cooperation between biobanks. 
Overall, however, most funding agencies came to the 
conclusion that clinical projects involving biomateri
als should be supported only if professional biobanks 
are involved. It is time to integrate the numerous 
small, less organized biobanks in larger structures to 
obtain reliable results in biomedical research in the 
future.
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2.4  Tasks of Ethics Committees 
in Research with Biobank Materials

Dieter Tröger

2.4.1 General Basic Concept

The ethics committee is an independent body made up 
of healthcare professionals and those involved in nonmed
ical fields. It basically ensures that the ethics committee 
independent judges are not bound by instructions from 
the underlying organization (z. B. University, faculty). 
The tasks of the ethics committee are as follows:

 ● To protect the rights, safety, and well‐being of individuals 
participating in a clinical trial

 ● To establish the confidence of the public in medical 
research involving human subjects

 ● To evaluate a medical research project according to an 
ethically legal point of view

 ● To provide opinions on the inspection/quality control 
plan, the researchers qualifications, the suitability of 
the facilities, and the methods and information mate
rial by which research participants were instructed 
and informed to get their consent

In addition to the protection of the patients and 
study participants, the commission is also responsible 
to prevent scientists, as well as institutions (e.g., uni
versities, hospitals), from unjustified and dangerous 
research.

To protect the patients, the ethics commission evalu
ates if the project is medically justifiable, regarding the 
risks for the patient on the one hand and the significance 
for medical purposes on the other hand. Nevertheless, 
the benefits for the patient and his/her safety always out
weigh the latter, which means that the well‐being of the 
patient always comes first and against possible benefits 
for society and state.

In Germany, the objective of an ethics commission 
under public law is put down in its respective statute. In 
the statute of the ethics commission of the medical uni
versity of Hannover (MHH), for example, it is agreed that:

1) The commission has to consist of not less than seven 
members, of which at least four should be doctors and 
one a lawyer with the qualification of judgeship. Two 
doctors should be experienced interns, one pediatrist 
and one from the field of theoretical medicine. Also 
one of the members should be acquainted with sta
tistics and test planning.

2) In the statutes it is also generally stated that offi
cial experts and specialists could be consulted for 
advice.

2.4.1.1 The Application Procedure

1) The ethics commission must decide promptly about 
an application, because researchers and employers 
have the right to receive a decision within 60 days.

2) The ethics commission has a quorum when at least 
half of the members contribute to the decision. The 
decision is taken by the simple majority.

3) The commission can either accept or turn down the 
application.

4) A rejection is only valid after an official hearing with 
the applicant and can be withdrawn if prearranged 
requirements have been fulfilled.

5) The committee should follow the rules imposed 
by the laws of each country. For example, in the case 
of applications that are subject to the German 
Pharmaceutical Act (AMG) or the Medical Devices 
Act (MPG), the ethics commission is requested to 
follow §42 of the AMG and §22 of the MPG and 
therefore enacted acts (GCP‐V, MPG‐V).

In general, every doctor/researcher, planning to 
 perform research on humans or human material, is 
obligated, according to both the Declaration of Helsinki 
of 2013 and the respective code of medical ethics of the 
responsible medical association (e.g., Landesärztekammer), 
to consult the ethics commission about his intent and 
discuss the ethical and legal questions involved.

2.4.2 About the Respective Ethics Commissions

For doctors, as well as scientists, who are employed at 
universities or teaching hospitals, the ethics commission 
of the university is responsible. For all other doctors the 
ethics commission of the “Landesärztekammer” (State 
Medical Council) is responsible of this task.

All ethics commissions in Germany impose a fee in 
order to cover the costs associated with their meetings. 
The amount is preassigned to the respective statutes and 
sometimes differs greatly from one to another, which is 
critically perceived by the clinics and the pharmaceutical 
industry. There are particular rules of ethics commis
sions, for example, in MHH, where only applications that 
follow the AMG and MPG require a fee. Every other 
application is processed without a fee.

Multicenter studies also fall under the act about the exer
cise of the “Gute Klinische Praxis” in case of clinical exami
nations with medicaments used for humans (= GCP‐V), 
which controls the advisory process by the regional ethics 
commissions (§8 Abs. 5 GCP‐V).

The ethics commission in charge evaluates the clinical 
examination together with other ethics commissions 
who are responsible for their researchers. They verify the 
qualifications of the researchers and the research facilities 
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in their jurisdiction. Their evaluation must be passed to 
the ethics commission in charge within 30 days after suc
cessful application submission.

The decision of the ethics commission will be con
veyed to the applicant in writing, in the form of a so‐
called “Votum,” where it is written, if no ethical or legal 
concerns were found against the project or if there have 
to be made changes to the project.

In the case of non‐AMG and non‐MPG applications, 
the applicant is not forced by law to follow the “Votum” 
or the recommended changes, because the ethics com
mission only fulfills an advisory function, but if the 
applicant still decides to pursue his project and it fails, 
he could be prosecuted by civil law.

When it comes to applications for the ethics commis
sion that fall under the AMG or MPG and include the 
collection or use of assembled biomaterials (e.g., blood, 
urine, saliva, tissue, liquor), these have to be dealt with as 
§42 AMG and §22 MPG dictate.

For Non‐AMG or MPG studies with up‐to‐date, 
 project‐based biomaterial collections, an application is 
needed in which the project and possible ethical prob
lems are briefly described. The specifications on what 
evidence has to be provided depends on the respective 
ethics commission. They can be normally found on their 
homepage.

Regarding the collection of biomaterials, it has to be 
settled:

 ● Whether the materials will be destroyed after the 
 project is finished

 ● Or if they should be used for a latter project from the 
same or different field

 ● Or if they should be given to cooperating institutes

 ● Or if a genetic examination or even a whole‐genome 
sequencing had been performed or has been planned.

When writing a report, it is recommended to use the 
specimen description for the patient information and the 
declaration of consent for adults, as well as youths and 
children.

2.4.3 The Establishment of Biobanks

When it comes to the special case of establishing a clini
cal biobank, which follows a professional standard like 
the “Hannover Unified Biobank” (HUB), a detailed appli
cation is necessary and should especially include infor
mation about the quality of storage and the organizational 
structure. To evaluate an application for the establish
ment of a biobank, the ethics commission needs in 
particular

 ● Specified information about the purpose, the organi
zation, the courses of procedure, the documentation, 
and the financing concept of the biobank

 ● Information on the biomaterial and data, for example, 
acquisition, storage, quality assurance, utilization, and 
safeguarding

 ● Documents about the donors and their declaration of 
consent

In conclusion it is essential to point out that 
researchers and doctors are strictly obliged by the 
code of medical ethics to inform the respective ethics 
commission before beginning a project. This rule 
should be applied if the used biomaterial originates 
from a small internal collection or from a big clinical 
biobank like HUB.
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4.1  Introduction

The associations between genes and diseases have 
already been the subject of study for many decades. The 
clearest cases of associations showed that a particular 
change in a single gene can be the potential cause for a 
particular disease. There are over 1500 defined genes 
that were classified as monogenic disorders with an 
associated phenotype [1], but these do not cover most 
of the human diseases that are mainly multifactorial. 
In their expert opinion, Stylianos Antonarakis and Jacques 
Beckmann state that monogenic disorders are an unfor
tunate casualty in the race to find the determinants of 
complex diseases [1–3]. Not all genetic mutations are 
detected or diagnosed using the same type of material. 
Isolated DNA is the most common type of patient mate
rial used for diagnostics applied to nucleotides. However, 
the analysis of other nucleic acids such as messenger 
RNAs (mRNAs) has great potential to elucidate many 
genetic disorders. In particular, RNA is used to diagnose 
complex diseases where multiple genes are implicated 
such as cardiovascular disease, breast cancer, and type 2 
diabetes mellitus [4, 5].

Over the years many diagnostic tests have been 
developed that took advantage of the latest advances in 
technology for biomarker discovery. The ultimate goal 
of molecular diagnostics is to accurately predict the 
presence or absence of a particular genetic disorder or 
infectious disease, or even response to a particular drug 
treatment. Toward this end, the latest advances in high‐
throughput technologies opened up new opportunities 
for RNA‐based diagnostics, allowing the development of 
new and more sensitive disease diagnostic tools. This 
goal is achieved by applying advanced statistical meth
ods that reveal hidden patterns within transcriptomics 
data that characterize multifactorial diseases. This was 
accomplished to some extent with the appearance of 
high‐throughput technologies such as microarrays and 

RNA sequencing (RNA‐Seq), both able to analyze 
thousands of mRNAs in a single run. The global analysis 
of the mRNAs can be quite rewarding and informative, 
providing information on many variations with base pair 
accuracy in the case of some diagnostic tools. Analyzing 
transcription products in diagnostics allowed to detect 
many diseases caused by genomic alterations as well as 
specific transcript modifications such as single nucleotide 
polymorphisms (SNPs), small variants (SV), transloca
tions, inversions, chimeric genes, breakpoints, posttran
scriptional modifications, alternative splicing, and gene 
expression [6–11]. See Figures 4.1, 4.2, and 4.3 for of 
RNA‐Seq visualization examples analyzing disease‐asso
ciated genes, such as MECOM, NPM1, and IRF1, for the 
detection of gene expression, SVs, and splicing variants 
of acute myeloid leukemia, respectively (primary data 
provided by Prof. Veelken, H., Head of Department of 
Hematology, Leiden University Medical Center).

In order to perform a diagnostic test on mRNA, the 
RNA first needs to be accurately extracted. There are 
many extraction methods available, and their applica
bility mainly depends on the sample source and type of 
material. Each method can provide specific advantages 
depending on the variety of accessible biological sample 
types and the downstream analysis to be performed. 
Some of these advantages can be evaluated in several 
ways, but yield and integrity are generally accepted as 
criteria of successful extraction. The material obtained 
from the sample extraction, regardless of the method 
used and the success of the extraction, is generally in the 
form of total RNA (tRNA) [12]. In this state, the extracted 
material from human samples contains mainly ribosomal 
RNA (rRNA) transcripts (~80%) and tRNA transcripts 
(~15%). The presence of these two RNA types greatly 
reduces the abundance of other transcript species that 
are of diagnostic interest such as mRNAs. Therefore, 
an  additional enrichment of the preferred mRNA is 
needed, after the extraction of tRNA, for further analysis. 
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The isolation of tRNA from the biological samples can 
be currently achieved by several methods including 
magnetic bead‐based extraction, silica columns, and 
acid phenol/chloroform. The enrichment of mRNA will 
enhance the reliability and sensitivity of the diagnostic 
test. This is usually achieved by several steps, which may 
include degradation steps of nondesired nucleic acids, 
amplification of DNA, and hybridization and ligation, 
among others. The degradation of the nondesired 
RNAs can be performed by an RNase degradation step. 
Such RNA degradation is, for instance, performed after 
the reverse transcription (RT) amplification of enriched 
mRNAs by using poly‐A primers. The amplification 
provides the first strand of the mRNAs as cDNA, which 
will no longer be degraded by the RNase activity. 
Similarly, the enrichment can be achieved without RNase 
degradation by including adapters during the RT steps 
and/or ligation steps. Then the cDNA is amplified by 
adding primers that are specific to the adapters intro
duced. There are other methods that involve physical 
separation of the mRNA transcripts. In this situation, 
the use of poly‐A ligands is quite usual, also known as 

poly‐A capture enrichment. A common way of physical 
separation is by pulling down the mRNAs with magnetic 
beads. The poly‐A ligand is attached to the beads, and 
then the mRNA is hybridized and separated from the 
sample solution by the use of magnetic forces that pull 
the magnetic beads down. Another common method 
involves the use of filtration columns. In this situation, 
the poly‐A ligands are usually attached to the stationary 
phase of the column. In the majority of the described 
enrichment cases, commercial kits may be available and 
used for the enrichment of mRNAs. It is important to 
note that some kits allow direct isolation of mRNAs 
without a previous step of tRNA extraction. As general 
recommendation, the evaluation of the performance of 
enrichment protocols and available kits is considered as 
good practice for the success of setting up any diagnostics 
test. Another method of enrichment is polyacrylamide 
gel electrophoresis, which is generally used to separate 
nucleic acid species of desired sequence length [13].

One of the limitations of handling RNA is that it is 
quite prone to fast degradation. Unless the analysis of 
the RNA is performed immediately after the sampling 

Gene

[0–250]
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[0–250]

Coverage sample 1

Coverage sample 2

Figure 4.1 Gene coverage for RNA‐Seq data. First gene track (blue line) shows the gene structure of MECOM by RefSeq gene annotation. 
Thick lines show exon locations and arrowed lines intronic locations. The second and third tracks show the coverage of MECOM for 
samples 1 and 2, respectively. In gray, the depth of coverage of sample 1 indicates that there is expression where the peaks are located. 
The extent of the expression is proportional to the height of the peaks, and the amplitude represents how much of the gene sequence is 
expressed, usually coinciding with exon boundaries. Source: Data provided by Prof. Veelken, H., Head of Department of Hematology, 
Leiden University Medical Center.
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Figure 4.2 Visualization of a SNV detected by RNA‐Seq. The 4 bp insertion (TCTG) is represented as a purple line on the alignment track 
for the NPM1 gene. The gene track (blue) shows the codons present in this particular location (blue and dim blue) as well as the amino 
acid it encodes for (letters). The sequence of this particular location is shown, and the black arrow gives information about the strand of 
the shown nucleotides (forward). The third track shows the coverage for each of the represented bases. Finally, the alignment is shown 
where horizontal gray lines represent a match with the reference sequence and a colored horizontal line represents a mismatch, which is 
colored with the same colors as the sequence nucleotides, being T red, A green, C blue, and G orange; black represents a deletion. 
Source: Data provided by Prof. Veelken, H., Head of Department of Hematology, Leiden University Medical Center.
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process, effective precautions against degradation must 
be taken. Preventing RNA degradation is of particular 
concern for quantitative analyses and the diagnosis of 
diseases where high sensitivity is required. This may be 
crucial in detecting minimal residual disease (MRD), for 
instance, to quantify BCR‐ABL mRNA in patients with 
chronic myeloid leukemia (CML) under imatinib ther
apy [14]. There exist several procedures and reagents 
that are used to preserve the integrity of RNA. In the 
majority of cases, the use of these measures is highly 
recommended. An extensively used method for pre
serving the RNA is to snap freeze the samples, which 
can be done with liquid nitrogen, followed by storage 
for a longer period at −80°C. Otherwise, during the col
lection of the samples, cells can be directly embedded in 
RNA‐safeguarding reagents or buffers that can preserve 
RNA from degradation. In this case, it may be possible 
to store the samples at a higher temperature depending 
on the approach and chemicals used during the collec
tion. For all of the aforementioned cases, extra care has 
to be taken to maintain the samples at the lowest tem
perature possible during the handling and to work with 
appropriate RNase‐free solutions, material, and working 
environment at all times [12].

Although it is always preferred to use “fresh” biological 
material for RNA analysis, the use of fresh material is not 
always an option. In some cases tissue samples are 
needed for clinical diagnostics that involve a particularly 
difficult and painful process for obtaining the material 
such as biopsies. These, at the same time, may involve 
complex extraction methods, as in the case of bone 
 samples. Therefore, tissue‐specific methods for isolating 
RNA are both available and required. Continuing with the 
 previous example, the isolation of RNA from bone  samples 
is considered for the understanding of the development 
of some metabolic disorders, such as type  2 diabetes. 
Toward that end, work has been done to  improve the 
 isolation methods for those difficult  samples. As an exam
ple, Carter et al. published an improved method for RNA 
isolation from bone samples in a single tube by using a 
Bullet Blender homogenizer. This method provided up to 
eight  times more RNA with high quality measured 
as RNA integrity number (RIN) [15] scores ranging from 
6.7 to 9.2. This method could reduce the usually time‐ 
consuming steps of bone  grinding by nitrogen freezing 
and hammer smashing the sample, which are commonly 
a  source of contamination, RNA loss, and degradation 
[16]. The downside of all the tissue‐specific approaches 
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Figure 4.3 Visual representation of splicing detected for two sequenced patients with RNA‐Seq. Bottom blue track represents gene 
structure of IRF1 gene. Thick lines show exons bases and arrowed line intronic bases. Green track shows the coverage of sample 3 (green 
blocks) as well as the number of reads that span the distance to the next splice acceptor region (green line). Red tracks show coverage of 
sample 5 (red blocks) and number of reads that span the distance to the next splice acceptor region (red line) connecting two exons. The 
last red track shows an alternative splicing event with 221 reads that are connecting exons 3 and 5 but skipping exon 4. This shows that 
exon 4 is partially skipped by some transcripts in sample 5. Source: Data provided by Prof. Veelken, H., Head of Department of Hematology, 
Leiden University Medical Center.
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is  the  increasing variability in terms of efficiency 
measured in yield and quality that is even more com
promised when more generic methods are used with 
difficult samples. Hence, it is not surprising that the cur
rent trend for the development of new diagnostic tools 
is centered on sample sources that are more easily 
obtained using noninvasive methods such as blood, 
saliva, and urine [12].

When RNA is extracted from a biological sample for 
disease diagnostics, we must also take into consideration 
that sample composition is another important variability‐
introducing factor. Tissue samples, for instance, contain 
different cell types. Each cell type will express its own 
gene repertoire. A sample mRNA composition may also 
be influenced by internal and external factors (i.e., nutri
tion, circadian stage, cellular cycle, stress, exercise, or 
disease state). Sasagawa et  al. showed that single‐cell 
transcriptome analysis using RNA‐Seq was able to 
identify and quantify nongenetic cellular heterogeneity 
and even differentiate cell types and cell cycle phases of a 
single cell type [17]. Therefore, it is important to use 
appropriate methods for targeted cell type enrichment, if 
possible, such as laser capture microdissection (LCM) for 
selecting tissue areas from tissue slides, cell sorting for 
enriching the cell fraction of interest, or centrifugation 
for separating the desired cell population [12, 17–20].

Many of the aforementioned processes and techniques 
used for the extraction of RNA are based on the use of a 
variety of solutions and chemicals. Unfortunately, the 
procedures are not perfect, which means that during the 
extraction there is a carryover of chemicals and reminis
cent sample components such as DNA, proteins, and 
salts. Chemicals such as ethanol, chloroform, or phenol, 
as well as monovalent cation salts such as ammonium 
acetate, lithium chloride, and sodium acetate, may be 
present in the sample due to the RNA extraction and 
precipitation approaches used [21]. Carryover genomic 
DNA may interfere with amplification or hybridization 
steps but can be easily removed from the sample by a 
DNase enzymatic treatment, and remaining proteins can 
be readily removed by proteases. Sample stabilizers such 
as citrate, EDTA, and heparin may inhibit RT and should 
also be removed. Several authors reported approaches 
for this purpose such as precipitating RNA with lithium 
chloride to get rid of sample heparin [22] or the use of 
ultracentrifugation [23]. It is worth mentioning that any 
single effort toward the removal of potential contami
nants may improve the outcome of the diagnostic test 
applied. These contaminants, in the end, may negatively 
influence the possible choices for downstream applica
tions and in the worst case have a direct impact on the 
diagnostic assay and its outcome [12].

While keeping in mind that there are many possible 
sources of variability, one has to choose from a large 

series of RNA isolation kits and methods. The choice 
should be made depending on the sample type to be 
analyzed. The ideal method is fast and easy, and it allows 
a reproducible extraction of RNA that is immediately 
ready to use or store. Many of these kits already include 
cleaning steps from inhibitors and contaminants and 
could be automated. Additionally these kits may also 
directly extract not only tRNA but also targeted sub
species of RNA such as mRNA, miRNA, and even viral 
RNAs, making the process much easier to set up for 
diagnostic applications. Several authors reviewed the 
performance of different RNA isolation kits applied to a 
variety of tissue samples. A recent example of the assess
ment of the performance of two purification kits was 
provided by Akutsu et  al. [24]. The authors compared 
RNeasy Mini Kit (silica column‐based kit from Qiagen) 
with EZ1 RNA Tissue Mini Kit (automatic magnetic 
bead‐based kit from Qiagen). The extraction was applied 
to two different biofluid samples, saliva and blood, in the 
form of fresh and dried cotton swab stains. The results 
of this comparison showed that silica column‐based 
extraction provided a slightly better RNA quality on 
fresh samples and substantially better on sample stains. 
Unfortunately, comparisons between multiple kits show 
that there may be kit‐dependent differences in RNA 
extraction that may impact downstream gene expression 
measurements [25]. Differences in RNA yield and RNA 
quality should be taken into account when selecting the 
best approach for processing clinical samples. Hence, 
when performing comparisons between studies, authors 
should be aware of the differences among different isola
tion procedures used. Further details on the advantages 
and disadvantages of currently available methods as well 
as the effect of stabilizers used, such as RNAlater and 
RNAprotect, are available in the following publications 
[14, 25–28].

After isolation, there are several ways to investigate 
the RNA. One can investigate a single gene transcript, 
several selected transcripts, or a complete transcrip
tome. The latter is an omics word to define the set of 
RNA molecules, including mRNA, rRNA, tRNA, and 
other noncoding RNA, transcribed in one cell or a popu
lation of cells. In this chapter, we will restrict ourselves to 
the analysis of the mRNA part of the transcriptome. 
Currently, there are two methods to perform transcrip
tome‐wide analysis of mRNAs: next‐generation sequenc
ing (NGS) and microarray analysis.

During these past years, the majority of research 
efforts of NGS applications were focused on the under
standing of the etiology of diseases including complex 
diseases [12]. Few of these research efforts resulted in a 
diagnostic test that is currently being used in a clinical 
setting. In some occasions, the diagnostic test for a certain 
disease could be reduced to a few key genes, making it 
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much easier to handle with a simple and cost‐efficient 
real‐time qPCR (RT‐qPCR) test (e.g., BCR‐ABL, BRCA1, 
BRCA2, retroviruses’ RNA) (Table  4.1). However, in 
multifactorial diseases, the number of relevant RNA bio
markers is usually too high to be handled by a single PCR 
assay. For diagnosing complex diseases, many small ded
icated assays are being used in combination. Therefore, 
the analysis of a complete mRNA transcriptome might 
be considered as a good alternative. In the succeeding 
text, we will provide a number of examples showing use
ful approaches for the analysis of RNA molecules to 
diagnose inherited or acquired diseases.

4.2  Clinical Applications 
of Transcriptomics: Cases and 
Potential Examples

4.2.1 PCR Applications

The diagnostic use of RT‐PCR is a very common practice 
and is frequently applied to detect hundreds of different 
diseases. The majority of clinical centers and diagnostic 
facilities offer a wide range catalog of services based on 
PCR kits to routinely diagnose patients. We will mention 
some examples of PCR tests that are or could be routinely 

Table 4.1 Examples of transcriptomics clinical applications for PCR, microarray, and RNA‐seq disease.

Tissue Target genes Type Method Application Source

CML Peripheral blood, bone 
marrow

BCR‐ABL Chimeric gene qPCR Commercial 
kit

www.
pcrdiagnostics.eu

HIV Blood plasma HIV Retrovirus qPCR Commercial 
kit

www.
pcrdiagnostics.eu

Hepatitis Blood plasma HCV Retrovirus qPCR Commercial 
kit

www.
pcrdiagnostics.eu

TORCH Peripheral and umbilical 
cord blood plasma; saliva; 
oropharyngeal swabs; 
amniotic fluid

Rubella virus RNA Retrovirus qPCR Commercial 
kit

www.
pcrdiagnostics.eu

Flu Nasal and throat swabs or 
washes; aspirate of trachea; 
feces; autopsy material

Influenza viruses Retrovirus qPCR Commercial 
kit

www.
pcrdiagnostics.eu

Breast 
cancer

Tissue biopsy BRCA1, BRCA2, +19 
more

Expression qPCR Biomarkers [29, 30] Oncotype 
DX

Breast 
cancer

Tissue biopsy 70‐gene signature Qualitative and 
quantitative 
expression

Microarray Commercial 
test

Agendia NV

Colon 
cancer

Tissue biopsy 18‐gene signature Qualitative and 
quantitative 
expression

Microarray Commercial 
test

Agendia NV [31]

Septic 
shock

Blood 100‐gene signature Qualitative and 
quantitative 
expression

Microarray Biomarkers [32]

Colorectal 
Cancer

Blood ANXA3, CLEC4D, 
LMNB1, PRRG4, 
TNFAIP6, VNN1, IL2RB

Qualitative and 
quantitative 
expression

Microarray Biomarkers [33]

Colon 
Cancer

Tissue biopsy RSPO2, RSPO3, 
TCF7L2, TET1, TET2, 
ERBB3, ATM, IGF2, 
among many others

Fusions, CNV, 
SNV, gene 
expression

RNA‐Seq Research [34]

TNBC tissue biopsy PARK2, RBI, PTEN, 
EGFR, KRAS, IDH1, 
and ETV6, among 
many others

SNV, CNV, 
expression, 
allelic 
expression

RNA‐Seq Research [35]

Transplant 
rejection

Peripheral blood IL1R2, CXCR4, HLA‐A, 
WSB1, CD48, SPARC, 
TYROBP, CD74, 
HTR1D, and SLC29A1

Expression RNA‐Seq Research [36]
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applied to diagnostics. It is worth mentioning that there 
are many tests available that are DNA based and are pre
sented and discussed in another chapter (I3 Genomics). 
Despite this, PCR‐based diagnostics still deserves a place 
in this chapter for its importance in the field of clinical 
diagnostics.

Recent advances in PCR technologies have extended 
the range of possibilities to use PCR for applied 
 diagnostics. These new PCR platforms, considered as 
the next‐generation RT‐qPCR, include a wide variety of 
PCR settings such as microfluidic chips, digital PCR 
(dPCR), emulsion dPCR also known as digital droplet 
PCR (ddPCR), microfluidic chip‐based dPCR, and steel 
chips. Many of these take advantage of micro‐ and nano
fluidics combined with miniaturized systems to pro
duce an increased number of reactions with a significant 
reduction of reagent used, sample volume, and costs. This 
allowed the increase of throughput of these platforms to 
thousands of reactions per sample, making these plat
forms quite suitable for a rapid screening of relatively 
large series of biomarkers. For a recent review about 
PCR‐based technologies, advances, and advantages, as 
well as limitations, please refer to Devonshire et al. [12].

Infectious diseases represent some of the clearest 
examples of PCR use for diagnostic purposes, taking 
advantage of some PCR tests that are available as com
mercialized kits. The purpose of these tests is to detect a 
certain RNA in the analyzed sample such as blood and 
buccal swabs. These tests have the purpose to be qualita
tive, providing the answer of the presence or absence of a 
specific RNA, and in some cases offer quantitative 
results. Some of these tests for infectious diseases detect 
the RNA of pathogenic viruses such as the human immu
nodeficiency virus (HIV) or the hepatitis virus. An example 
of a commercially available test based on a qPCR kit for 
detecting HIV may be the AmpliSens HIV‐Monitor‐FRT 
kit from PCR Diagnostics. This test uses real‐time 
hybridization fluorescence to detect HIV type 1 RNA in 
plasma samples. Similar to this test, other commercially 
available tests exist for detecting infectious diseases 
targeting RNA in plasma samples as well as other tissue 
sources. Some examples of available tests are listed in 
Table  4.1 as well as additional relevant test details and 
references.

The detection and quantification of mRNAs by PCR 
tests is also applied to the diagnosis of certain oncogenic 
diseases such as MRD. Here, the purpose of the test is 
to sensitively detect cancer recurrence (CR). A recent 
review, published by Sherrod et al., on MRD for multiple 
myeloma reported the efficiency of several tests to detect 
CR after stem cell transplantation treatments. The diag
nostic tests reviewed included a variety of techniques 
such as allele‐specific oligonucleotide PCR (ASO‐PCR) 
and NGS, among others. ASO‐PCR was reported to be 

very efficient with a sensitivity of up to 10−6 malignant 
plasma cells, which is an order of magnitude more sensi
tive than commonly used multiparametric flow cytometry 
(MFC) methods. The ASO‐PCR test provided an accu
rate quantification of the expression of the following 
immunoglobulins: IGHV‐J, IGHD‐J, and IGKDEL. How
ever, it also showed some limitations when considering 
the costs, turnaround time, and availability. Additionally, 
the development of unique primers for each particular 
patient reduced the success of this diagnostic test in a 
clinical practice, invalidating its efficiency when muta
tions occurred in the clonal antibody gene due to the 
evolution of the cancer. This effect hampered the success 
of the ASO‐PCR to be applicable in 42–86% of myeloma 
cases, whereas MFC was successful in >90% of myeloma 
cases. Results favor MFC for MRD assessment despite 
ASO‐PCR being more sensitive [37].

Another application for PCR tests is the detection and 
quantification of carcinogenic fusion genes and their 
expression. For instance, in the particular case of MRD 
involving CML, the chimeric oncogene BCR‐ABL is 
expressed as result of chromosomal abnormalities known 
as Philadelphia chromosome translocation. For the diag
nosis or screening of this chimeric transcript, different 
methods are commonly used such as fluorescence in situ 
hybridization (FISH) and RT‐qPCR. A very recent com
parative study assessed these two different diagnostic 
methods in terms of sensitivity and specificity on a cohort 
of 78 CML patients. The authors reported that the 
diagnosis using RT‐qPCR methodology was in high 
concordance with the cytogenetic response category 
after treatment. Newly diagnosed patients were detected 
in 100% of the cases, and further analysis follow‐up 
showed that the RT‐qPCR was capable to detect and 
give precise measurements of low‐abundant BCR‐ABL 
transcript levels as a sensitive indicator of MRD [38].

The analysis of fetal cell‐free RNA could also be very 
helpful to detect, for instance, the gender of the fetus. 
This was first reported by Poon et al. by using a two‐step 
RT‐PCR to detect Y chromosome‐specific zinc finger 
protein (ZFY) mRNA [39]. The presence of multiple 
nucleic acid sources in maternal blood including fetal 
cell‐free DNA and RNA allowed researchers to develop 
methodologies to screen for fetal diseases. Many nonin
vasive prenatal tests (NIPT) are being routinely per
formed to easily and early screen for the most fatal fetal 
diseases. These may include a wide variety of affections 
such as chromosomal abnormalities, sickle cell anemia, 
hemoglobinopathies, and cystic fibrosis, among other 
disorders. The detection of fetal nucleic acids in blood of 
pregnant women provides a wide and open field of study 
and will lead to the development of many clinical appli
cations. This methodology is not invasive compared with 
other techniques such as amniotic fluid analysis, and it 
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has excellent sensitivity/specificity for clinical applications. 
The majority of these clinical tests are currently target
ing cell‐free fetal DNA, for instance, to detect Q890X 
mutation for parental‐inherited cystic fibrosis [40] or 
HBB gene mutant alleles for the detection of sickle cell 
anemia [41, 42]. In a recent publication, Thung et  al. 
reviewed more in depth the NIPT issues and advantages 
of detecting fetal DNA in maternal blood samples for 
chromosomal (an)euploidies. The authors provided an 
extensive insight on practical issues encountered for the 
implementation of NIPT techniques based on examples 
of literature data and their own [43]. Examples provided 
included the detection of chromosomes 13, 18, and 21 
and sex chromosome (an)euploidies, as well as other 
autosomal aneuploidies and genome‐wide deletions 
and duplications. With these examples, Thung et  al. 
proposed an NIPT workflow that includes challenges 
one may encounter during the implementation, such as 
sample collection, fetal fraction, sample tracking, auto
mation of DNA isolation and library preparation, 
required sequencing, scope of testing, data analysis, and 
discrepant findings. However, even though its use may 
not be as extensive as is in DNA NIPT, the use of cell‐free 
fetal RNA in maternal blood could develop into an 
important diagnostic approach for the detection of 
genetic disorders and fetal defects. In early stages, cell‐
free maternal RNA could identify the gender of the fetus 
detecting Y chromosome‐specific ZFY mRNA by a two‐
step RT‐PCR [39]. In addition, subsequent work on 
plasma RNA from pregnant women, reviewed by Wong 
and Lo., showed that the detection of temporal dynamics 
from fetal transcriptome is currently a possibility to 
assess [44]. Apart from other DNA‐based NIPT tests, 
the authors review the advances in the transcriptomics 
NIPT field including several additional challenges com
pared with DNA NIPT such as low quantity and quality 
of mRNA extracted from maternal plasma, as well as 
varying levels of fetal RNA transcripts due to gene 
expression differences. To overcome all these challenges, 
an unbiased RNA‐Seq method may still be required for 
the determination of the fetal transcriptome from mater
nal plasma. This would open a new field of possibilities for 
transcriptomics‐based NIPT clinical applications, which 
may include fetal tissue‐specific markers for screening of 
fetal aneuploidies and developmental defects [44].

The analysis of mRNAs for clinical diagnostics usually 
targets a single transcript of interest. However, some of 
the latest PCR technologies may allow for multiple 
parallel PCR tests in a single run and with a single 
sample. This widens the possibilities for diagnostic 
applications, based on PCR tests, to screen for several 
genes/targets at the same time. Hence, disease gene 
panels are targeted and amplified. There are commer
cially available tests for specific platforms that take 

advantage of multiple‐gene screening using qPCR‐based 
approaches. As an example, Oncotype DX currently 
commercializes three diagnostic tests for screening the 
expression of selective gene panels for breast cancer, 
colon cancer, and prostate cancer [45]. In all these cases, 
the objective is to calculate the CR score that may 
improve personalized cancer treatment. The first test 
was developed for estrogen receptor‐positive (ER+) 
breast cancer to assess the risk of distant recurrence by 
targeting 21 breast cancer key transcripts. Oncotype DX 
for breast cancer is a breast cancer multiple‐gene diag
nostic assay for individualized treatment planning, 
such as chemotherapy benefit and distance recurrence. 
It uses a high‐throughput RT‐qPCR to analyze the 
expression of the 21 genes from which 16 are cancer‐
related genes and provide the majority of information 
on the recurrence risk in ER+ breast cancer. This  
21‐cancer panel was developed by screening 250 candi
date genes extracted from the literature and tested in a 
cohort of 447 patients [29, 30]. Then, the 250‐gene list 
was reduced to a panel of 16 cancer‐related transcripts 
(Table  4.1) and 5 reference transcripts (BACTIN, 
GAPDH, GUS, RPLPO, TFRC) that were validated. A 
similar approach was  followed to develop another assay 
for colon CR score assessment, testing a total of 12 
key transcripts for the stage II colon CR score [46]. Yet 
another Oncotype DX assay was designed to calculate 
the recurrence score using a panel of 17 genes for assess
ing the risk of recurrence of prostate cancer [29]. Despite 
all the aforementioned advantages, these approaches 
still target a limited number of genes and not a full tran
scriptome. Thus, they cannot be considered as global 
transcriptomics techniques, even though the latest 
advances in RT‐qPCR throughput are pointing toward 
that direction. In addition, some of these platforms, for 
a cost‐efficient use, must analyze many samples that 
should be collected and run at the same time, which may 
not be the ideal situation for a clinical application where 
incidences may not be that frequent.

4.2.2 Microarrays

The technology of microarrays is based on the design of 
multiple DNA probes that are bound on a solid surface 
such as a glass slide. Microarray technologies have been 
widely used in research for measuring gene expression 
changes and elucidating the relationship between geno
types and phenotypes. They are quite cost‐effective for 
profiling gene expression when it comes to model organ
isms. Microarrays have also been used in clinical diag
nostics. Some examples are the detection of copy number 
variants using SNP arrays such as the Cytogenetics 
Whole‐Genome Array from Affymetrix or the 
HumanOmni1‐Quad BeadChip and HumanCytoSNP‐12 
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DNA Analysis BeadChip from Illumina. In general, 
microarrays can be used for general screenings, gene 
expression profiling, genotyping, and many other appli
cations. However, like in PCR‐based applications, the 
use of predefined oligonucleotides (probes) is based on 
previous knowledge availability. Thus, microarrays are 
used for quantification of known sequences and not for 
the discovery of new variants, transcripts, or other unex
pected transcriptomics features [47].

In order to fully illustrate the limitations of microarray 
technology, we should briefly present some basic con
cepts. Microarray detection is based on hybridization of 
sample DNA to nucleic acid probes, bound to the surface 
of a slide. The probes are oligonucleotides with a usual 
length of 25–120 nucleotides. To further measure the 
quantity of hybridization to each specific probe, the tar
get sequence (DNA or cDNA) is labeled with fluorescent 
dyes. Then, after an image is taken and processed, signal 
intensities can be read and converted to normalized 
values in order to initiate the data analysis. Due to the 
nature of microarray probe design, the capabilities of this 
method are apparently restricted to known sequences 
and therefore do not allow detection of target sequences 
beyond the current knowledge. This factor can be a 
disadvantage for non‐model organisms, but diagnostics 
of well‐characterized organisms, such as humans, is 
feasible, although it relies on the quality of the available 
bioinformatics data at the moment the microarray was 
designed. Microarrays can be used for diagnostic 
transcriptome analysis. If properly designed, they will 
not only provide information on gene expression and 
expressed SNPs but also detect exon junctions and fusion 
genes [48].

Normalization and processing of microarray data can 
involve quite complex bioinformatics methodologies 
and statistics. This is a consequence of the nature of the 
data produced by this technology that may become a 
limitation for someone not acquainted in the area. 
However, significant efforts were put into developing 
standardized procedures for microarray analysis. Some 
of these procedures as well as suggestions, guidelines, 
metrics, and thresholds, among other information, are 
publicly available under the MicroArray Quality Control 
(MAQC) website, together with the publications that 
helped to reach consensus on these procedures. Refer to 
the MAQC project for further details [49].

The human genome has been long studied and anno
tated, making it easier to use the available information 
to develop microarray probes for clinical diagnostics. 
As an example, Agendia N.V. [50] developed clinical 
tests for complex diseases such as breast and colon 
cancers based on gene expression profiling microarrays. 
The Agendia “MammaPrint” assay can be used to clas
sify different types of breast cancer and to calculate the 

recurrence risk. This assay was tested on a cohort of 
6694 early breast cancer patients in a phase III trial 
(MINDACT) to investigate the utility of the MammaPrint 
70‐gene signature (Table 4.1) for adjuvant chemotherapy 
[51]. Similarly, another test for colon cancer could also 
classify different cancer types as well as calculate recur
rence risk factors with an 18‐gene signature (Table 4.1) 
[31]. Please refer to the Agendia N.V. available online 
resources for further details, publications, and informa
tion about the signature assessment, validations, clinical 
trials, risk assessments, and test efficiency of the afore
mentioned assays (www.agendia.com).

Genome‐wide microarrays can yield a global view of 
gene expression and are designed without any investi
gator bias. Compared with custom‐designed arrays, 
genome‐wide array analyses provide a better opportu
nity of resolving complex and heterogeneous clinical 
syndromes. A review by Wong of several approaches 
for sepsis and septic shock shows the potential and 
applications of the genome‐wide microarray analysis 
[52]. One of the outcomes of the studies carried out 
with septic shock was the characterization of a 100‐
gene expression signature. The correlation of clinical 
phenotype of these pediatric patients with array data 
showed that this expression signature could classify 
septic shock of three different phenotypes. One of these 
is a severe phenotype with increased illness severity 
and higher mortality rate (Table 4.1) [32]. The proper 
identification of phenotype‐correlated marker genes 
may also lead researchers to find potential therapeutic 
targets. Hence, proper classification to clinical pheno
types of septic shock would allow for the design of more 
specific and targeted therapies. With the review of 
many studies of septic shock showing similar results 
for genes such as MMP‐8, highly expressed in patients 
with septic shock, it was possible to demonstrate that 
inhibition MMP‐8 resulted in significant improvement 
of patient survival. Thus, genome‐wide microarray 
approaches can provide insights in the pathology of 
complex diseases, help to classify patients in groups 
with specific characteristics, and allow the discovery of 
novel therapeutic targets [52].

Chao et  al. [33] reported that in a microarray blood 
transcriptome study carried out with 314 colorectal 
cancer patients, a seven‐gene classifier was able to detect 
left‐sided and right‐sided lesions (lesions on the left and 
right side of the colon, respectively) with 78% sensitivity 
and 66% specificity against control samples with no colo
noscopy pathology detected. Treatable cancers were 
detected with a sensitivity of 76 and 84% for left‐ and 
right‐sided lesions, respectively. These results supported 
the plausibility of integrating blood‐based screening 
tests into routine diagnostics for improved colorectal 
cancer outcome (Table 4.1) [33].
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4.2.3 Sequencing

The advances in DNA sequencing, and in particular 
the advances of NGS, have significantly improved the 
quantity and quality of genomic information that can 
be obtained from clinical samples. The reduced cost of 
NGS as well as the increase in throughput made whole‐
genome sequencing (WGS), as well as other NGS 
applications such as whole‐exome sequencing (WES) or 
RNA‐Seq, a possible and reliable approach for clinical 
diagnosis. However, there are still some challenges such 
as data storage, management, analysis, and interpreta
tion that have to be considered for the proper use of 
this technology in clinical applications [11]. Following 
the objectives of this chapter, the tools, applications, 
approaches, and examples presented here will mainly 
focus on the use of NGS for the analysis of the transcrip
tome in clinical applications.

Many different platforms for massive parallel sequencing 
were developed. The first example, although currently 
obsolete, is the 454 Genome Sequencer from Roche 
Applied Sciences. Also outdated is the SOLiD platform 
from Life Technologies. The current and most widely 
used technology is the Solexa “Sequencing‐by‐Synthesis” 
technology that was acquired by Illumina in 2007. The 
strength of these technologies relies on a very high 
throughput at the expense of read accuracy and much 
shorter read length when compared with the well‐known 
Sanger sequencing. However, the possibilities of use and 
applications of this technology led to significant scientific 
discoveries and diagnostic applications [11]. Fortunately, 
some of the trade‐offs are being reduced through 
continuous platform improvements and developments, 
which resulted in more advanced sequencer versions 
such as the Ion Torrent and Ion Proton from Life 
Technologies and the MiSeq and HiSeq from Illumina. 
In particular the HiSeq versions have greatly improved in 
accuracy and read length as well as in significantly higher 
throughput. Meanwhile, the run time has been decreas
ing, making it suitable for diagnostic use. Advances and 
ongoing efforts to improve these platforms even further 
have made the HiSeq platforms from Illumina the most 
widely used NGS sequencers.

Depending on the sequencing platform of preference, 
many options are available for library preparations. The 
library preparation steps include all transformations 
the nucleic acids of interest may require prior to being 
completely ready for sequencing on the platform of 
choice. In general, NGS library preparations for tran
scriptomics consist of cDNA synthesis and extension of 
the cDNA with specific ligated adapters for sequencing. 
Furthermore, it is quite common that a minimum quan
tity of RNA is required to ensure a minimal quality. For 
body fluids and tissues, approximately 10 ng of RNA is 

often sufficient, while for samples containing degraded 
RNA, such as FFPE, a minimum of 100 ng is strongly 
recommended [53]. In addition, many adaptations to 
library preparation protocols are reported in order to 
cover different aspects of the complexity of RNA pro
cesses and regulations such as posttranscriptional modi
fications, gene expression, isoforms, regulation, splicing, 
and degradation [7, 9, 54, 55]. For a better overview of 
published protocols, please refer to available collections 
of preparation methods such as the sequencing methods 
review published from Illumina Technology [56].

The overwhelming quantity of data produced per sample 
requires advanced bioinformatics analysis to address the 
wide variety of possible questions. There are many tools 
and software packages available that can analyze these 
massive datasets, make inferences from the data, and 
offer biological interpretations. Despite their differences, 
there are some data analysis steps that are usually shared 
among the different approaches. Common steps include 
quality check of the sequencing data, sequence align
ment to a reference genome or de novo assembly in 
some other cases, and the assessment of the specific 
experimental results in order to finally provide useful 
diagnostic information [10, 11, 53]. It is accepted as good 
practice to perform several quality checks at the different 
steps in the process of analyzing clinical samples. Several 
authors reviewed different quality measures and how 
to use them during the downstream analysis. A recent 
review by Li et  al. exposed many sequencing quality 
checks specific for RNA‐Seq experiments including 
checks assessing raw sequence quality, nucleotide com
position, presence of rRNA or tRNA, and the presence of 
other contaminant nucleic acids [57]. Another important 
step is the alignment of the sequenced reads to the refer
ence genome, or transcriptome. The human genome is 
nowadays quite complete with the latest version 38 
released on June 29, 2014, by the Genome Reference 
Consortium, patch 4 (GRCh38.p4) (www.ncbi.nlm. 
nih.gov/projects/genome/assembly/grc/human). In the 
alignment, the human genome is used as matching refer
ence for the sequenced reads. RNA‐Seq data alignments 
differ substantially from the DNA‐Seq alignments. The 
nature of read sequences in RNA‐Seq provides extra 
levels of complexity due to the fact that RNA molecules 
are the product of transcription and posttranscriptional 
processes such as splicing and RNA editing. The splic
ing removes part of the transcribed sequences—the 
introns—leaving the exons present in the sequence. After 
the library preparation and its fragmentation step, which 
is an optional step and commonly performed by sonica
tion, some of the shorter reads obtained may come from 
the region where two exons were joined. In this particu
lar situation, the RNA‐Seq aligners have to be flexible 
enough to be able to map part of the reads to one exon 
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and the other part to another exon, spanning an exon 
junction [58]. There are many aligners available that can 
deal with RNA‐Seq data, such as Bowtie2, GSNAP, 
STAR, and SpliceMap, among many others. Work has 
been done to review and report available alignment tools 
to help users through the, sometimes difficult, decision 
of selecting the best tools for applications in clinical 
diagnostics [10, 53]. In general, all aligners offer the 
possibility to modify key parameters in order to adapt 
their algorithms according to the quality of available data 
and the question of relevance. Once a decent quality 
alignment is produced, the proper diagnosis is usually 
within reach. A common approach is to retrieve tran
script abundance, as gene counts, for gene expression 
profiles or differential expression. However, prior to 
comparing two RNA‐Seq datasets, the raw counts should 
be normalized to account for some differences intro
duced by handling during the library preparation steps. 
Due to this inherent variability, normalization of raw 
counts is required since these are not directly compara
ble between or within samples [59]. There are many 
normalization methods, some correcting for gene length, 
GC content, and library size, as well as other bias adjust
ments. For better understanding of the available normal
ization procedures, Dillies et  al. compared several 
normalization methods in order to clearly present their 
application in the context of RNA‐Seq data. In summary, 
the available DESeq and TMM normalization methods 
showed to be able to maintain the power to detect dif
ferentially expressed genes while properly controlling 
the false positive rate [59]. Another way of normalization 
to deal with extra biases found in cross‐platform or inter
laboratory comparisons relies on the inclusion of syn
thetic spike‐in materials. In some cases these external 
RNA controls developed by the External RNA Controls 
Consortium (ERCC) became available for the evaluation 
of cross‐platform performance according to GC content, 
transcript length, and sequencing accuracy [12].

Extended information on RNA‐Seq practices as well 
as some additional recommendations, benchmarking 
technology comparisons, reproducibility assessments, 
and evaluations of RNA‐Seq for clinical applications was 
also published by the Sequencing Experiment Quality 
Control (SEQC) consortium. The SEQC project is the 
third phase of the MAQC, and it involves 12 countries, 
78 organizations, and 180 researchers (http://www.fda.
gov/ScienceResearch/BioinformaticsTools).

The wide range of available bioinformatics tools offers 
the possibility to answer various biological and diagnostic 
questions. However, bioinformatics analysis may not be 
able to overcome some limitations that we can still face 
with NGS data such as highly repetitive sequences, 3′ 
biases, and biased GC content. In general, the small loss 
of information due to these limitations is of low impact 

compared with the significant insights that NGS pro
vides. Repetitive sequences in the human genome are 
well characterized, making it easier to handle problems 
related to polymorphic copy number variation in these 
regions. During the alignment steps, reads that map to 
many locations of the genome (not uniquely mapped) 
with equal quality are usually filtered. The enrichment of 
3′ end sequences of genes, also known as 3′ bias, is a side 
effect of the fast degradation of mRNAs from the 5′ end 
of the transcript, which may be even more prominent 
when using poly‐A enrichment methods during the 
library preparation. This effect can be widely avoided by 
using higher‐quality RNA, which should be possible in a 
properly designed diagnostic setting. Additionally, 3′ 
biases may not affect the outcome of some analysis, such 
as gene expression measurement, since it is considered 
that all transcripts exhibit similar degradation and the 
same library preparation was performed within a par
ticular well‐controlled experiment. The last limitation, 
regarding some difficulties of sequencing high GC 
regions, is a problem that usually results from several 
causes. First, it is known that some polymerases may 
have increased difficulties to transcribe high GC content 
sequences. This, coupled with the inherent high repeti
tive nature of GC or AT enriched regions, makes these 
regions somehow tricky to analyze with higher levels of 
confidence. However, not all high GC are affected at the 
same level due to differences in GC percentages and 
other nucleic acid composition [57]. Hansen et al. worked 
on an alternative normalization method to acquaint for 
the GC content as well as gene length of a particular gene 
using a conditional quartile normalization [60]. However, 
their method did not outperform other less sophisticated 
normalization methods [59].

Cancer is commonly regarded as an accumulation of 
genetic alterations such as single nucleotide variants 
(SNVs), altered DNA methylation patterns, and chromo
somal abnormalities. As a consequence of DNA modifi
cations, there may be dysfunctional genes leading to 
over‐ or underactivity and chimeric transcripts or gene 
fusions. These alterations may disrupt the proper func
tion of the gene, which may become an oncogene, a 
malfunctioning tumor suppressor, or an incorrect DNA 
repair gene. The occurrence of one or more of these 
genetic alterations may affect cellular growth and lead to 
tumor development. Since the landscape of cancer tran
scriptome is complex, RNA‐Seq can be very useful for 
clinical diagnostic applications, offering a wider range of 
screening possibilities to check for the whole diversity of 
cancer‐related alterations in a single run [10]. Many 
studies have been carried out that contributed in the 
understanding of molecular determinants of tumor cell 
types. Cancer characterization is remarkably one of the 
research fields that has dedicated considerable efforts to 
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adopt RNA‐Seq for research purposes and to assess its 
potential in clinical applications [6, 10, 11, 53]. Since the 
accumulation of genetic alterations may be either inher
ited or somatically acquired, RNA‐Seq becomes a strong 
complementary approach in screening and diagnostic 
applications.

Among the most common genetic alterations in cancer, 
we find gene fusions or chimeric genes that result from 
chromosomal abnormalities such as inversions, dele
tions, and translocations. Some of these alterations may 
modify the expression of certain genes, which can be 
detected with RNA‐Seq. Seshagiri et  al. [34] could 
identify some duplications at the DNA level that corre
lated with the overexpression of a particular gene, IGF2, 
in a subset of colon tumors. In the same study, the analysis 
of RNA‐Seq data identified multiple fusion transcripts. 
These included recurrent gene fusions from members of 
the R‐spondin family such as RSPO2 and RSPO3. The 
fusion of these genes occurs in 10% of colon tumors. 
Additionally, the authors detected an effect of mutually 
exclusiveness between RSPO fusions and the presence of 
APC, indicating a potential role in the activation of tum
origenesis through the activation of the Wnt signaling 
pathway. This was corroborated by the potentiating 
effect of RSPO fusions detected over the Wnt signaling 
(Table 4.1) [34].

If somatic mutations occur in a crucial DNA position, 
this may translate into the development of a tumor. 
Moreover, uncontrolled cellular divisions combined with 
defects in DNA repair systems may lead to the evolution 
of cancers in a clonal expansion manner. This stepwise 
process and the resulting clonal expansion increase 
the variability and genetic diversity in a complex pattern. 
Therapeutic interventions in highly clonal expanded can
cers introduce a strong selective pressure that translates 
in resistant cancer cells. This is regarded to be one of the 
major causes of therapy failure for some cancer types 
[61]. However, work has been done to understand clonal 
expansion and the dynamics of this complex evolution. 
Shah et al. showed that the detection and quantification 
of the clonal evolution was possible using RNA‐Seq by 
characterizing the mutational evolution spectrum. In a 
similar study, the authors analyzed data from SNP arrays, 
WES, and RNA‐Seq for a total of 104 individuals 
 suffering from triple‐negative breast cancer (TNBC). 
The results showed that only 36% of validated SNVs were 
expressed and detected within the transcriptome. These 
SNVs as well as the detected splicing variants were mainly 
accumulated to particular carcinogenic genes such as 
TP53, PIK3R1, AP3B2, or TNIP1 (Table 4.1). Additionally, 
a significant enrichment of somatic mutations was 
detected in noncoding regulatory regions such as retino
blastoma‐associated proteins transcription factor binding 
(RTFB) sites. Several of these mutations were predicted 

as damaging the RTFB sites for genes such as SPATA17, 
KCNE2, and SRRM5 (Table  4.1). Additionally, it was 
possible to differentiate early from late events in the 
clonal evolution and identify driver genes, potential novel 
pathways, and oncogenes that were not previously 
described. Furthermore, authors showed that basal and 
non‐basal TNBC differ in their clonality at the time of 
diagnosis, basal TNBC having higher clonal frequency 
than non‐basal TNBC [35]. In the end, RNA‐Seq was able 
to detect SNVs and splicing variants as well as to eluci
date the clonal evolution of TNBC. These results offer 
novel insight on cancer biology and will contribute to the 
revision of the current diagnostic methods for multifac
torial diseases such as TNBC.

Apart from complex diseases such as cancer, RNA‐Seq 
showed great potential in other fields of clinical diagnostics 
such as immunology. Recent tendencies in immunological 
studies showed that large‐scale genomics and transcrip
tomics approaches are becoming more popular options for 
immunological studies. These global approaches can help 
to mitigate, for instance, the limitation of cellular heteroge
neity in blood samples, even though the measurement of 
cell composition in blood samples is not always perfect [6]. 
Despite this limitation, the use of a global approach, such 
as transcriptomics analysis of blood samples, has shown to 
provide very nice advantages toward clinical diagnostics as 
was seen in early research done on autoimmune disorders, 
cancer, and infectious diseases [6].

Transplant rejection in heart transplants has been 
assessed by an endomyocardial biopsy test. But this is an 
invasive procedure that is characterized by greater risk of 
morbidity, discomfort for the patient, tissue sampling 
errors, and late detection of rejection. Due to all these 
limitations, it was necessary to find an alternative to this 
type of invasive tests to detect heart transplant rejection 
and to more accurately and early adapt patient treatment 
to avoid transplant rejections. With this in mind, Chen 
et al. [36] used an NGS approach to analyze peripheral 
blood gene expression profiles, monitor the immune 
system, and potentially avoid heart transplant rejection 
by early detection. For this study 12 patients were ana
lyzed from grade 0 (6 quiescent patients) to grade 2R and 
3R (6 rejection patients). The results were validated by 
qPCR of 47 individuals from three different rejection 
groups. A total of 10 genes (Table 4.1) were identified, 
which provided a signature of high risk for severe rejection. 
This 10‐gene signature was also tested to be effective in 
other organ transplants [36].

Other research work in the field of renal diseases 
also showed the potential of RNA‐Seq to identify gene 
expression profiles, gene pathways, and alternative 
splicing linked to TGFB and SMAD3 signaling in chronic 
kidney diseases (CKD) [62]. In summary, research findings 
using animal models provided insight information about 
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SMAD3 signaling and its function in renal injury, as well 
as highlighting potential targets for CKD therapies [62]. 
The study of SMAD3‐dependent renal injury was per
formed using tRNA of kidneys from mice animal models 
with SMAD3 wild type and knockouts for immune‐ and 
nonimmune‐mediated CKD (antiglomerular basement 
membrane glomerulonephritis and obstructive nephropa
thy, respectively). Zhou et al. reported nine differentially 
expressed genes linked to SMAD3 (IGHG1, IGHG2C, 
IGKV12‐41, IGHV14‐3, IGHV5‐6, IGHG2B, UGT2B37, 
SLC22A19, and MFSD2A) and showed that renal injury 
transcriptomes may mediate pathogenesis of CKD.

4.2.4 Discussion

Recently acquired knowledge, and technology, calls for a 
wide‐scale use of transcriptomics in clinical applications. 
By using these technologies we may screen for multiple 
disease determinants in a single run and obtain informa
tion on the cause of the disease as well as on the potential 
response to treatments and many other factors. However, 
wider screening approaches such as transcriptome 
profiling are still not commonly preferred over PCR 
diagnostic tests. The use of PCR for monitoring one or 
several genes is cheaper than a complete expression 
profile in the terms of price per sample. However, when 
considering the price per screened gene, transcriptomics 
approaches offer a significant advantage. For instance, 
a  1 tier Fluidigm (multiple‐reaction RT‐qPCR‐based 
platform) assessing 90 transcripts would cost 22 euro 
(25$) per sample or 0.24 euro (0.27$) per gene (adapted 
from Ref. [6]), while an mRNA‐Seq would currently cost 
around 400 euro per sample but much less 0.01 euro per 
gene, considering that RNA‐Seq potentially yields thou
sands of genes (Table 4.2). This shows that reducing the 
complexity of disease diagnostics toward a few key 
genes may reduce the immediate costs of the clinical 

assay. On the other hand, the cost of NGS will decrease 
considering the advances in sequencing chemistry.

Some omics approaches in clinical diagnostics make use 
of quite costly and/or experimentally challenging global 
approaches such as proteomics and transcriptomics. They 
replace tests for individual biomarkers, which would be 
required in increased numbers if global tests would not 
be available. Transcriptomics assays have the potential to 
be widely applied in the clinical setting since they are 
reliable and reproducible [6]. Given the mass of available 
knowledge about the human genome and disease bio
markers, RNA‐Seq approaches or even NGS and genomic‐
wide microarrays should be considered as options for the 
future development of clinical diagnostic assays. There are 
examples of development of clinical applications based on 
NGS approaches that show their potential toward person
alized medicine, despite these being DNA‐based applica
tions. Within this context, Renkema et al. reviewed several 
applications for CKD, highlighting that NGS‐based DNA 
genetic testing can reduce the costs and turnaround time 
in diagnostics of steroid‐resistant nephrotic syndrome 
and autosomal dominant polycystic kidney disease (PKD). 
The authors emphasize on the need of WGS approaches 
to identify nephronophthisis causative genetic variants 
due to oligogenic inheritance for genes such as NPHP2, 
NPH3, and AHI1. In addition NGS approaches allowed 
researchers to achieve a greater understanding of diseases 
and the pathogenesis of genetic disorders. Renkema et al. 
remarked that systems biology approaches that integrate 
data from various sources could be used to screen for 
potential drug targets. Additionally, the authors provided 
the example of PKD animal models used to determine 
efficacy of vasopressin receptor V2 antagonist [63]. 
Overall, given the latest tendency of clinical applications 
toward personalized medicine approaches, we may pre
dict an increase of research to develop transcriptomics‐
based diagnostic applications.

Table 4.2 Technical comparison between PCR, microarray, and RNA‐Seq methodologies.

PCR Microarray RNA‐Seq

Principle Hybridization Hybridization Sequencing
Resolution 25–100 bp 25–120 bp Single base
Dependence on available knowledge High High Low
Background noise High High Low
Identification of isoforms Limited Limited High
Differentiate between allelic expressions Limited Limited High
Maximum number of samples per run 384 2 (96+) × 8
Maximum number of target genes per sample 1728 30 455a Everything transcribed

Source: Adapted from Mimura et al. [8] and complemented with Devonshire et al. [12] and personal information.
a As of number of CCDS genes from RefSeq genes annotated and the number of hybridization probes designed.
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Several studies were recently reviewed by Chaussabel 
[6] providing a detailed vision of the perspectives of 
blood transcriptomics in the field of clinical diagnostics. 
The various applications reviewed included neurological 
disorders such as autism and Alzheimer; assessing rejec
tion risk signatures for organ transplants such as the 
liver, heart, kidney, or bone marrow; and a wide variety 
of different affections such as transcript signatures for 
exposure of environmental factors, respiratory diseases, 
allergy, stroke, infections, and diabetes, among others. 
This highlights the possibilities that a wider approach 
may offer to clinical diagnostics in terms of types of dis
eases that can be properly resolved, diagnostic tests that 
may be developed, and the discovery of therapeutic 
targets.

Hybridization‐based methods such as microarrays and 
PCR are bound to existing (and potentially limited) 
knowledge about the transcriptome and its association 
to possible disease phenotypes. Advances in the under
standing of the human genome, function of genes, and 
their link with disease phenotypes will lead to improve
ments in the design of PCR tests and microarray experi
ments. However, currently only a few organisms such as 
Homo sapiens have a well‐studied transcriptome, and 
our understanding of its complexity is still far from being 
complete [64]. Therefore, with respect to molecular test
ing in humans, few well‐characterized disease‐causing 
genes can be used with confidence as diagnostic tools. 
Tests performed to analyze more complex and hetero
genic diseases are more challenging to implement in 
the  clinical setting. The use of whole transcriptome 
approaches such as RNA‐Seq opens up new possibilities. 
This, coupled with the increasing number of databases 
for storage and easy access to data, will provide the basis 
for larger and more complete studies with data that 
maintain scientific relevance for many years. The switch 
to global approaches such as whole transcriptome 
 analysis will enable better prediction of disease onset, 
outcome, severity, and treatment response and in  general 
easier patient management [6].

Current genome‐wide gene expression microarrays do 
show an improved and reasonably accurate probe design. 
However, the technology still relies on the hybridization 
of fluorescent DNA to quantify the expression. This 
hybridization is known to produce some background 
noise that can interfere with the true signal. There have 
been several studies and reviews that address this topic 
while comparing different technologies in terms of 
throughput, accuracy, cost, and efficiency. For instance, 
Marioni et  al. [64] assessed the technical differences 
between microarray technology and RNA‐Seq. Despite 
the decent high‐throughput setup that microarrays 
offer, the authors highlight the implicit high back
ground noise of microarrays due to cross‐hybridization. 

The methodology for controlling this noise in addition to 
the differences in the design of the hybridization probes 
makes microarray results almost impossible to merge 
with other experiments [64]. This effect is mitigated in 
NGS approaches that showed a higher resolution, fewer 
artifacts, greater coverage, and a wider dynamic range 
than microarrays [65].These factors as well as many other 
characteristics of microarray technology and RNA‐Seq 
have been extensively compared and reviewed since the 
release of RNA‐Seq in 2009 [8, 64, 66]. It must be empha
sized that the detection of low‐abundance transcripts 
can only be performed by using RNA‐Seq technology [67]. 
This, as well as the ability to detect previously unknown 
transcripts, makes sequencing approaches more sensi
tive and complete than microarrays detecting up to 25% 
more differentially expressed genes [68]. Nevertheless, 
microarrays are still widely used in clinical diagnostics 
and will most likely still have a complementary role in 
clinical transcriptomics applications [69].

System‐scale approaches are not applied in the clinical 
setting. Despite the numerous advantages that RNA‐Seq 
may offer to clinical applications, it is still a fact that 
wider transcriptome approaches are yet to be imple
mented. This may be due to the understanding of tran
scriptome diagnostic tools as a cost–benefit risk when 
considered from a monetary but not a medical care point 
of view. In fact, if everything that needs to be measured 
is indeed measured by a transcriptome assay, there would 
be no market for dedicated assays, kits, and instruments 
for different tests and diagnostics [6]. The benefits of this 
shift would potentially improve disease diagnostics and 
reduce healthcare burden especially for more complex 
diseases. In this hypothetic situation, diagnostics for 
autoimmunity, cancer, cardiovascular diseases, infectious 
diseases, neurological diseases, nutrition deficiencies, 
pregnancy tests, and disease severity, onset, outcome, 
and response to treatment could be monitored from a 
single centralized laboratory [6, 33, 70–72].

The significant progress in high‐throughput technolo
gies such as genomics, transcriptomics, proteomics, and 
peptidomics, among others, will lead to personalized 
high precision medicine. In this setting the traditional 
symptom‐oriented diagnosis and treatment would be 
complemented with individual molecular profiles of the 
patients, allowing a better treatment [73]. In this situa
tion, transcriptomics as a continuously improving high‐
throughput precision omics would greatly facilitate the 
process. The detailed information of the transcriptome 
profile would reflect potential physiological changes at 
the sample collection time. Additionally, the integration 
with other omics would enhance the scientific research 
process. Eventually this would translate into improved 
healthcare by monitoring the patient health status 
and by applying personalized and preventive treatments. 
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At first, one may think that this would increase the costs of 
the healthcare system since some of these omics assays are 
currently quite expensive. However, as has been reviewed 
in the “RNA‐Seq” section, this would especially help the 
understanding of complex diseases [35, 74, 75] and in the 
long term reduce the healthcare burden globally [73].

The successful integration of several omics approaches 
led to a better understanding of complex diseases. In this 
situation, one omics technology may be compensating 
some limitations of another omics approach. In the fol
lowing example genomics and transcriptomics data were 
combined. In this approach, the two technologies used 
for improving complex multifactorial pathologies were 
the analysis of RNA‐Seq combined with DNA sequenc
ing such as WGS or WES. In this setup DNA sequencing 
offers a very accurate detection of potential DNA variants, 
which is then complemented with the gene expression 
profile of RNA‐Seq. Using this approach Codina‐Solà 
et  al. [74] identified rare de novo mutations, inherited 
mutations including chromosomal abnormalities, and 
multiple hits in autism spectrum disorders (ASD). In this 
process, RNA‐Seq was crucial to identify low frequency 
and rare mutations that were initially missed in WES due 
to usual filtering such as intronic causative mutations. 
The functional consequences of some of these mutations 
that were identified due to the combination of WES and 
RNA‐Seq included aberrant transcripts, deregulated 
expression, allele‐specific expression, and nonsense‐
mediated decay [74]. In conclusion, integrative whole 
sequencing approaches such as WES and RNA‐Seq 
have proven to mutually increase the mutation detec
tion efficiency. They enable to detect rare inherited and 
acquired mutations including intronic mutations affect
ing transcript splicing, overall expression, and allelic 
expression. This strategy contributed in the assessment 
of risk factors in a complex and highly heterogeneous 
etiology such as ASD.

Sample availability is usually limited in the case of 
human tissue specimens for research purposes or for 
clinical applications. This makes the process of sample 
selection a key step for the correct understanding of 
 tissue‐associated biological processes. Blood samples are 
among other biofluids such as saliva, one of the easiest 
tissue samples to obtain [12]. Therefore, many studies 
have been performed with blood samples to detect bio
markers and molecular determinants. However, the dif
ferentially expressed transcripts detected in blood may 
be underrepresented or only detected in a later state [73]. 
Despite this limitation, there are some successful studies 
characterizing blood samples by transcriptomics in 
immunological diseases [6]. Other types of biofluids may 
also be easily obtainable, making them an interesting 
target source for many researchers that want to develop 
new diagnostic tools using these noninvasive tissue 

sources such as saliva or urine [12]. Other tissue sample 
types are either not that easily accessible such as the 
heart, liver, and other internal organ samples or com
pletely unavailable such as brain tissue. If sample avail
ability is scarce, it makes the switch toward whole 
transcriptome approaches even more necessary since all 
genes expressed in such samples would be measured at 
once. This would serve two purposes: first, perform the 
required diagnostics for the patient at the moment of the 
test, and second, provide a wider overview of the patient 
transcriptome that could be stored in a database for 
future research or develop new diagnostic applications. 
Using this approach, samples would be available to be 
further included in larger clinical studies that provide 
sufficient power with the collected samples [73]. These 
changes in diagnostic application workflows would 
certainly make a big difference for those diseases where 
sample numbers are a limitation for the design of a 
clinical trial, as well as provide enough time to collect 
samples that would more accurately represent popula
tion frequencies.

Nevertheless, if transcriptomics approaches are to be 
implemented in clinical applications, the quantity of 
available data would increase the need of data handling 
measures. High‐throughput applications can produce a 
tremendous amount of data, which is challenging to 
process, handle, and properly annotate with the purpose 
of further clinical interpretation. However, advances in 
computer technologies and databases as well as bioinfor
matics and available knowledge continuously improve. 
In the end, the objective of storing all these data and 
clinical results is to make it easier for clinicians to mine 
the databases with appropriate algorithms and make 
more accurate medical decisions. For this, comprehen
sive databases are required, which would store health 
records, variant calls, expression profiles, and all other 
patient‐related molecular information [73].

There are currently many databases that can provide 
comprehensive functional annotations such as the 
Catalogue of Somatic Mutations in Cancer (COSMIC) 
[76], which is a comprehensive collection of somatic 
mutations for human cancer, or the Leiden Open (source) 
Variation Database (LOVD) [77], which provides a tool to 
collect and display DNA variants. These databases may 
potentially facilitate the complex process of annotation of 
high‐throughput sequencing data. It is through the small 
effort of global sharing of particular findings that these 
databases are greatly improving over the years in quantity 
and quality of annotations. Other efforts are thrown 
into database collections of gene expression datasets 
such as the Expression Atlas [78]. In this case gene expres
sion profiles are publicly available and accessible, which 
provides information about different organisms, expres
sion patterns, and biological conditions, among others. 
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The Expression Atlas includes RNA‐Seq experiment data 
as well as microarray experiment data that can be reana
lyzed through their web portal [79]. There are other 
similar initiatives with a more focused character such as 
Nephroseq and Renal Gene Expression Database [80], 
which both center in collecting expression profiles related 
to human nephrology diseases. Please refer to the avail
able online resources for further details [81, 82]. 
Additionally, there is also the possibility of using publicly 

available RNA‐Seq and microarray datasets in combina
tion with clinical data. This is the case of the Gene 
Expression Omnibus (GEO) from NCBI, which offers an 
international repository of microarray and NGS datasets 
submitted by the research community [83]. With this 
type of initiatives, the research community may benefit of 
the work of other researchers that may increase the statis
tical power of analysis and certainly increase the accuracy 
of clinical diagnostics applications.
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MicroRNAs are short (18–23 nucleotides in length), 
noncoding, endogenous, single‐stranded RNA molecules 
involved in posttranscriptional regulation of gene expres
sion. Although discovered only two decades ago, these 
small RNA molecules are one of the “hottest” trends in 
biological research.

The discovery of the first miRNA took place in 1993. 
In that year, the two teams of Ambros and Ruvkun inde
pendently published complementary studies on a gene, 
called lin‐4 in Caenorhabditis elegans [1, 2]. Both teams 
identified that the lin‐4 gene produces a small transcript 
that does not encode a protein but negatively regulates 
the level of the LIN‐14 protein involved in the develop
ment of C. elegans [1, 2]. The team of Ambros deter
mined that the transcript of lin‐4 was complementary 
to a repeated sequence in the 3′ UTR of lin‐14 mRNA, 
proposing an antisense RNA–RNA mechanism of regu
lation [1]. In parallel, the team of Ruvkun reported 
that posttranscriptional control of lin‐14 mRNA by 
the formation of duplexes in the 3′ UTR leads to the 
downregulation of lin‐14 gene expression [2]. These two 
groups had identified the first miRNA!

Seven years passed until the identification of a second 
miRNA, let‐7 [3]. In 2006, the Nobel Prize in Physiology 
or Medicine was jointly given to Fire and Mello for their 
research in 1998 on the discovery of the silencing mech
anism of mRNA expression by small interfering RNA 
molecules, which are now known as the action mechanism 
of miRNAs. Since 2001, microRNAs or miRNAs have 
been shown to be involved in a variety of physiological 
functions and diseases and forced the scientific interest 
and research to evolve accordingly toward detecting and 
identifying these small molecules [4]. The continuously 
increasing number of reports on miRNAs, starting from 
some hundreds per year until 2007 and reaching approx
imately 7000 in 2013 and 2014 (PubMed search for 

“microRNAs” and “miRNA”), suggests their importance 
in physiology and disease. This increase is also the result 
of the more extensive use of next‐generation sequencing 
(NGS) technologies in combination with simplified 
extraction, quantification, and expression analysis meth
ods of miRNAs. Improved bioinformatics tools have also 
contributed to the number of newly identified miRNAs [5]. 
Today, the number of miRNA entries in miRBase (the 
first and largest database of miRNAs) in the last update 
of June 2014 (version 21.0) reached 28 645 miRNA 
entries when considering all species and 2 588 entries for 
human miRNAs only [6].

5.1  miRNA Biogenesis, Function, 
and Annotation

The biogenesis of an miRNA is initiated with the genera
tion of a so‐called primary miRNA (pri‐miRNA) [7]. This 
transcript originates from specific noncoding genes or 
from introns of coding genes in the form of a cistronic 
or  polycistronic transcript  [8]. In the canonical pathway, 
the pri‐miRNA exhibits a first cleavage at the flanking 
 transcript sequence by the Drosha/DGCR8 complex and 
reforms to the precursor miRNA (pre‐miRNA) with a char
acteristic hairpin loop structure (Figure 5.1). Alternatively, 
in the noncanonical pathway, the pre‐miRNA is released 
from the introns of the host mRNA transcript and bypasses 
the Drosha cleavage. Next in the non‐canonical pathway 
the mRNA transcript is processed by a complex called spli
ceosome to produce the “mirtron,” and next, the mirtron 
refolds to the typical pre‐miRNA hairpin form [8].

The next step includes the transfer of the pre‐miRNA 
from the nucleus to the cytoplasm via exportin‐5 in a 
Ran‐GTP‐dependent manner. Subsequently DICER and 
the HIV‐1 transactivating response (TAR) RNA‐binding 
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protein (TRBP) bind and cleave the double‐stranded 
pre‐miRNA, releasing the mature single‐stranded 
miRNA and loading it on the Argonaute2 (AGO2) pro
tein [9]. The miRNA strand with the less stable paired 5′ 
end is preferentially loaded into the AGO2 protein [10]. 
From this point, the mature miRNA is active. The other 
single‐stranded miRNA is usually degraded, but on 
some occasions it is also used in the same way as the 
mature single‐stranded miRNA [11]. Next, the RNA‐
induced silencing complex (RISC) is formed. The full 
composition of this RISC is still unknown, but the most 
important protein is represented by AGO2 [8]. AGO2 
belongs to the Argonaute (AGO) family composed of 
four member proteins. AGO2 binds directly to its small 
RNA partners and its function is similar to endonucle
ase‐mediated cleavage of RNA [10]. Other proteins 
identified to be part in the RISC are DICER, TRBP, pro
tein kinase R‐activating protein (PACT), and fragile X 

mental retardation‐related protein 1 (FXR1) [12, 13]. 
The RISC guides the miRNA to the mRNA target based 
on a 2–8 nucleotide sequence (also known as the seed) 
at the 3′ UTR of the target mRNA [14]. From this point 
in time, the miRNA initiates its biological function, 
which is to block the translation of the mRNA by two 
possible pathways: (i) in case of full complementarity of 
the miRNA and the 3′ UTR target, the mRNA is cleaved 
[9], or (ii) in case of partial complementarity of the 
miRNA and 3′ UTR target sequence, the GW182 pro
tein is recruited to the RISC interacting with AGO2 to 
aid in the target identification, leading to translation 
repression [15]. In any case the result is inhibition of 
gene expression. Interestingly, one miRNA gene can 
lead to the generation of more than one mature miRNA, 
and on the other hand, different miRNA genes can be 
clustered into so‐called miRNA families based on the 
miRNA sequence [16].
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Figure 5.1 mRNA biogenesis and function. (A) In the first step of miRNA biogenesis, miRNA is transcribed similar to mRNA transcription 
with the help of polymerase II or III and various transcription factors followed by precursor miRNA (pre‐miRNA) generation via a canonical 
and noncanonical pathway. (A1) Canonical pathway: miRNA is transcribed in a primary form (pri‐miRNA with a hairpin loop) and then 
spliced by the Drosha/DGCR8 complex to form the pre‐miRNA. (A2) Noncanonical pathway: A “mirtron” is generated from mRNA after 
splicing in a complex called spliceosome. Next, the mirtron reforms to the shape of a pre‐miRNA. (B) The pre‐miRNA is transferred from 
the nucleus to the cytoplasm with the help of exportin‐5 in a Ran‐GTP‐dependent manner. (C) In the cytoplasm the protein DICER 
together with TRBP cleaves the pre‐miRNA hairpin loop and releases the two strands. One strand will serve as the mature miRNA (18–22 nt 
length), while the other, in most cases, will be degraded. (D) The mature miRNA then binds to a protein complex including AGO2, forming 
the so‐called RISC. AGO2 then leads the miRNA to the mRNA target. (E) If the miRNA sequence is completely complementary to the 3′ UTR 
of the mRNA, it binds and AGO2 cleaves the mRNA, completely stopping the translation of the protein. (F) If the miRNA sequence is 
partially complementary with the mRNA’s 3′ UTR, GW182 is recruited in the RISC to aid with the connection and inhibit translation. AGO2, 
Argonaute 2; DGCR8, DiGeorge syndrome critical region 8; FXR1, fragile X mental retardation‐related protein 1; PACT, protein kinase  
R‐activating protein; RISC, RNA‐induced silencing complex; TRBP, HIV‐1 transactivating response (TAR) RNA‐binding protein. The picture 
was designed using Servier Medical ART (http://smart.servier.fr/servier‐medical‐art).



miRNA Analysis 69

5.2  Annotation of miRNAs

The nomenclature of miRNAs is complex. In 2003 
Ambros et  al. proposed guidelines for newly identified 
miRNA annotation [16]. These rules were applied later 
to miRBase and are followed until today for every new 
miRNA identified. In brief [17],

 ● mir and miR: A small (r) represents the pre‐miRNA, while 
the (R) represents the mature miRNA, for example, mir‐15 
is the pre‐miRNA‐15 and miR‐15 the mature miRNA.

 ● The three letters in front of the miR represent the origin 
of the species in which the miRNA was found, for exam
ple, hsa (Homo sapiens) and mmu (Mus musculus).

 ● The numbers to register the miRNAs are ascending. 
Different numbers are given when an miRNA has sig
nificant sequence differences. The accession number 
of each miRNA is the only unique identifier. Lin‐4 and 
let‐7 (lethal‐7) are an exception for historical reasons.

 ● The same miRNA in different species receives the same 
number to preserve homology among the database, for 
example, hsa‐miR‐16‐5p (human) is the ortholog of 
mmu‐miR‐16‐5p (mouse).

 ● Sequences with one or two different nucleotides are 
assigned with the same number but an additional letter to 
distinguish, for example, hsa‐miR‐15a and hsa‐miR‐15b.

 ● If the same miRNA is found in different loci of a chro
mosome, the difference is at the pre‐miRNA level, and 
a number is added to distinguish those, for example, 
hsa‐mir‐16‐1 and hsa‐mir‐16‐2.

 ● miR and miR*: The mature microRNA found from one 
arm of the hairpin is usually much more abundant than 
that found from the other arm [7], in which case an aster
isk following the name indicates the mature species found 
at low levels from the opposite arm of a hairpin. Recent 
studies however suggested that not in all cases the mature 
miRNA is released from the same arm [18], and as a 
result the suffix ‐5p or ‐3p is added to define from which 
arm of the pre‐miRNA the mature is originating.

 ● If miRNAs share the same sequence over a stretch of 
2–8 nucleic acids, they are derived from the same 
precursor and belong to the same cluster generating 
an miRNA family; for example, the mir‐15 family con
sists of miR‐15a and miR‐15b sequences, as well as 
miR‐16‐1, miR‐16‐2, miR‐195, and miR‐497.

5.3  miRNAs: Location, Stability, 
and Research Methods

5.3.1 miRNA Analysis and Tissue Distribution

Since miRNAs are basically transcribed the same way 
as mRNAs, miRNAs are expected to be expressed in 

every tissue. Numerous reports, using a variety of molec
ular biology methods, provide information about the 
expression levels of miRNAs in different tissues [19, 20]. 
In addition, most methods for extraction, quantification, 
and expression of miRNAs are highly similar to the 
methods used for DNA and mRNA analysis (real‐time 
qRT‐PCR, microRNA arrays, in situ hybridization, bead‐
based profiling, and NGS) [21, 22]. In addition, in silico 
analysis has been shown to be a useful tool for the 
prediction of the localization and tissue specificity of 
miRNAs by collecting information from many different 
tissues [23]. This analysis led to the suggestion that 
miRNAs distribute unequally in tissue and that some 
miRNAs can be listed as “tissue specific” and can be used 
as identifiers for these tissues, for example, miR‐122a for 
the liver, miR‐1 and miR‐133a for the heart and skeletal 
muscle, miR‐9 for the brain [23], and miR‐192 and 
miR‐194 for gastrointestinal organs and kidney [19].

5.3.2 miRNAs in Body Fluids

Since miRNAs are involved in many biological pathways 
and functions and found in all tissues, it is a reasonable 
assumption that they can also be found in body fluids 
and can represent changes in adjacent tissues. Indeed, in 
2009 Hanson et al. evaluated for the first time miRNA 
expression in five dried relevant body fluids including 
blood, saliva, semen, vaginal secretions, and menstrual 
blood. They were able to identify a number of miRNAs 
that could be used to distinguish between different fluid 
samples by monitoring differential expression levels of 
these miRNAs in these samples. These miRNAs are 
miR‐451 and miR‐16 for blood, miR‐135b and miR‐10b 
for semen, miR‐658 and miR‐205 for saliva, miR‐124a 
and miR‐372 for vaginal secretions, and miR‐412 (in 
combination with miR‐451) for menstrual blood [24]. 
Further studies by Weber et al. showed that miRNAs can 
be found in at least 12 different body fluids including 
milk, colostrum, saliva, seminal fluid, tears, urine, amni
otic fluid, bronchial lavage, cerebrospinal fluid, plasma, 
pleural fluid, and peritoneal fluid [25]. Other reports 
followed to confirm these findings and also suggest 
additional miRNAs as identifiers of these body fluids, 
such as miR‐185 and miR‐214 for menstrual blood; 
miR‐20a, miR‐126, and miR‐486 for blood; miR‐943, 
miR‐135a, miR‐888, and miR‐891a for semen; miR‐583, 
miR‐200c, miR‐203, miR‐205, and miR‐138‐2 for saliva; 
and miR‐617, miR819a, and miR‐124a for vaginal 
 secretions [26–28].

But how do these miRNAs end up in body fluids? 
MiRNAs are secreted from the cells in which they are 
produced and packed in microparticles such as microves
icles, exosomes, or apoptotic bodies and are also attached 
to RNA‐binding proteins (RBPs) or lipoprotein complexes 
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explaining their presence in body fluids [29] (Figure 5.2). 
Exosomes are the best studied miRNA vehicles. These 
vacuoles transfer cellular components between cells and 
promote cell‐to‐cell communication and interactions 
[30, 31]. Studies have shown the existence of exosomal 
transfer of functional mRNAs and miRNAs from one cell 
to another. One of the strongest arguments for the 
existence of this phenomenon is the study of Valadi et al. 
in which exosomes secreted by mouse mast cells trans
ferred into human mast cells produced mouse proteins 
in the human cells [32]. Except being the means of trans
port, exosomes, similar to the other miRNA carriers and 
binding proteins, also act as “bodyguards” of microRNAs 
by protecting them from RNAse activity (see following 
text). Studies reported that exosomal miRNAs are intact 
and protected from degradation rather than cell‐free 
miRNAs in, for example, urine, which are more likely to 
be degraded by RNAses [33, 34].

As mentioned, miRNAs can be protected and trans
ported by binding to proteins, allowing circulation in 
body fluids and cell‐to‐cell communication. In particu
lar, RBP AGO2 (Figure 5.2) was shown to be involved in 
miRNA transport in the circulation, which potentially 
leads to the transport of a functional miRNA‐induced 
silencing complex [35]. Another RBP with a similar 

action as AGO2 is nucleophosmin 1, which was found 
to carry miRNA in serum in humans and is possibly 
involved in cell‐to‐cell communication [36]. High‐ 
density lipoprotein (HDL) lipoproteins, surprisingly, 
were found to have a role in the transport of miRNAs in 
a similar way as RBPs [37]. Finally, circulating apoptotic 
cells seem to contribute to miRNA transport as well. 
MiRNAs are released in the circulation after apoptosis 
bound to the previously mentioned RBPs and can be 
absorbed by other cells and perform their function [38, 39].

MiRNAs can be found in urine. These urinary miR
NAs are attached to RBPs or contained in exosomes, 
making the urinary pool of miRNAs potentially suitable 
for detection and monitoring of both renal and nonrenal 
diseases [34, 40]. One point that needs to be highlighted 
is that miRNAs in urine are less abundant than in plasma 
or serum, and this is most likely due to higher RNAse 
activity in urine [34]. The urinary miRNAs, as potential 
biomarkers or pointing to potential therapeutic targets, 
could be useful in the treatment and the detection of the 
major and constantly rising worldwide health problem of 
kidney diseases [41]. The origin of urinary miRNAs is 
still not fully elucidated. Urinary miRNAs are likely to be 
shedded from cells all along the urinary pathway [38, 42]. 
Also, miRNAs could potentially be filtered from the 
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plasma, although the exosome size (30–100 nm) is at the 
limit value for glomerular filtration (fenestrations’ diam
eter is 60–80 nm) [43, 44]. A recent study has shown that 
exosomes can cross physiological barriers, such as the 
brain–blood barrier, despite their large size [45].

The role of urinary miRNAs is still unknown. Either 
urinary miRNAs can be considered as waste or miRNAs 
could use urine as a vehicle to move through the urinary 
tract and function in areas downstream from their site of 
production. Further research to answer these questions 
is needed.

5.3.3 Stability of miRNAs

Due to their small size and the protective mechanisms 
described earlier, miRNAs are quite stable [46, 47]. The 
stability of the intracellular mature miRNA has been 
shown to be regulated by the thermostability of the 
AGO2/miRNA interaction [48–51].

For research purposes, it is possible to extract miRNAs 
from biological samples stored at least up to one year 
under laboratory conditions (relatively constant humid
ity and ambient temperature, no UV exposure, and dust‐
free). MiRNAs extracted from such samples show no 
signs of degradation [28]. Plasma and serum miRNAs are 
stable for 24 h at room temperature and resist to eight 
cycles of freezing/thawing [52]. Further stability studies 
on plasma showed that exosomal miRNAs are more 
stable compared with plasma mRNA when storing the 
samples at 4, −20, and −80°C for 2 weeks, 2 months, 
3 years, and 5 years [53]. Similar observations hold for 
formalin‐fixed paraffin‐embedded (FFPE) tissue sam
ples, suggesting that miRNAs are more suitable than 
mRNAs as potential biomarkers [54]. This stability is 
an  important feature of miRNAs over mRNAs because 
in clinical practice the availability of sample storage at 
−20°C is significantly higher compared with −80°C.

Another field that needs more detailed investigation is 
the stability of urinary miRNAs, either free, protein‐
bound, or in exosomes. Few studies have examined this 
topic. One of the first studies that included the investiga
tion of the stability of miRNAs in urine was from Yun 
et al. They tested whether cell‐free miRNAs in urine are 
able to be used as prognostic and diagnostic biomarkers 
for bladder cancer. They showed that after seven freeze/
thaw cycles or after storing urine at room temperature 
for 3 days, miRNAs showed only minimal signs of degra
dation [55]. Other studies demonstrated successfully the 
stability of urinary miRNAs after, up to 10 freeze/thaw 
cycles, different storage temperatures between 4 and 
−80°C for short and long periods of time (between 5 days 
and 2 years) [56, 57]. This apparent stability of urinary 
miRNAs opens the window for multiple applications of 
miRNAs in research and in clinical practice.

Overall, the stability of miRNAs and their presence in 
nearly all tissues and body fluids have placed miRNAs in 
the center of attention. Circulating miRNAs have become 
the study material of choice as possible biomarkers and 
therapeutic targets of disease.

5.3.4 Methods to Study miRNAs

5.3.4.1 Sampling
High‐quality miRNAs can be extracted from a wide 
range of cells and tissue samples, such as cell lines and 
fresh or FFPE tissue samples as well as any kind of body 
fluid (plasma, serum, urine, etc.). Even if it was esti
mated that the miRNA fraction is about approximately 
0.01% of the total RNA mass, the technological progress, 
together with the aforementioned stability of the miR
NAs, yields in general enough miRNA material and of 
high quality for downstream studies (reverse transcrip
tion polymerase chain reaction (RT‐qPCR), microarrays, 
NGS, etc.) [58].

5.3.4.2 Extraction Protocols
miRNA extraction is quite straightforward, with minor 
protocol modifications for different tissues and body 
fluids. The progress in technology reduced the amount 
of starting material needed to perform miRNA expres
sion analysis from 50 ml of urine or plasma to 0.1–0.5 ml. 
For example, as little as 200 µl of urine can be used for 
(semi)quantitative RT‐PCR analysis [59]. The available 
commercial miRNA extraction kits are suitable for all 
biological samples following similar protocols and offer 
two options for the isolation of the miRNAs from total 
RNA after the use of a lysis buffer and protein dena
turation using guanidinium isothiocyanate: (i) The first 
option includes the use of affinity columns in which 
miRNAs bind to the stationary phase, while larger 
 molecules like DNA or RNA and impurities (proteins, 
lipids) are washed out and purified miRNAs are eluted 
from the columns. In this category the available com
mercial kits are “miRNeasy” from Qiagen (one of the 
most used), “Norgen” from Biotek Corp., “miRCURY” 
from Exiqon, and “mirVana” of Life Technologies. 
(ii) The second option is to perform RNA precipitation 
using organic reagents (ethanol, isopropanol) and in 
some cases acidic phenol/chloroform, leading to the 
partitioning of miRNA into aqueous supernatant in 
order to separate the RNA from the DNA and the 
other molecules (“TRIzol” from Life Technologies and 
“Epicentre” from Illumina) [59]. The resulting miRNA 
samples can be diluted in water with diethyl pyro
carbonate or elution buffer (most usually Tris‐EDTA 
buffer) and stored at −20 or −80°C. The extracted 
miRNA represents approximately 0.01% of the total 
RNA [58].
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5.3.4.3 miRNA Detection Techniques
The techniques that are being used in miRNA expression 
analysis are similar to the techniques used in gene 
expression analysis with some modifications to adjust to 
the size and quantity of miRNAs.

Initially, miRNA detection and study was carried out 
using Northern blot analysis [1]. In Northern blotting, 
miRNAs are separated by electrophoresis, transferred to 
nitrocellulose membrane, and visualized with 32P‐labeled 
DNA probes complementary to the miRNAs (e.g., rep
resenting the mRNA target sequences). This technique 
enables a quantitative assessment of mature miRNAs—
pri‐miRNAs and pre‐miRNAs—and also the complexes 
of the miRNAs with Drosha, DICER, and RISC due to 
their different electrophoretic motilities [60–62]. The 
drawbacks of this approach include low sensitivity in 
the nM–pM range [63], low throughput, and the require
ment for high miRNA input (around 5–50 µg of total 
miRNA) in order to get a signal [64]. A major issue in 
Northern blotting is the use of radioisotopes that require 
careful handling and generate radioactive waste. Efforts 
have been made to change the radioisotopes with user 
and environmentally friendly reagents, for example, 
digoxigenin (DIG)‐labeled oligonucleotide probes con
taining locked nucleic acids (LNA) [65] or carbodiimide‐
mediated cross‐linking [64], but in any case the sensitivity 
is lower than with radioisotopes.

The gold standard technique in miRNA research is the 
quantitative RT‐qPCR. RT‐qPCR is well known and used 
for many years in mRNA research and brings the advan
tages of sensitivity, low cost, precision, reproducibility, 
and simplicity to the miRNA research [66]. The difficulty 
RT‐qPCR faces in the study of miRNAs is their small 
size. The mature miRNAs with length 18–22 nt have 
approximately the size of the primers in an mRNA PCR. 
To deal with this problem, there are two kinds of RT 
primers for the generation of cDNA from miRNA: miR‐
specific primers and universal primers. In the first case, 
the primers have a stem‐loop structure in their 5′ end 
and an antisense sequence on the 3′ end against the 
miRNA of interest. This method, except capturing only 
the miRNA of interest, distinguishes the mature miRNA 
from pri‐ and pre‐miRNA [58]. The universal primer 
method uses either polyadenylate polymerase (PAP), 
which adds a poly‐A tail to the extracted miRNA, or T4 
ligase, which adds a sequence to the extracted miRNA 
and then follows the normal RNA procedure: the synthe
sis of the cDNA together with the universal RT primers 
[58]. Next, qPCR is as common and straightforward as 
for cDNA generated from mRNA with the use of TaqMan 
or SYBR Green probes. In order to detect specifically the 
mature miRNAs, the use of LNA‐modified primers for 
qPCR is required (like miRCURY LNA qPCR platform 
from Exiqon) [21]. Several manufacturers, including 

Applied Biosystems, Exiqon, Fluidigm, and SA Biosystems, 
offer qPCR kits that can assess hundreds of microRNAs 
in parallel, and some offer customizable assays [67].

The major issue right now in RT‐qPCR analysis of 
miRNAs is the lack of standardized normalization meth
ods. Most groups use as housekeeping genes noncoding 
small nuclear (sn)RNA (U6, SNORDs) or miRNAs that 
are reported to be expressed at a stable level within the 
tissue or body fluid under study [68]. RT‐qPCR will 
remain for many years to come as the easiest method of 
detecting and validating miRNAs in samples after large‐
scale nontargeted screening using microarrays or NGS.

One of the technologies that made a major contribu
tion in miRNA research, and still does, is microarrays. 
Microarray platforms are designed with fixed probes 
(e.g., representing the mRNA target sequences) capable 
to capture labeled miRNAs via hybridization, enabling 
the detection of miRNAs present in a sample by fluores
cence [69]. The relatively low cost, reproducibility, 
sensitivity, and specificity are some of the advantages of 
microarrays. In addition, this technology was one of the 
first to allow the comparison of the relative expression of 
multiple miRNAs simultaneously in a semiquantitative 
manner (e.g., healthy vs. disease). However the short
comings are that the fixed probes do not allow the detec
tion of novel miRNA molecules and that the hybridization 
between the probes and the labeled molecules is not 
always efficient due to low affinity and needs an addi
tional validation step to confirm the findings using, for 
example, RT‐qPCR [21]. The introduction of LNA into 
the microarray probes has partially solved this hybridiza
tion problem, setting an equal melting temperature (Tm) 
among the probes [68]. Microarray protocols require 
enzymatic or chemical labeling of the samples. In order 
to remove the dye labeling bias and differences due to 
hybridization bias and scanning, it is necessary to remove 
background signals and perform noise correction and 
signal normalization [58]. Different methods of back
ground correction and normalization have been pro
posed: global mean/median, linear loess, robust linear 
loess, quadratic loess, robust quadratic loess, rank invar
iant, and the most frequently used and stable quantile 
normalization [70]. Advice from the experts is suggested 
to choose the most suitable method on a case‐by‐case 
basis. Label‐free assays like stacking‐hybridized univer
sal tag (SHUT) [71] and antibody‐like protein‐based 
assay with PAZ domain [72] have been introduced in an 
attempt to minimize the problems derived from labeling 
and simplify the data analysis process. Freely available 
packages in “R‐Bioconductor” are available for microarrays 
analysis based on the “limma” package. Also, another free 
platform, Gene ARMADA [70], offers a user‐(biologist‐) 
friendly environment for microarray data processing for 
users not versed in programming language. Besides the 
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drawbacks discussed earlier, microarrays will remain as a 
reliable technique for analyzing and comparing multiple 
miRNAs in a fast, simple, and cost‐effective manner. It is 
important to note that this technology is a technology 
used for discovery of miRNAs associated with a specific 
condition and the results from microarrays should always 
be validated before inferring biological conclusions.

Nowadays, NGS is becoming the leading technology 
in miRNA research. The ability to detect with high sen
sitivity known and unknown miRNAs, without relying 
on  prefixed probes, and isoforms of the miRNAs (pri‐ or 
pre‐ or mature miRNAs), without the need of labeling, 
places NGS on the top of the list to use in research [73]. 
However, NGS demands highly trained personnel for 
performing the experiment and the downstream data 
analysis. The data produced are large and complex, but 
as the technology progresses, novel reliable analytical 
packages including “DEseq” from “R‐Bioconductor” 
become available. The cost of NGS is also an issue but 
is getting closer to the microarray costs [21]. RNA‐seq 
(as deep sequencing NGS for RNA is called) bases the 
detection and the calculation of the abundance of an 
RNA species on the percentage of total “reads” (or, in 
some cases, total mappable reads) obtained in a sample. 
A read is being defined as a data string of A, T, C, and G 
bases corresponding to a fragment of the sample DNA. 
The higher the number of reads of a specific DNA frag
ment, the higher its abundance in the sample. The com
parison between different samples is made by examining 
the overall frequency distribution of miRNA reads 
between the samples. The difference in the distributions 
represents the differential expression results that, as in 
microarray experiments, need to be validated with RT‐
qPCR [69]. Currently, Illumina’s HiSeq 2500 and SOLiD 
are the leaders in NGS technologies. Illumina technology 
is based on the “sequencing‐by‐synthesis” method: a 
signal is detected every time a nucleotide is attached to 
the under construction single‐stranded cDNA [21, 73]. 
NGS technologies are the present and the future of 
miRNA research (and in general for genomics and 
transcriptomics) and will surely massively expand the 
available data and our understanding of miRNA biology 
once they become more accessible in terms of cost and 
data analysis.

New technologies are being developed for miRNA 
detection that can potentially complement the “tradi
tional” techniques. Such techniques are called biosensor 
techniques (BTs). The difference between the use of BTs 
and the aforementioned technologies is the rapid and 
highly sensitive results from complex samples such as 
blood and urine, through the use of a selective molecular 
probe, avoiding any need for polymerase‐based amplifi
cation steps [63]. A biosensor is defined as a device for 
quantitative analytical information via the use of a 

biorecognition element in direct contact with a trans
duction element [74]. A DNA probe of complementary 
sequence to the miRNA target is the selective biorecog
nition element in miRNA biosensors, and the DNA 
probe hybridizes with the miRNA target through changes 
in a measurable output signal [63]. Various miRNA bio
sensor designs exist based on alternative transduction 
mechanisms, including electrochemical [75], electrome
chanical [76], and optical‐based detection [77], each of 
which has achieved femtomolar sensitivity levels to date, 
with multi‐log dynamic range and short time to results. 
Although different in appearance, they share the defining 
feature of a biosensor, an integrated molecular recogni
tion agent and transduction element [63].

One final technology worth mentioning is NanoString 
nCounter system [78]. This method was firstly designed 
to capture mRNA transcripts, but now miRNA sequences 
can also act as a guide for adjacent hybridization of a 
sequence‐specific capture probe. This probe is labeled 
with biotin and a reporter probe labeled with a unique 
four‐color, seven‐position barcode. The hybridized con
structs are purified and bound to a streptavidin‐coated 
slide. Afterward, a voltage is applied to elongate the 
molecules, which allows for the digital imaging and 
counting of the uniquely barcoded miRNA targets.

All technologies have their advantages and disadvan
tages, and a user must take under consideration all 
parameters before choosing the most suitable one. 
Sensitivity, cost, time to results, and data processing are 
some of the most important parameters to consider. 
Even though NGS is winning the race of the most robust 
method for detection and discovery of new miRNAs, 
validation of findings with other technologies is currently 
mandatory. Table  5.1 summarizes the features of the 
most important and popular detection techniques.

5.3.4.4 Data Processing and Molecular Integration
The difficulty in correlating miRNA expression with 
mRNA targets for clinical applications is the fact that 
miRNAs in physiological and pathological conditions 
control more than one mRNA (tens, even hundreds) and 
that one mRNA can be controlled by more than one 
miRNA [79]. The major issue in miRNA studies is to 
identify the targets of the miRNAs and narrow the options 
to the most important and relevant to the specific case.

Because the in vitro and in vivo discovery of the 
real‐life targets of miRNAs is a challenging and time‐
consuming procedure, web tools have been designed to 
tackle this problem and produce lists of the possible 
targets. The first bioinformatic approach on this subject 
was developed by Eric Lai in 2002 [80]. Lai compared the 
sequence of a subset of miRNAs with the K box and Brd 
box motifs that were previously shown to mediate nega
tive posttranscriptional regulation. He determined that a 
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Table 5.1 miRNA detection methods.

Method Principle Advantage Disadvantage Variants

Northern 
blot

Visualize of the miRNA 
by electrophoresis with 
32P‐labeled DNA probes

 ● Quantitative detection 
of mature miRNA, 
primary miRNA and 
precursor miRNA and 
miRNA complexes with 
Drosha, DICER and 
RISC

 ● Low sensitivity
 ● Low throughput
 ● Need of high RNA input

(DIG)‐labeled oligonucleotide 
probes with LNA
EDC‐mediated cross‐linking
LED
DSLE

RT‐qPCR The extracted miRNAs 
are converted to the 
complementary DNAs 
generating cDNA 
followed by the PCR 
protocol with specific 
primers of interest

 ● Sensitivity
 ● Specificity
 ● Reproducibility
 ● Low cost
 ● Simplicity
 ● Fast

 ● Lack of standardized 
normalization molecules

 ● Depends on purity and 
quality of RNA input

 ● Demanding design of the 
primers to deal with the 
small miRNA size

 ● miRNA specific or universal 
primers

 ● TaqMan probe or Sybr 
Green

Microarrays Hybridization of the 
target miRNAs to the 
complementary 
immobilized probes 
and detection via 
fluorescence

 ● Parallel analysis of 
hundred miRNAs in a 
single sample

 ● Easy, straightforward 
and automated analysis,

 ● Short turn‐around time
 ● Suitable for comparison 

between two conditions

 ● Prefixed probes
 ● Not possible to detect new 

molecules
 ● Potential hybridization 

bias
 ● Semi‐quantitative method
 ● Limited dynamic range

 ● ‐5′ hairpin
 ● SHUT
 ● Label‐free PAZ‐dsRBD 

method
 ● LASH

Next 
generation 
sequencing 
(NGS)

Massively parallel 
sequencing of millions 
of fragments of DNA 
from a single sample

 ● Suitable for detection of 
new molecules and 
miRNA heterogeneity,

 ● Increased dynamic range 
and sensitivity

 ● Size of data files
 ● Complex data analysis
 ● Long time
 ● Costly

 ● Semiconductor sequencing 
(Life Technologies‐Ion 
Torrent)

 ● Pyrosequencing 
(Roche—454)

 ● Sequencing by ligation 
(Life Technologies—SOLiD)

 ● Reversible terminator—
sequence by synthesis 
(Illumina ‐Solexa)

 ● Single‐molecule real‐time 
DNA sequencing by 
synthesis (Pacific 
biosciences—PacBio)

Biosensor 
techniques

A biorecognition 
element (a DNA probe 
complementary to the 
miRNA of interest) is in 
direct contact with a 
transduction element

 ● High sensitivity
 ● Very fast
 ● Label‐free protocols

 ● Hybridization bias
 ● Not useful for multiplexing
 ● Mass transfer challenge
 ● Reliability of 

measurements

 ● Electrochemical
 ● Electromechanical
 ● Optical‐based

NanoString 
nCounter

Molecular “barcodes” 
and microscopic 
imaging are used to 
detect and count up to 
several hundred unique 
transcripts in one 
hybridization reaction

 ● Multiplex detection
 ● Direct digital detection
 ● No need for 

amplification
 ● High specificity

 ● Semi‐quantitative
 ● Not suitable for detection 

of new molecules
 ● limited dissemination of 

the instrument
 ● Need for increased 

open‐source software tools 
for data analysis

None

DIG, digoxigenin; EDC, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide; DSLE, DIG‐labeled, splinted‐ligation and EDC cross‐linking method; 
LASH, ligase‐assisted sandwich hybridization; LED, LNA modified probes, EDC crosslinking and DIG‐labeled); LNA, locked nucleic acids; 
PAZ, Piwi/Argonaute/Zwille; RBD, RNA binding protein; RT‐qPCR, reverse transcription—quantitative polymerase chain reaction; SHUT,  
stacking‐hybridized universal tag.
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series of eight nucleotides in the beginning of an miRNA 
had perfect complementarity to the motifs, concluding 
that this sequence is responsible for the posttranscrip
tional regulation mediated by miRNAs. This eight‐
nucleotide sequence is now known as the seed of an 
miRNA and is the main area responsible for miRNA 
function. Nowadays the algorithms in the available web 
tools that predict possible miRNA targets focus their 
search on four basic parameters:

1) Seed matching: As mentioned earlier, the seed match
ing refers to the complementarity of the first 2–8 
nucleotides of an miRNA in the 5′ end to the 3′ UTR of 
the mRNA target. It is the basic parameter that most 
(if not all) tools take under consideration. But perfect 
complementarity is not always observed. The main 
types of seed matching include 6 mer (complementary 
for 6 nucleotides), 7 mer (complementary for 7 nucleo
tides), and 8 mer (perfect complementary) [81].

2) Conservation of a sequence across different species: 
The maintenance of the seed region of an miRNA 
among species enforces the proof of the existence of the 
seed region‐miRNA and reduces the number of false 
positive predictions based on the seed sequence [82].

3) Thermodynamic stability of the miRNA–RNA duplex: 
The free energy (Gibbs energy, ΔG) is a measure of 
the stability of a system. Highly negative ΔG values 
characterize very stable RNA complexes. By predict
ing the ΔG between an miRNA and its candidate tar
get, it is possible to predict the stability of the duplex 
and conclude if this complex can form [81]. Also, the 
energy needed for the unfolding of the secondary 
structure of the mRNA allowing the accessibility to 
the miRNA [83] can be an additional parameter to 
consider [81].

4) Multiple target sites in the 3′ UTR of the mRNA and 
possible sites in the coding regions: Studies have 
shown that in the 3′ UTR of an mRNA, there are mul
tiple target sites for one miRNA [84]. The different 
algorithms allow analysis of mRNAs with multiple 
predicted sites for the same miRNA, leading to more 
reliable results.

Many web tools are available, each with a different 
algorithm for calculating the predicted targets of miR
NAs, recently reviewed in Ref. [81]. One of the first web 
tools to identify miRNA targets is miRANDA [85]. Even 
if this tool lacks updates (according to the website), it is 
still very useful. Using a machine learning approach 
(mirSVR) [86], miRANDA suggests the targets but also 
scores them according to the effect an miRNA may have 
on the target. Another frequently used web tool (and one 
of the first to predict human targets) is DIANA‐microT‐
CDS [87]. DIANA provides information on the predicted 
target location (chromosome, location of the binding 

point on the transcript), binding type according to the 
number of nucleotides matching (8 mers, 7 mers, etc.), a 
correlation score, degree of conservation among species, 
and links to databases such as Ensembl, miRBase, and 
PubMed. Finally, a third popular targeting web tool is 
TargetScan [88–91], which is easy to use and actively 
maintained.

Except for web tools that predict miRNA targets, the 
existence of three databases that contain information on 
experimentally validated miRNA targets is worth men
tioning. These databases contain information extracted 
from citations where a well‐documented interaction of 
an miRNA–mRNA target using methods including lucif
erase assays, NGS, microarrays, and qPCR Western and 
Northern blot was used 26286669. MirRecords, last 
updated in 2013, hosts 2705 records of interactions 
between 644 miRNAs and 1901 target genes in 9 differ
ent species. Among these records, 2028 were curated 
from “low‐throughput” experiments [92]. miRTarBase 
last updated in September 2015 includes approximately 
5000 articles that describe around 3700 miRNAs and 
366.000 miRNA interactions validated with reporter 
assays, Western blots, NGS, microarrays, and other 
technologies (the 348.000 interactions are the result of 
NGS technologies, like CLIP‐seq, and are considered as 
“less strong evidence”). The search for an miRNA and its 
interaction in MiRTarBase offer multiple options and 
information on the miRNA and the target gene, how the 
validation was performed, and the corresponding 
publications as well as information on the expression, 
sequences, and molecular networks [93]. StarBase is a 
database for decoding Pan‐Cancer and Interaction 
Networks of long noncoding RNAs (lncRNAs), miRNAs, 
competing endogenous RNAs (ceRNAs), RBPs, and 
mRNAs from large‐scale Cross‐linking immunoprecipi
tation (CLIP‐Seq) data originating from HITS‐CLIP, 
PAR‐CLIP, iCLIP, and CLASH on more than 6000 sam
ples and 14 cancer types [94, 95]. Finally, TarBase is part 
of the DIANA Tools project. TarBase v7.0 provides more 
than half a million miRNA–gene interactions curated 
from published experiments on 356 different cell types 
from 24 species with detailed metadata. DIANA‐TarBase 
v7.0 shows information about positive or negative exper
imental results, the utilized experimental methodology, 
and experimental conditions including cell/tissue type 
and treatment and also information on the binding site 
location, as identified experimentally as well as in silico, 
and the primer sequences used for cloning experiments 
[96]. The combination of the prediction tools with the 
experimentally validated targets databases offers in 
general a good starting point in evaluating new datasets. 
Still, the experimental validation of the possible miRNA 
targets remains the most reliable proof of direct connec
tion between miRNA and mRNA. Tables 5.2 and 5.3 



  Table 5.2    Available web‐tools for  miRNA  target prediction. 

Web‐tool name Description Category Organisms Calculation features    

miRanda,  http://www.
microrna.org/ 

Detects the maximum complementary between the 3 ′ ‐UTR 
and the miRNA, together with the binding energy and of the 
mRNA‐miRNA duplex and the evolutionary conservation

Seed‐based All Seed match, conservation, and 
free energy  

miRanda‐mirSVR,  http://www.
microrna.org/ 

Provides a score to represent the effect of a miRNA on the 
expression of the target gene

Seed‐based Humans, rats, mice, 
flies, and worms

Seed match, conservation, free 
energy, site accessibility  

TargetScan,  http://www.
targetscan.org 

Identifies the 8 mer, 7 mer and 6 mer sites plus mismatches in 
conserved pairing at 3 ′ ‐UTR and centered sites. Scores 
inform about various features of the miRNA‐mRNA binding

Seed‐based Mammals, flies, and 
worms

Seed match and conservation  

DIANA‐microT‐CDS,  http://
www.microrna.gr/microT‐CDS 

Recognises miRNA target in both 3 ′ ‐UTR and coding 
sequences (CDS). Provides a score of prediction confidence, 
together with multiple information on the target site and 
binding type

Seed‐based/
machine learning

Humans, mice, 
flies, and worms

Seed match, conservation, free 
energy, site accessibility, target‐
site abundance  

MirTarget2 or miRDB,  http://
mirdb.org 

Predicts miRNA targets by learning the miRNA‐mRNA 
binding features from high‐throughput sequencing 
experiments

Machine learning Humans, mice, rats, 
dogs, and chickens

Seed match, conservation, free 
energy, site accessibility  

RNA22‐GUI,  https://cm.
jefferson.edu/rna22v1.0/ 

Uses patterns to identify target islands on the on the mRNA 
target based on the conserved miRNA sequence and free 
energy of the predicted bond

Pattern‐based Humans, mice, 
flies, and worms

Seed match and free energy  

TargetMiner,  http://www.isical.
ac.in/~bioinfo_miu/
targetminer20.htm 

The prediction is based on a learning process via positive and 
negative miRNA—mRNA datasets

Machine learning Any Seed match, conservation, free 
energy, site accessibility, target‐
site abundance  

PITA,  http://genie.weizmann.
ac.il/pubs/mir07/ 

The prediction is based on the accessibility of the target site Target structure Humans, mice, 
flies, and worms

Seed match, conservation, free 
energy, site accessibility and 
target‐site abundance  

RNAhybrid,  http://bibiserv.
techfak.uni‐bielefeld.de/
rnahybrid/ 

Based on favourable hybridization sites avoiding 
intramolecular duplexes

Thermodynamics Any Seed match, free energy, target‐
site abundance  

miRGate,  http://mirgate.bioinfo.
cnio.es/miRGate/ 

A database of miRNAs and mRNA target sites which 
calculates the prediction by the combination of other target 
prediction tools (miRanda, PITA, RNAHybrid, Microtar, 
TargetScan)

Multiplex 
approach

Human, mice, rats Seed match, conservation, free 
energy, site accessibility, target‐
site abundance  

miRWalk 2.0,  http://www.umm.
uni‐heidelberg.de/apps/zmf/
mirwalk/index.html 

Hosts miRNA—target interactions based on seed matching 
and offers a comparison between 13 other available 
prediction web‐tools

Seed‐based Human, mice, rats 
and all transcripts 
and mitochondrial 
genomes

Seed match and conservation
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display a list of prediction and validated target web tools 
with their most prominent features.

5.3.4.5 In Vitro Target Validation
Currently, in vitro studies are the gold standard for 
validating miRNA targets and monitoring any changes 
of the target gene’s expression due to the action of the 
miRNA. The principle behind these cellular assays is that 
loss or gain of function of specific miRNAs is linked to a 
corresponding change in the expression of a potential 
target. This is achieved mainly through artificial manip
ulation of the miRNA concentration with the use of 
either double‐stranded miRNA mimics or miRNA inhib
itors and afterward by investigating the effects on the 
expression of possible targets of these miRNA sequences. 
MiRNA mimics are artificial, chemically modified 
miRNA‐like small RNAs with the ability to mimic the 
function of an miRNA guide strand while bypassing the 
maturation steps of Drosha and DICER of endogenous 
miRNAs and causing a rapid decrease in the expression 
of the potential target mRNA [97]. On the other hand, 
miRNA inhibitors act by binding to mature miRNAs and 
block their activity. Figure  5.3a and b summarizes the 
actions of antagomirs and miRNA mimics. The most 
used and promising miRNA inhibition approaches are 
anti‐miRs and miRNA sponges [98, 99]. Both bind to 
the miRNA target, preventing it from connecting to 
the mRNA in the RISC and thus enabling the transla
tion of the mRNA. Cross‐linking immunoprecipitation 

(CLIP)‐based approaches study the interaction of 
miRNA–mRNA–AGO protein and allow to verify the 
effect of over‐ or underexpression of the miRNAs on 
their targets [100].

One of the first methods described was based on 
co‐immunoprecipitation of tagged AGO protein (the 
main protein of the RISC that connects to the miRNA–
mRNA duplex) with miRNAs and mRNAs [101–103]. 
Quantitative analysis of miRNAs and mRNAs with 
microarrays or NGS after treating cells with miRNA 
mimics/inhibitors can provide a panel of the affected 
mRNAs and thus possible direct targets. A novel 
approach is high‐throughput sequencing of RNA iso
lated by cross‐linking and immunoprecipitation (HITS‐
CLIP). HITS‐CLIP uses UV light to cross‐link or freeze 
RISC including miRNA–mRNA–AGO2, followed by 
immunoprecipitation and sequencing of isolated miRNA 
and mRNA [104]. A modification of this technique is 
photoactivatable ribonucleoside‐enhanced cross‐linking 
and immunoprecipitation (PAR‐CLIP). PAR‐CLIP dis
plays more efficient cross‐linking and RNA recovery. 
However, this approach uses live cells that need to be 
supplemented with the nucleoside analog 4‐thiouridine 
(4SU) that is incorporated into nascent mRNAs; thus it 
cannot be applied to tissue samples [105]. Both tech
niques have helped significantly in the identification of 
the genuine miRNA targets [106].

Alternatively high‐throughput approaches have con
tributed to the identification of potential miRNA targets. 

Table 5.3 Available web‐tools for miRNA target validation.

Web‐tool name Species included Description

mirRecords, http://c1.accurascience.
com/miRecords/

9 species including 
human

Contains manually curated experimental evidence for 2705 records 
of interactions between 644 miRNAs and 1901 target genes

StarBase, http://starbase.sysu.edu.cn/ 14 cancer types 
(human, mouse, 
C. elegans)

Large‐scale CLIP‐Seq data originating from HITS‐CLIP, PAR‐
CLIP, iCLIP and CLASH on more than 6000 samples

DIANA—TarBase, http://diana.imis.
athena‐innovation.gr/DianaTools/
index.php?r=tarbase/index

24 species including 
human

High quality manually curated experimentally validated 
miRNA : gene interactions, enhanced with detailed meta‐data.

miRTarBase, http://mirtarbase.mbc.
nctu.edu.tw/index.php

18 species including 
human

Data for experimental miRNA—target interactions collected from 
literature from reporter assays, western blot, northern blot, RT‐
qPCR, microarrays, SILAC, NGS

miRWalk 2.0, http://www.umm.uni‐
heidelberg.de/apps/zmf/mirwalk/
index.html

15 species including 
human

Experimentally verified miRNA interaction information associated 
with genes, pathways, organs, diseases, cell lines, OMIM disorders 
and literature on miRNAs. Around 668.000 interactions

PhenomiR 2.0, http://mips.helmholtz‐
muenchen.de/phenomir/

Human and mice Manually curated database with information about differentially 
regulated miRNA expression in diseases and other biological 
processes

miR2Disease Base, http://www.
mir2disease.org/

Human A manually curated database that provides a comprehensive 
resource of miRNA deregulation in various human diseases. Hosts 
349 miRNAs related to 163 diseases
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Figure 5.3 (a) Antagomir function. The normal pathway of the miRNA biogenesis and action is shown in summary in A, A1, B1, A2, and A3 
with the final result to be the suppression of gene expression. With the addition of the antagomirs (B2), the action of the miRNAs is 
inhibited. Antagomirs bind in a complementary manner to the miRNAs, leading to translation of the targeted mRNA (B4). (b) miRNA mimics 
function. The normal pathway of the miRNA biogenesis and action is shown in summary in A, A1, and C1. AGO2 molecules are available in 
excess to any mature miRNA and complete its function (A2 and A3). With the addition of the miRNA mimics (C2), the free AGO2 proteins are 
capable to bind to more miRNAs than normal, leading to additional inhibition of translation of the mRNA target molecules.
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Microarray profiling of mRNAs or RNA‐seq allow 
studying changes in mRNA expression in cells treated 
with a specific antagomir or mimic miRNA [107]. 
Quantitative proteomic analysis as a high‐throughput 
method has also been used including stable isotope 
labeling with amino acids in culture (SILAC) [108] and two‐
dimensional difference in‐gel electrophoresis (2D‐DIGE) 
of samples with modified miRNA expression [109]. 
Targeted mass spectrometry‐based strategies are also 
starting to claim their place as quantitative method for 
observing targeted proteins (selected reaction monitor
ing/multiple reaction monitoring (SRM/MRM)) [110] 
and can be used to monitor the expression of particular 
miRNA targets. The disadvantage of these proteomics 
approaches is that they cannot determine whether the 
observed changes in the abundance of a protein are due 
to direct or indirect miRNA targeting. Bioinformatics 
can help in detecting direct miRNA targets by compar
ing the differentially expressed proteins with the seed 
region of the miRNA under study if there is significant 
complementarity and the target gene expression is 
validated by RT‐qPCR, Western blotting, and immuno
histochemical analysis, which increases the validity of 
the existence of an miRNA–mRNA pair [110].

Another target validation method is based on the lucif
erase assay. In brief, the potential miRNA target site is 
cloned and added to the open reading frame of a reporter 
gene, for example, luciferase of Renilla or firefly. Next 
the recombinant plasmid is transfected into mammalian 
cells together with a mimic miRNA, the cells are incu
bated for 24–48 h, and then the luciferase activity or 
fluorescence intensity is measured. If the target site of 
the mRNA is a valid target for the miRNA under study, a 
reduced signal intensity compared with control plasmid 
will be observed [82].

An interesting alternative method on target detection 
was proposed by Vatolin et al. [111]. Instead of trying to 
find the mRNA expression changes of the mRNA seeds 
complementary to the miRNA of interest, Vatolin et al. 
used the sequence of the miRNA to generate primers via 
reverse transcription matching of the mRNA targets. 
These primers were subsequently used to generate 
cDNA from the mRNA of freshly prepared cytoplasmic 
extracts, creating a 3′‐cDNA–miRNA‐5′ hybrid mole
cule. With this hybrid as cDNA primer, it was possible to 
initiate the synthesis of detectable cDNA from a RNA 
sample extract and amplify the possible RNA target of 
the miRNA of choice. Sequencing of the cDNA allows 
identification of the specific miRNA target.

Biotin‐tagged miRNA is another biochemical method 
for enrichment of miRNA targets. It was first introduced 
by Orom and Lund [112]. In this approach, biotinylated 
synthetic miRNA is transfected into cells followed by 
purification of miRNA–mRNA complexes connected to 

the seed sequence with streptavidin‐agarose beads. A 
similar method is based on DIG‐labeled synthetic miR
NAs in combination with anti‐DIG agarose beads [113].

Finally, methods designed to capture the miRNA‐
mediated cleavage products have been developed based 
on RNA ligase‐mediated 5′ rapid amplification of cDNA 
ends (RLM‐RACE) [114]. 5′ RLM‐RACE is a PCR‐based 
technique, whereby an RNA adapter is ligated to the free 
5′ phosphate of an uncapped mRNA produced from, 
among other nucleolytic activities, Argonaute2‐directed 
mRNA cleavage. The ligation product can be reverse 
transcribed using a forward primer directed against 
the linker and a gene specific reverse primer that is 
subsequently PCR amplified, cloned, and identified by 
sequencing [115]. Next‐generation RLM‐RACE uses 
the parallel analysis of RNA ends (PARE) that offers a 
genome‐wide identification of the miRNA‐induced 
cleavage products. The major modification, compared 
with the original method, is the addition of a MmeI 
restriction site at the 5′ RNA adapter, which after reverse 
transcription and cDNA synthesis is digested with 
MmeI, leaving as result 20–21 nt tag sequences attached 
to the adapter. The next step is to ligate a DNA adapter to 
the 3′ end of the tag and amplify the target sequence 
using PCR and 5′ and 3′ adapter‐specific primers. Finally, 
the tags are analyzed with high‐throughput sequencing 
to reveal the corresponding target genes and infer regu
latory miRNAs [116, 117].

The previous summary of the key assays to determine 
miRNA targets shows that only a combination of meth
ods will yield high confidence miRNA targets. Screening 
methods, including microarrays or NGS, are reliable to 
provide a panel of possible targets, but specific target 
assays, such as luciferase or PCR based, are needed to 
validate the candidates. A list with additional target 
assays is available in Table 5.4.

5.4  Use of miRNA In Vivo

The results from the in vitro experiments are transferred 
to in vivo research with the hope to reproduce a similar 
outcome. The basic approach is similar in vitro and in 
vivo: deliver a synthetic miRNA mimic or inhibitor and 
then detect the changes at the protein level with emphasis 
on the predicted and in vitro validated targets. A further 
step is the observation of any side effects, alterations in 
neighboring molecular pathways, and pathologies and 
effects on the phenotype. The ultimate goal is to identify 
a possible therapeutic effect of an miRNA that can pass 
the clinical trials and enter the clinical practice.

Until now the main focus has been on improving the 
stability of the molecules interfering with miRNA, since 
unprotected oligonucleotides can easily be degraded by 



  Table 5.4     miRNAs  and target validation methods. 

Method/molecule Full name Principle System check    

HITS‐CLIP High‐throughput sequencing of 
RNA isolated by crosslinking 
and immunoprecipitation

UV light to cross‐link–freeze—the RISC complex including 
miRNA‐mRNA‐AGO2, followed by immunoprecipitation, and 
sequencing of isolated miRNA and mRNA

 In vitro —miRNAs and their target 
mRNAs  

PAR‐CLIP Photoactivable‐ribonucleoside‐
enhanced cross linking and 
immunoprecipitation

Cells are first supplemented with the nucleoside analog 4‐
Thiouridine (4SU) that is incorporated into nascent mRNAs. Next 
steps are the same as HITS‐CLIP

 In vitro —miRNAs and their target 
mRNAs  

SILAC Stable‐isotope labeling with 
amino acids in culture

Relative protein abundance is measured by mass spectrometry of 
samples labeled with different isotopes

 In vitro —the level of the protein 
originating from the mRNA target  

2D‐DIGE Two dimensional gel 
electrophoresis

Electrophoresis on a single gel of two samples labeled with different 
fluorescent dyes, separating the proteins by iso‐electric focusing 
and SDS–PAGE and then identification by mass spectrometry

 In vitro —the level of the protein 
originating from the mRNA target  

RT‐qPCR Reverse transcription 
quantitative polymerase chain 
reaction

Investigate the level of the miRNA or mRNA of interest with 
TaqMan or Sybr green probes

 In vitro —the level of the miRNAs and 
mRNAs  

Western blot Electrophoresis to separate proteins by molecular mass which are 
subsequently detected with antibodies specific to the target protein.

 In vitro —the level of the proteins 
predicted to be affected by miRNA 
deregulation  

IHC Immunohistochemistry  In situ  hybridization with LNA probes complementary against the 
miRNA of interest and/or immunohistochemical detection of 
specific proteins

In tissue samples—detect the level of 
miRNAs and proteins of interest  

Microarrays Hybridization of a panel of miRNAs or genes to the 
complementary immobilized probes and detection via fluorescence

In all samples examine the expression 
profile of miRNAs and/or mRNAs  

RNA sequencing Massive parallel sequencing of millions of fragments of DNA from 
a single sample

In all samples examine the expression 
profile of miRNAs and/or mRNAs  

Luciferase assay A luciferase reporter contains the 3 ′ ‐UTR target sites of a mRNA 
target which the miRNA mimics of the miRNA of interest should 
target and reduce the fluorescence signal

 In vitro —validation of the miRNA 
target  

GFP reporter Green fluorescent protein A GFP reporter is under the control of multiple 3 ′ ‐UTR target sites of 
a specific miRNA. The presence of the miRNA will lower the GFP 
signal

 In vitro  and  in vivo —validation of 
miRNA target  

Biotin‐tagged miRNA Biotinylated synthetic miRNA is transfected into cells followed by 
purification of miRNA:mRNA complexes connected to the seed 
sequence with streptavidin‐agarose beads

 In vitro —capture of miRNA targets  

PARE Parallel analysis of RNA ends Genome‐wide identification of the miRNA‐induced cleavage 
products

 In vitro  and  in vivo —capture the 
miRNA‐mediated cleavage products  

RLM‐RACE RNA ligase mediated‐5 ′  rapid 
amplification of cDNA ends

The 5 ′  phosphate of the cleaved, uncapped poly‐A RNAs an RNA 
adapter is ligated followed by reverse transcription. Then the 
cDNAs are amplified with the adapter and the gene‐specific 
primers to be cloned and sequenced

 In vitro  and  in vivo —capture the 
miRNA‐mediated cleavage products  

LAMP Labeled microRNA (miRNA) 
pull‐down assay system

The pre‐miRNA is labeled with digoxigenin (DIG), mixed with cell 
extracts, and immunoprecipitated by anti‐DIG antiserum

 In vitro —identification of the target 
gene of known miRNAs  

Reverse transcription of 
targets

Use of the sequence of the miRNA to generate primers via reverse 
transcription matching the mRNA targets followed by PCR

 In vitro —capture miRNA target genes  

Polysome profiling Cyclohexamide is used to trap elongating ribosomes followed by 
pull‐down of the enclosed mRNA

 In vitro —detection of the effect of 
deregulation of a miRNA to the 
transcriptome  

Ribosome profiling Cyclohexamide is used to trap elongating ribosomes, cells are lysed 
and the mRNA enclosed to the monosomes is sequenced

 In vitro —detection of the effect of 
deregulation of a miRNA to the 
transcriptome  

Direct injection of 
ant‐miRs or miRNA 
mimics

Direct injection of antagomirs and miRNA mimics into animal 
model

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

miRNA sponges or 
decoys

Single piece of RNA containing multiple seed regions 
complementary to the miRNA family of interest. By delivering this 
system into cells, the miRNAs bind strongly to the RNA sequence 
resulting in silencing the miRNA activity

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

Modified viruses Lentivirus, adenovirus and adeno‐associated virus are modified 
accordingly to transfer and deliver miRNA regulators in a model 
system

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

Exosomes Microvesicles that naturally transfer miRNAs and can be used to 
deliver modified miRNA regulators

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

Liposomes (DOTMA, 
SLNs, MaxSuppressor 
In Vivo RNA‐LANCEr 
II, LPH, scFv, iNOPs)

Lipid bilayers (cationic or neutral) with an internal aqueous phase 
to load and carry the desired molecules

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

PLGA poly(lactide‐ co ‐glycolic acid) PLGA polymers are transformed into microparticles or 
nanoparticles enclosing biological molecules that can release via 
endolysosomal escape after entering the cell

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

PEI polyethylenimine Cargo release follows the so‐called “proton sponge effect”; once the 
polymer interacts with the surface of the cell, endocytosis takes 
place. The PEI causes endosome swelling by influx of protons and 
water (proton sponge effect) which leads to endosome 
destabilization and the release of the miRNA

 In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology  

Inorganic nanoparticles 
(AUNP‐S‐PEG, GD2)

Gold nanoparticles, 
disialoganglioside antibody

Inorganic nanoparticles are bound and deliver miRNA regulators  In vitro—in vivo  antagomir or miRNA 
mimic system and detection/
observation of the expression level of 
the possible targets and/or physiology

  For the validation phase, miRNA antagomirs or mimics are delivered to an  in vitro  experimental system or  in vivo  to reduce or increase the levels of the miRNAs of interest respectively, 
following by measuring the levels of the predicted mRNA targets or the protein level originating by the mRNA target.  
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RNAses in the blood. As a consequence the design of 
carriers has become essential in order to transfer and 
deliver the miRNA mimic or antagomir to the desired 
target while minimizing degradation. These carriers 
need to have particular features. They need to be large 
enough to avoid renal and hepatic filtration but also 
small enough to allow passage through the tissue and 
cellular barriers and release efficiently their load. If the 
miRNA is not delivered intact, gene silencing will not 
be  achieved. Moreover carriers must not activate the 
immune system and should not be toxic for the  organism. 
Finally, and most importantly, all possible side effects 
must be detected and examined. Since one miRNA has 
multiple targets, strategies must be designed to tackle 
any off‐target effects [118, 119]. These different strate
gies are described in the following text.

5.4.1 Chemically Modified miRNAs

Many chemical modifications in order to enhance the 
stability and efficiency of miRNAs have been proposed. 
The first attempt of systemic delivery involved chemi
cally modified miRNA molecules. In this category are 
included modifications at the 2′OH group in the ribose 
ring (most vulnerable to nucleases) with a 2′‐O‐methyl 
(OMe) or with 2′‐O‐methoxyethyl (MOE). MOE modifi
cations bring another advantage since they also show 
higher affinity and specificity toward target RNAs [120]. 
These modifications have been coupled to linkage to 
cholesterol in order to improve cell entry [121]. LNA 
have also been frequently used and are basically a cate
gory of antagomirs in which a 2′,4′‐methylene bridge is 
introduced in the ribose part of the miRNAs and creates 
a bicyclic nucleotide, providing higher stability and 
affinity [122]. Finally, modifications in the mimic strand 
have been proposed, especially at the passenger strand 
so that the guide strand remains untouched to execute its 
biological role, in order to increase stability and resist
ance against degradation [123, 124].

5.4.2 miRNA Sponges or Decoys

Similar to the antagomirs’ action, miRNA sponges or 
decoys are molecules that can trap miRNAs. Ebert 
et  al. introduced this method, in which basic idea is 
to  create a single piece of RNA containing multiple 
seed regions complementary to the miRNA family of 
 interest. By delivering this system into cells, miRNAs 
bind strongly to these RNA seeds, resulting in silenc
ing of the miRNA activity [98]. An in vivo example of 
the use of miRNA sponges showed that miRNA‐133 is 
an indirect regulator of GLUT4 by directly targeting 
KLF15 in cardiac disease, illustrating a complex of 
miR‐133–KLF15–GLUT4 [125].

5.4.3 Modified Viruses

Modified viruses have also been used as vehicles to 
deliver miRNA regulators. In particular, lentivirus, ade
novirus, and adeno‐associated virus (AAV) are widely 
used as carriers of antagomirs or mimics of miRNAs. 
Modifications of the structure of viruses, mostly with 
bifunctional polyethylene glycol (PEG), prevent immune 
responses. Genetic modifications aid to the specific cell 
targeting [121]. Non‐integrating adenoviruses and AAVs 
seem to be preferred over lentiviruses because the latter 
integrate their own reversed transcribed DNAs in the 
host cells. This integration can lead to serious side effects 
including mutations or activation of gene expression 
[118]. To avoid these effects, nonviral delivery systems 
were developed.

5.4.4 Microvesicles

As mentioned earlier, exosomes protect miRNAs from 
RNAses present in all body fluids [30, 31]. Zhang et al. 
were able to monitor the upregulation of miR‐150 after 
delivering exosomes from THP‐1 cells to mice intrave
nously, showing that exosomes can be used as a delivery 
system of miRNAs in vivo [126]. It is also possible to 
include exosomes in a viral system, either by including 
viruses with miRNAs in the exosomes or by the use of 
virosomes (exosomes modified as viruses) in order to 
increase stability and targeted delivery. However, this 
approach is far from reaching clinical practice [127, 128].

Liposomes are widely used to transfer reagents in vitro 
and start to find their application as in vivo carriers. The 
first example of use of liposomes in vivo is transport 
chemotherapy drugs and nucleic acids to tumors [118]. 
Liposomes are lipid bilayers with an internal aqueous 
phase used to load and carry the desired molecules [118]. 
Since MiRNAs are negatively charged hydrophilic mole
cules, they bind to cationic lipids and are kept stable and 
protected from degradation in the liposome interior. The 
positive charge on the surface of liposomes forms ionic 
interactions with the negatively charged cell membrane 
and allows delivery of their cargo [118]. Several different 
liposome designs exist. A cationic lipid nanoparticle 
composed of 2‐dioleyloxy‐N,N‐dimethyl‐3‐aminopro
pane (DOTMA) and cholesterol was used to deliver 
systemically the pre‐miR‐133b in mice, resulting in a 
30% accumulation in lung tissue and 52‐fold increase of 
the miR‐133b levels in lung compared with untreated 
mice [129], indicating that DOTMA is a promising deliv
ery system. Similarly, a miR‐122 mimic was delivered in 
hepatocellular carcinoma using the DOTMA system 
(with some modifications), resulting in approximately 
50% growth suppression of HCC xenographs by repress
ing a number of miR‐122 targets [130]. Another cationic 
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system is the solid lipid nanoparticles (SLNs) that were 
used to deliver a miR‐34a mimic to cancer stem cells, 
leading to tumor growth suppression and better survival 
rate for the treated mice [131]. The most significant 
drawback of the cationic liposomes as carriers is that 
their positive charge activates interferons and is toxic 
for the liver [118]. To overcome these drawbacks, neutral 
liposome systems were developed. The commercially 
available and patented MaxSuppressor™ In Vivo RNA‐
LANCEr II is a proprietary formulation composed of 
neutral lipids, a nonionic detergent, and small molecules 
providing high efficiency transfer of miRNA in vivo and 
has been used in a number of studies, mostly involving 
cancer, with promising results [132–134]. In the same 
category, liposome–polycation–hyaluronic acid (LPH) 
aims to enrich the loading capacity and transfer effi
ciency. A modification with GC4 single‐chain variable 
fragment (scFv) efficiently transferred miR‐34a, leading 
to suppression of lung tumor [135]. Finally, interfering 
nanoparticles (iNOPs) are dendrimers prepared from 
lipids and have shown some significant results. Anti‐
miR‐122 was delivered using iNOPs and efficiently 
reduced the expression level of miR‐122 in the liver, 
avoiding any immune response or toxicity [136]. In gen
eral, the lipid‐based delivery systems may prove valuable 
for clinical use due to their low toxicity and side effects.

5.4.5 The Polymers

Polymers have also been used to deliver miRNAs and 
their inhibitors. The polymer‐based miRNA delivery 
system is represented by two main systems. The first is 
the poly(lactide‐co‐glycolic acid) (PLGA)‐based system. 
PLGA has been used since 1970s, is FDA approved, and 
has shown high safety, biocompatibility, stability, and 
production efficiency [118, 119, 137]. These polymers 
can be easily transformed into microparticles or nano
particles enclosing biological molecules that can be 
released via endolysosomal escape after entering the cell 
[138, 139]. Their high and multiple loading capacity and 
the fact that multiple modifications on the PLGA surface 
can be introduced have placed PLGA on top of the list for 
gene and drug delivery [119]. Especially the modification 
of the surface with PEG leads to increased half‐life in the 
circulation of the PLGA‐based nanoparticles [140, 141].

The second polymer system is based on polyethylen
imine (PEI). It is one of the most widely used systems for 
gene delivery because with its positive charge it binds very 
strong to nucleic acids and can easily transfer and release 
its load [119]. Cargo release follows the so‐called proton 
sponge effect; once the polymer interacts with the surface 
of the cell, endocytosis takes place. The PEI causes endo
some swelling by influx of protons and water (proton 
sponge effect), which leads to endosome destabilization 

and the release of the miRNA [142]. Successful transfer of 
miR‐145—which directly targets the oncogenes Oct4 and 
Sox2—in lung adenocarcinoma and cancer stem cells with 
polyurethane short branch polyethylenimine (PU‐PEI) in 
combination with radiotherapy resulted in greatly reduced 
tumor growth in vitro and in vivo and higher survival rate 
[143, 144]. Synthetic polymers are promising miRNA 
nanocarriers since (i)  their cationic profile enables to 
strongly bind to miRNA and thus protect it from degrada
tion and (ii) they easily release miRNAs in the cells. 
Additional studies are necessary to evaluate the toxicity of 
these polymers before clinical use can be envisaged [118].

5.4.6 Inorganic Nanoparticles

Inorganic nanoparticles are another category of nonviral 
delivery systems. The mostly used elements are gold, 
silica, and carbon, and by taking advantage of their chem
ical properties, it is easy to manipulate and construct a 
vehicle with suitable size to transfer miRNAs without 
activating the immune system [118, 119]. Gold nanopar
ticles or AuNP‐S‐PEG have shown to deliver efficiently 
miR‐31 and miR‐1323 and silence gene expression up to 
70% of E2F2, STK40, and CEBRA (targets of miR‐31) and 
over 85% of CASP8AP2, DDX4, and AAK1 (targets of 
miR‐1323) and also inhibited proliferation of cancer cells 
with a low toxicity score [145]. In another study, silica‐
based nanoparticles modified with disialoganglioside 
GD2 antibody that binds to the GD2 antigen delivered 
specifically miR‐34a into neuroblastoma, causing down
regulation of MYCN, inhibition of the tumor growth, and 
increased apoptosis of cancer cells [146]. Unfortunately, 
extensive in vivo studies are not available for evaluation 
of inorganic nanoparticle toxicity, loading capacity, and 
delivery efficiency.

5.5  miRNAs as Potential Therapeutic 
Agents and Biomarkers: Lessons 
Learned So Far

5.5.1 miRNAs as Potential Therapeutic Agents

The most extensively studied miRNA to be potentially 
introduced in clinical practice is miRNA‐122, an abun
dant liver‐specific miRNA with a key role in liver func
tion (fatty acid and cholesterol metabolism) and active 
role in hepatitis C (HCV) progression [147]. Elmen et al. 
showed that reduction of miRNA‐122 with LNA‐ant‐mi‐
R122 led to reduction of cholesterol levels in plasma of 
mice and nonhuman primates [99, 148]. Lanford et  al. 
showed that suppression of HCV viremia by an antago
mir for miR‐122 in chimpanzees led to improvement 
HCV liver pathology [149]. In these three studies lasting 
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from 3 weeks to 3 months, no short‐term toxicity was 
observed, opening the way for use of miRNAs as drugs in 
liver disease. Indeed, these preclinical results led to the 
development of miravirsen, the first antagomir drug 
candidate against HCV by Santaris Pharma A/S [150]. 
Miravirsen binds to the stem‐loop structure of pri‐ and 
pre‐miR‐122 with nanomolar affinity and inhibits both 
Dicer‐ and Drosha‐mediated processing of miR‐122 
precursors and has entered phase II trials, after displaying 
no side effects on healthy volunteers [151].

Another therapeutic miRNA candidate that is now in 
phase I trials is the liposome‐formulated mimic miRNA‐34, 
or MRX34, as it is named by the developing company 
Mirna Therapeutics. The miRNA‐34 family is found to 
be decreased in many cancer types. It was observed that 
the miRNA‐34 family can regulate the p53 pathway by 
direct inhibition of many oncogenes including Myc, c‐Met, 
BCL‐2, CDK4, and CDK6. Treatment with miR‐34 mimics 
reduced tumor size or growth in many cancer model 
systems [152–155]. MRX34 could become one of the first 
mimic miRNA system to restore the level of an miRNA 
and show significant antitumor activity (http://www.
mirnatherapeutics.com/pipeline/mirna‐pipeline.html).

Miragen Therapeutics has initiated several preclinical 
studies for a number of miRNAs. MiR‐155 is studied in 
hematological malignancies and amyotrophic lateral scle
rosis and MiR‐29 in cutaneous and pulmonary fibrosis, 
which have passed the preclinical studies stage and now 
entering clinical trials. MiR‐92 is a candidate for periph
eral artery disease, now in preclinical studies. In collabo
ration with Servier, Miragen Therapeutics is performing 
preclinical studies in heart failure targeting miR‐208 and 
miR‐15 (http://miragentherapeutics.com/pipeline/).

Finally, Regulus Therapeutics has initiated their anti‐miR 
programs for miR‐122 in HCV and miR‐10b in glioblastoma. 
In collaboration with Sanofi, they are developing anti‐
miR‐221 against hepatocellular carcinoma and miR‐21 
for kidney fibrosis, the leading complication in kidney 
disease, and with AstraZeneca miR‐103/107 for the treat
ment of nonalcoholic steatohepatitis (NASH) in patients 
with type 2 diabetes/prediabetes (http://www.regulusrx.
com/therapeutic‐areas/).

5.5.2 miRNAs as Potential Biomarkers

Another application is the use of miRNAs as potential 
diagnostic and prognostic biomarkers. A simple search 
in PubMed with the words “miRNA” AND “Biomarker” 
returns more than 5000 publications, the majority related 
to cancer.

5.5.2.1 Cancer
In 2002, the first miRNAs characterized as being down
regulated in patients with B‐cell chronic lymphocytic 

leukemia were miR‐15a and miR‐16‐1 [156], a year after 
the discovery of the second miRNA, let‐7. Later on the 
miR‐17‐92 cluster was identified to be upregulated in 
many kinds of cancers (mostly in lymphoma and leuke
mia) and associated with upregulation of the oncogene 
c‐Myc, providing a first well‐characterized cancer‐asso
ciated miRNA cluster and introducing a new class of 
miRNAs, the oncomiRs [157–159]. Additional miRNAs 
including miR‐21 [160], miR‐34 family [152, 161], and 
let‐7 [162, 163] are by now accepted as cancer‐associ
ated miRNAs. In 2008 Markou et al. published for the 
first time evidence for the prognostic value of the miR
NAs in a clinical study on lung cancer. The authors 
characterized the overexpression of miR‐21 in patients 
with lung cancer as negative prognostic factor [164]. 
Other reports are regularly published on miRNAs and 
their involvement in molecular pathways in nearly every 
kind of cancer and on their use as potential biomarkers 
and/or therapeutic agents including miR‐21, miR‐155, 
miR‐10b, miR‐214, and miR‐105 [165] in breast cancer; 
miR‐141, miR‐125b, and miR‐145 in prostate cancer; 
miR‐486, miR‐30d, miR‐1, miR‐499, miR‐19b, and miR‐
29b in lung cancer [166, 167]; and miR‐1246 and 
miR‐155 in leukemia [168].

5.5.2.2 Metabolic and Cardiovascular Diseases
The use of a LNA‐antagomir for miR‐122 reduced the 
expression of miR‐122 in hepatocytes in a high‐fat 
mouse model, resulting in reduced serum cholesterol 
and triglyceride levels [169, 170]. These reports may 
point to another therapeutic ability of antagomir for 
miR‐122 against metabolic and cardiovascular diseases. 
Using the same mouse model, miR‐33 has been linked 
with the high triglyceride and HDL [171, 172], and let‐7 
overexpression in the pancreas led to impaired glucose 
tolerance and reduced glucose‐induced pancreatic insu
lin secretion [173, 174].

5.5.2.3 Miscellaneous Diseases
Many other circulating miRNAs have been found to be 
associated with other diseases including a 9‐miRNA 
plasma/serum panel for Alzheimer’s disease [175], a 
16‐miRNA plasma/serum panel for epilepsy [176], and 
7 plasma/serum miRNAs in preeclampsia [177] and 
cardiovascular diseases [178].

5.6  Conclusion

miRNAs have a key role in maintaining cellular homeo
stasis by regulating almost all biological function, and 
this justifies the observations of deregulation of miR
NAs in many pathological conditions. The biological 
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complexity of their actions, however, blocks a fast evolu
tion in transforming them as tools for clinical practice as 
miRNAs often target multiple genes different functional 
pathways. However miRNA‐based therapies could offer 
a distinct advantage over other approaches.

The properties of miRNAs set them as potential effec
tive diagnostic and prognostic biomarkers. The stability 
of miRNAs in FFPE tissues and body fluids is the main 
advantage for the use of miRNAs as biomarkers of dis
ease. In addition, miRNAs can be extracted from small 
biopsy specimens and body fluid samples. Finally, miR
NAs have the potential to become therapeutic agents for 
personalized management of disease [79].

The early output of miRNA research is encouraging. 
However, the current potential utilization of miRNAs in 
the clinical practice is primarily limited to expression 
profiling for diagnostic or prognostic purposes. This is 
due to the fact that little is known about the phenotypical 
consequences of miRNA targeting when the results 
are transferred from the in vitro to the in vivo setting. 

In addition, the multiple targets of miRNAs and the 
 regulation of a single mRNA from a variety of miRNAs 
render the targeting therapy difficult to monitor, for 
example, the off‐target side effects [107]. Moreover, the 
lack of in vivo validation can be due to the lack of robust 
and efficient miR target prediction tools. Development 
of effective bioinformatics analysis methods will yield 
confident miRNA–mRNA interaction results. Therefore 
a more integrated collaboration between clinical and 
molecular methods with a strong biostatistical and bio
informatics foundation to bridge the gap between 
research and clinical applications and increase the pos
sibilities for validating miRNAs as important biomarkers 
or drug targets is needed [21]. A proposed research 
workflow on miRNAs, from detection to validation, is 
given in Figure 5.4. As technology is evolving, new and 
exciting information will be added to the miRNA biology 
research; pathway regulations will be revealed and 
allowed to be manipulated, potentially allowing entry of 
miRNAs in personalized medicine.
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6.1  Introduction

Proteomics is a term used to describe large‐scale protein 
studies. Since proteins control the key biological pro-
cesses in the organism, one of the main aims of proteomics 
has become the identification of disease biomarkers [1]. 
There are two main sources for the identification of 
disease biomarkers: tissue samples and body fluids. The 
advantages of the latter compared with the former are 
lower invasiveness, lower cost, easier sample collection 
and storage, and less demanding sample processing [2]. 
However, the applicability of each body fluid to study a 
specific disease should be evaluated with caution, and 
body fluids that have a direct contact with a tissue of 
interest should be generally taken into consideration. 
For example, urine is an ideal source to study kidney 
diseases; however to identify biomarkers for Alzheimer’s 
disease, cerebrospinal fluid (CSF) is more applicable [3, 4]. 
Additionally, body fluids can be very complex, and pro-
tein concentrations in such samples span over several 
orders of magnitude. Considering that the potential 
biomarker can be present at low concentrations, its iden-
tification can become challenging, since highly abundant 
proteins can mask the presence of low‐abundance 
 molecules. Therefore, to overcome the aforementioned 
obstacle, sample fractionation is commonly required 
prior to MS analysis [1, 2, 5]. The general comparison of 
advantages and disadvantages of tissue and body fluid 
proteomics is presented in Table 6.1.

Proteomics analysis of various body fluids that ensures 
obtaining high‐quality results is similar in several steps, 
regardless of the type of analyzed sample. Each step 
should be performed according to well‐established and 
generally accepted protocols and guidelines to enhance 
the reproducibility of the results [1].

There are many possible sources that can affect the 
reproducibility, for example, sample collection, storage, 
or preparation procedures. These include patient sample 

information, collection procedure of the body fluid, 
sample shipment conditions, storage temperature, pro-
tein fractionation and digestion, and so on. Additionally, 
instrument specifications (e.g., collision energy or isola-
tion width) as well as data analysis procedures (e.g., data 
normalization, statistical tests) should be performed 
appropriately [6, 7].

The application of proteomics to study human diseases 
and translate the findings into clinical practice is called 
clinical proteomics. These findings can be used for early 
detection of the disease or evaluation of the prognosis. 
Additionally, proteomics findings can elucidate the 
mechanism of the disease and, thus, contribute to the 
identification of novel therapeutic targets [8, 9].

This chapter will concentrate on various aspects of 
body fluids proteomics, including sample collection and 
storage procedures, protein fractionation techniques, 
sample preparation for MS/MS analysis, commonly 
used analytical instruments, and bioinformatics aspects 
(differential expression analysis and statistical testing). 
Afterward, the focus will be set on the validation of 
findings. Finally, selected examples of the application of 
body fluids proteomics for the discovery of biomarkers 
will be presented. It is worth noting that most of the 
aspects of proteomics analysis do not vary between the 
analysis of body fluids and other samples (e.g., tissues or 
cell cultures).

6.2  General Workflow for Obtaining 
High‐Quality Proteomics Results

Appropriate sample and data processing according to 
well‐established guidelines are not the only aspects that 
guarantee obtaining high‐quality proteomics results. 
Good quality proteomics analysis begins already on the 
level of study design, followed by proper and reproducible 
sample and data analysis and application of appropriate 
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statistical tests, finishing with validation of findings [10]. 
For biomarker discovery studies, obtaining high‐quality 
proteomics results does not ensure that obtained find-
ings will be translated into clinical practice. The path for 
translation of findings is laborious and time consuming 
with no guarantee of success. The main obstacles on this 
path include lacking funding, absence of platforms for 
validation of findings, cost‐effectiveness of a biomarker, 
and inadequate knowledge of researches about steps 
required to translate their findings [11]. The general work-
flow for proteomics analysis is depicted in Figure 6.1.

Aspects that need to be taken into consideration in 
proteomics studies can be summarized as follows [10]:

1) Clinical questions and outcomes should be clearly 
defined:

 ● Define the purpose of the biomarker.
 ● Use standardized and well‐accepted criteria to 

document the outcomes.
2) Study subjects should be properly chosen:

 ● Define study groups.
 ● Healthy controls are not always adequate controls 

for defining a biomarker specific for a disease and 
subjects with related or similar disease and should 
be taken into consideration.

 ● Avoid unequal distribution of patients that can lead 
to potential bias during study design (e.g., unequal 
distribution of age or gender in the study group).

 ● During the discovery phase, patients with unclear 
diagnosis can be omitted.

 ● Use clinically accepted parameters as endpoints.
 ● If possible, ensure that the same criteria were used 

for the classification of patients; if not possible, 
report this information.

 ● Ensure the collection of sufficient demographic and 
clinical data on the subjects.

3) Each step of the experiment should be conducted 
appropriately according to available guidelines:

 ● Ensure that the sample is collected properly and 
detailed description of this procedure is available.

 ● Store the sample in appropriate conditions (e.g., at 
–20 or –80°C, unless stated otherwise).

 ● Perform the experiments according to the guidelines 
and/or established protocols.

 ● Use appropriate software for data processing.
4) Proper statistical tests for the identification of bio-

marker candidates should be applied:
 ● Have sufficient samples size, according to power 

calculations.

Table 6.1 Comparison of tissue and body fluids proteomics in human.

Body fluid Tissue

Collection Depends on a body fluid, but in most cases collected easily and 
with noninvasiveness or low invasiveness

Invasive procedure hinders the collection 
process

Availability Typically available in large quantities and high numbers Commonly available in low numbers, which can 
compromise the statistical power of performed 
analysis

Representation 
of a proteome

Typically represent the proteome of tissues of which the body 
fluid has contact with. However, blood represents the proteome 
of the whole organism

Proteome specific for a collected tissue

Protein 
concentration

Variable. Blood has very high protein content. However, 
proteins in other body fluids are present in lower concentration

Relatively high

Number of 
protein 
identifications

Without applying fractionation methods, generally low due to 
two reasons: (i) low protein concentration causes low‐
abundance molecules to be present below the limit of 
detection, and (ii) high‐abundance proteins can mask the 
presence of low‐abundance molecules

Generally high

Type of protein 
identifications

Without fractionation, mostly highly abundant proteins Both high‐ and low‐abundant proteins can be 
easily detected

Suitability for 
biomarker 
identification in 
the sample

Large number of available samples increases the statistical 
power. Low number of protein identifications can hinder the 
identification of putative biomarkers (especially those present 
at low concentrations)

Low sample availability reduces the statistical 
power. Large number of protein identifications 
facilitates the identification of putative 
biomarkers (especially those present at low 
concentrations)

Translation of 
biomarkers

Useful in clinical practice for diagnosis or prognosis of the 
disease

Useful for elucidation of the disease mechanism 
and identification of drug targets

Due to large number and variety of available body fluids, only general comparison is demonstrated, and thus, presented comparison cannot be 
translated to all body fluids used in proteomics.
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 ● Try to avoid sample pooling.
 ● Use correct statistical tests and adjust for multiple 

testing.
5) The findings should be validated:

 ● Use different sample cohort to confirm your findings.
 ● If possible, use different methodology to validate 

the biomarker candidates.

6.3  Body Fluids

A number of body fluids can be analyzed by proteomics 
techniques. Blood (plasma and serum) and urine are the 
most common choices for the analysis; however these 
are not the only ones used. In this chapter, four body 
fluids, namely, blood, urine, CSF and saliva, will be 
discussed. The advantages and disadvantages of these 
fluids are summarized in Table 6.2.

6.3.1 Blood

Blood is one of the most complex sources of the human 
proteome [12]. This is mostly due to the enormous con-
centration differences in the proteins present, which 
span from millimolar to femtomolar. These differences 
are responsible for the masking effect and reduce the effec-
tiveness of LC‐MS/MS analysis, hindering the detection of 
low‐abundance proteins. Therefore, if no fractionation is 
applied, the identification of blood proteins is usually 
restricted to highly abundant molecules. Additionally, 
blood proteins often undergo additional processing 
events and modifications, making the analysis even more 
complicated [13]. Two blood components are typically 
applied for the proteomics studies: plasma and serum.

Due to the easy accessibility and ability to “mirror” the 
organism status, blood is commonly applied for the 
identification of disease biomarkers, including various 
cancers (e.g., prostate, liver, breast, pancreatic), autoim-
mune diseases (e.g., systemic lupus erythematosus, multiple 
sclerosis), infectious diseases, diabetes, nephropathies, 
and cardiovascular disease [12, 14, 15].

6.3.1.1 Plasma
Plasma is the liquid portion of blood [12]. This straw‐
colored body fluid is equivalent of approximately 55% of 
total blood volume. Plasma consists mostly of water and 
is required for transportation of various substances within 
the body (e.g., hormones or glucose), immunological 
response, and withholding the pH and pressure of blood [3].

Controls Cases

Plasma, urine, CSF, etc.

Fractionation, enrichment, depletion

LC-MS/MS

Data processing, statistics

Immunoassays, targeted proteomics

I

II

III

IV

V

VI

VII

Define clinical 
questions and 

outcomes

Define the 
study cohort

Collect the 
samples

Fractionate 
the samples 

(optional)

Perform MS 
analysis

Analyze the 
data

Validate the 
findings

Figure 6.1 Graphical depiction of a general workflow of proteomics 
analysis.

Table 6.2 Characteristics of four body fluids.

Blood (plasma or serum) Urine Cerebrospinal fluid Saliva

Applicability to study a 
disease

Any disease Several diseases, mostly kidney 
or urogenital tract related

Some diseases, 
mostly neurological

Several diseases, but 
commonly for dental

Availability +++ +++ + ++
Noninvasive collection ++ +++ − +++
Protein concentration +++ +a + +
Translation into 
clinical practice

+++ +++ ++ +++

−, +, ++, +++ indicate rate of feasibility or concentration in the increasing order.
a Variable depends on studied disease.
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The great advantage of plasma (and serum as described 
in the following) is its ubiquitous contact with every 
tissue in the body, making it a perfect source of informa-
tion about the organism [5]. However, proteins derived 
from the tissues become substantially diluted in plasma, 
commonly being below the limit of detection by cur-
rently available MS/MS instruments [16]. Therefore, 
protein fractionation or enrichment strategies are com-
monly applied [2, 17]. Current advancements in mass 
spectrometry (MS) allow for more in‐depth analysis of 
this body fluid. However large protein concentration 
range and complexity impair the proteomics biomarker 
studies.

6.3.1.2 Serum
Serum is derived from blood after removal of fibrinogen 
and clotting factors [12]. It is a liquid of a yellow color, 
obtained by centrifugation of previously coagulated 
blood. This process reduces the protein concentration, 
due to the removal of clotting factors. Still, these factors 
are not completely removed from the sample, and due to 
the putative interactions of proteins with the clotting fac-
tors and additional coagulation processes, the final levels 
of peptides and proteins in the sample are affected [3].

Similarly to plasma, serum is an easily accessible body 
fluid, which, due to its nature, represents the overall 
status of the organism. However, the same challenges 
for proteomics analysis characteristic of serum remain—
enormous differences in individual protein concentra-
tions and vast complexity [14].

6.3.2 Urine

Urine is a liquid secreted by the kidneys to the urinary 
bladder and ultimately excreted through the urethra. 
Urine from healthy individuals contains mostly water 
(95%). The rest of the components are waste substances 
produced by filtering of plasma by the kidneys. Due to 
these reasons, the protein concentration in urine (usu-
ally below 0.08 µg/µl) is approximately 1000‐fold lower 
than in plasma (average protein concentration for 
plasma: 60–80 µg/µl) [3], unless the patient is proteinuric 
and demonstrates higher and variable protein concentra-
tions in urine than healthy subjects [18]. The fact that 
70% of proteins present in urine derive from kidney 
makes this body fluid a preferable source for studying 
various renal diseases [19].

Urine has several advantages: it can be obtained easily 
and repeatedly in large quantities, while proteins and 
peptides are already solubilized in the fluid. Importantly, 
urine demonstrates higher stability compared with 
plasma, since it is detained in the bladder for hours 
before collection, and thus, proteolytic processes have 
already finished before the collection. However, daily 

intake of fluids affects the concentration of peptides and 
proteins in urine. Additionally, due to several aspects of 
daily routine (e.g., diet, exercises, and hormonal changes), 
variation in the proteome can be observed during the 
day. The first issue can be tackled by normalizing the 
data based on creatinine values. In the case of the latter, 
these changes are mostly related to a small portion of 
the proteome and do not affect the majority of urinary 
proteins [20].

As mentioned urine is commonly applied to study a 
variety of renal diseases [21]. However, it was also applied 
to study irritable bowel syndrome, coronary artery disease 
[22], sepsis, and lung cancer [1].

6.3.3 Cerebrospinal Fluid (CSF)

CSF is a colorless fluid that surrounds the brain and the 
spinal cord. This fluid is in contact with central nervous 
system and removes waste substances, transports nutri-
ents, and acts as a mechanical support for the brain. 
These qualities make it a perfect source for studying 
neurodegenerative disorders. CSF is produced by the 
choroid plexus. It is generally an ultrafiltrate of plasma; 
however, the interstitial fluid of the nervous tissue also 
impacts the molecular content of CSF [3, 4].

Most of the protein content (80%) comes from blood 
and the rest from central nervous system. Therefore, 
highly abundant plasma proteins are also abundant in 
CSF. Still, the protein concentration in CSF (0.2–0.8 µg/
µl) is substantially lower than in plasma (60–80 µg/µl) [4].

Even though CSF seems to be an ideal source to study 
neurological diseases, it has some disadvantages. Firstly, 
its collection is invasive and requires a lumbar puncture. 
Secondly, alcohol consumption or smoking can influence 
the composition of the fluid [4]. Thirdly, identification of 
disease biomarkers in CSF can be hindered, due to the 
fact that most of the proteins derive from plasma [2]. 
Lastly, blood contamination of the CSF is relatively 
common, and 14–20% of all lumbar puncture proce-
dures end with the sample contamination. Considering 
very low protein concentration of CSF compared with 
plasma, even small leakage of the latter can significantly 
change protein concentrations in the sample, skewing 
the analysis and leading to the identification of nonspe-
cific biomarkers [4].

6.3.4 Saliva

Saliva is fluid that contains a secreted mixture of several 
salivary glands. Its function is not only restricted to food 
digestion, tasting, and swallowing, but it also plays a role 
in lubricating the oral tissues, ensuring integrity of teeth 
and protection against bacteria and viruses [23].
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Saliva contains mainly water (99%). The remaining 1% 
consists of inorganic ions, organic secretion substances, 
products of food degradation, lipids, and proteins. The 
most abundant proteins can be classified into two classes: 
gland derived (e.g., α‐amylase, cystatins, histatins) and 
plasma derived (albumin, serotransferrin, sIgA) [24]. 
Average protein concentration in saliva is in the range of 
0.5–2 mg/ml [25].

Saliva could be considered as an alternative source to 
plasma for proteomics studies, since it can be obtained 
easily, noninvasively and in large quantities, while its 
collection and storage do not require a highly trained 
personnel. Due to very low sample collection cost, 
saliva seems to be a preferable diagnostic body fluid in 
Third World countries. However, sample collection 
procedures for this body fluid have not been well estab-
lished yet. Additionally, protein concentration in saliva 
is very low, while the range of the concentration of indi-
vidual molecules is large (e.g., in mg/ml for α‐amylase 
in pg/ml for cytokines). Therefore, identification of 
biomarkers in this body fluid requires sensitive MS 
instruments [23–28].

Salivary proteomics has been implemented in the 
study of a variety of diseases including periodontal dis-
ease, squamous cell carcinoma, head and neck cancer, 
breast cancer, and diabetes [23, 24, 27].

6.4  Sample Collection and Storage

Sample collection procedures are very well described in 
the following chapter [3]. Additionally, such protocols 
are commonly available on several websites and/or pub-
lications. Therefore, instead of describing the guidelines, 
they will be summarized in Table 6.3.

6.5  Sample Preparation for MS/MS 
Analysis

Sample preparation for MS/MS analysis depends on 
study requirements and should be adjusted to each study 
individually. Factors that affect the preparation proce-
dures are type of sample (plasma, urine, etc.), sample 
complexity, protein concentration, type of proteins of 
interest (all proteins, glycoproteins, phosphoproteins, 
etc.), aim of the study (protein profiling, biomarker dis-
covery, etc.), analysis method, and instrument running 
conditions. Protocols or guidelines for most of the 
sample processing steps have already been established. 
Still, many variations exist, while some steps are to some 
degree established empirically in each lab (e.g., LC‐MS/
MS running conditions). Since all of these aspects are 
interconnected, there are no standard guidelines availa-
ble that would cover all of them.

This section will focus on three main parts: fractiona-
tion of intact proteins, sample preparation for MS/MS 
runs (tryptic digestion methods), and peptide fractiona-
tion techniques.

6.5.1 Protein Separation

A number of separation techniques are available for pro-
teomics analysis. The samples are commonly processed 
by one or more fractionation techniques. Still, the appli-
cation of such strategies is optional, and samples can be 
prepared without applying protein separation prior to 
the MS analysis.

In the literature the most common categories of 
separation techniques include gel‐based and gel‐free 
approaches [31–34] and electrophoresis‐based and liquid 
chromatography approaches [1, 35]. Both categories 

Table 6.3 Sample collection guidelines references.

Sample type Guideline source Link References

Plasma National Institutes of Health http://edrn.nci.nih.gov/resources/standard‐operating‐procedures/
standard‐operating‐procedures/plasma‐sop.pdf

[3]

Serum National Institutes of Health http://edrn.nci.nih.gov/resources/standard‐operating‐procedures/
standard‐operating‐procedures/serum‐sop.pdf

[3]

Urine Urine and Kidney Proteomics COST 
Action or Human Kidney and Urine 
Proteome Project

http://eurokup.org/sites/default/files/StandardProtocolforUrine 
Collection.pdf or http://www.hkupp.org/Urine%20collectiion%20 
Documents.htm

[3, 29]

Cerebrospinal 
fluid

— — [3, 30]

Saliva World Health Organization, 
International Agency for Research 
on Cancer

http://www.iarc.fr/en/publications/pdfs‐online/wrk/wrk2/
Standards_ProtocolsBRC.pdf

[3]
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share many similarities: most of the electrophoretic 
methods (excluding free‐flow electrophoresis (FFE)) are gel 
based, while chromatographic approaches are included 
in gel‐free techniques.

In this chapter, the presented methods will be divided 
into electrophoresis‐based and liquid chromatography 
(LC) techniques, while the focus will be set mostly on 
the separation of intact proteins. The advantages and 
disadvantages of applying each technique are summa-
rized in Table  6.4. The application of fractionation 
methods in individual studies is well described in the 
following reviews [1, 31–33].

6.5.1.1 Electrophoresis‐Based Methods
Electrophoresis‐based methods include one‐dimensional 
electrophoresis (1DE or more commonly SDS‐PAGE), 
two‐dimensional electrophoresis (2DE), isoelectric 
focusing (IEF), and two‐dimensional fluorescence differ-
ence gel electrophoresis (2D DIGE) [31]. These tech-
niques rely on the migration of charged proteins in the 
medium [1]. The most common method is SDS‐PAGE, 
where proteins are denaturated and coated with sodium 
dodecyl sulfate (SDS) detergent. In such conditions, the 
separation is based mostly on the molecular weight of 
each protein [34, 35].

IEF, on the other hand, uses the differences in the 
isoelectric points (pI) of proteins. The proper resolving 
power is achieved by applying pH gradient strips. 
Proteins migrate in the electric field until they reach 
their pI, where the charge is equal to zero [34, 36].

2DE can be considered as a combination of both gel‐
based 1DE and IEF. Proteins are firstly separated based 
on the pI as in the case of IEF (first dimension) and 
afterward based on their molecular weight, as for SDS‐
PAGE (second dimension). 2DE allows to visualize up to 
thousands of gel spots and differentiates between various 
isoforms of the same protein [35]. Since the main issue of 
2DE is the comparison of multiple gels, a modification of 
the method was introduced: 2D DIGE [1]. This method 
overcomes the obstacle related to comparative analysis 
of different samples, as proteins from different samples 
are labeled with distinct fluorescent dyes, mixed together 
and loaded onto the same gel. This way, multiple samples 
can be compared with each other in one experiment [35].

The presented methods are gel based. However, some 
liquid‐based modifications exist. For example, liquid‐
phase IEF is characterized by higher loading capacity 
and increased protein recovery compared with its gel‐
based counterpart [33]. FFE technology was also intro-
duced, which, in contrast to most of the electrophoretic 
methods, does not require any solid matrix to separate 
proteins. In this method, the sample is injected continu-
ously and is moving in a laminar flow in a chamber 
composed of two glass plates. The electric field is applied 

vertically to the laminar flow direction, and the samples 
can be divided based on their charge, pI, or mobility. This 
method, in comparison with traditional electrophoresis, 
improves the possibility of detecting low‐abundance 
proteins [33].

6.5.1.2 Liquid Chromatography Methods
The separation principle of LC is based on the interac-
tions of the analytes with the stationary phase. Since 
each of the components in the sample interacts differen-
tially with the sorbent, the sample can be fractionated. 
These methods can be divided into two categories: physi-
ochemical strategies and affinity based. Due to the fact 
that physiochemical strategies are well known and estab-
lished, this section will provide only short description of 
such methods. More focus will be put on affinity‐based 
methods that are becoming more and more popular, 
as they are applicable to achieve rapid and selective 
purification of the proteins. However, in some cases 
(e.g., abundant protein depletion), the available data 
contain contradictory results, questioning the added 
value of such strategies in proteomics studies.

6.5.1.2.1 Physiochemical‐Based Separation
The most commonly applied chromatography techniques 
using physiochemical properties for the separation of 
intact proteins are reverse‐phase liquid chromatography 
(RP‐LC), hydrophobic interaction liquid chromatogra-
phy (HILIC), and ion‐exchange [34] or size‐exclusion 
chromatography (SEC) [1].

In RP‐LC the analytes are separated based on their 
differences in hydrophobicity, where nonpolar stationary 
phase and a polar mobile phase are applied. Hydrophilic 
proteins are eluted first. As the polarity of the mobile 
phase is gradually reduced, other (more hydrophobic) 
proteins can elute [37].

Similarly to RP‐LC, HILIC separates proteins on the 
basis of their hydrophobicity and uses comparable types 
of eluents. However, in contrast to the former, it applies 
hydrophilic stationary phase. Therefore, hydrophobic 
proteins are eluted first, and as the polarity of the mobile 
phase increases, other (more hydrophilic) proteins can 
elute [38].

Ion‐exchange chromatography separation principle is 
based on the attraction of oppositely charged molecules. 
There are two types of stationary phases used in ion‐
exchange chromatography: negatively charged cation 
exchangers and positively charged anion exchangers. 
Proteins, based on their pI and the pH of the environ-
ment, carry different surface charges. Molecules are 
eluted by increasing salt concentration of the elution 
buffer, hence its ionic strength. Proteins with the lowest 
charge elute first, followed by other molecules that bind 
stronger with the resin [39].

  Table 6.4    Advantages and disadvantages of various separation techniques. 

Separation type Separation technique Separation basis Advantages Disadvantages    

Electrophoretic 
approaches

SDS‐PAGE Molecular weight Simple; cheap Moderately time consuming; not automated; low resolving 
power  

IEF Isoelectric point Relatively simple with moderately 
good separation power

Resolving strips need to be purchased from a vendor; 
strips covering whole pH range are commonly not 
available  

2DE Molecular weight and 
isoelectric point

Allows for identification of protein 
isoforms

Low reproducibility if more than one gel is used; low 
number of replicates is typically analyzed; laborious  

Liquid 
chromatography: 
physiochemical 
separation

RP Hydrophobicity Moderate resolving power; desalting 
capability; adjustable gradient; 
compatible with mass spectrometry

Carryover effect; not completely reproducible  

HILIC Hydrophobicity Good resolving power Not compatible with RP in an online mode  
IEX Protein charge Good method to be used in 

combination with other separation 
techniques; very adjustable, due to the 
presence of various ion exchangers

Not compatible directly with MS  

SEC Protein size Simple; wide separation mass range Protein binding to the stationary phase cannot be entirely 
eliminated; low resolving power; requires high elution 
volumes; requires high sample loads; requires appropriate 
peptides or proteins for calibration  

Liquid 
chromatography: 
affinity methods

Protein depletion Affinity binding of protein 
targets

Simple; reproducible; selective Added value for proteomics analyses is questionable; 
presence of a co‐depletion mechanism  

Hexapeptide ligand 
library beads

Protein capturing Effective; allow for sample enrichment 
in low‐abundance proteins

Requires large starting protein amounts; proteins that 
saturate the beads cannot be quantified  

IMAC Binding of proteins to metal 
ions

Specific for phosphoproteins and 
peptides as well as proteins exhibiting 
acidic amino acids

Low adsorption of some phosphoproteins and peptides  

Glycoprotein 
enrichment methods

Affinity binding of 
glycoproteins to lectins or 
through chemical 
modifications to a resin

Adjustable specificity due to the 
availability of many lectins

Analysis of O‐glycosylated molecules is still challenging  

Phosphoprotein 
enrichment methods

Affinity binding of 
phosphorylated proteins to, 
for example, IMAC, TiO 2 , 
or ZnO 2  resins

High specificity and recovery Enrichment typically performed on the level of peptides, 
causing loss of information regarding phosphorylation 
interdependency (i.e., if a phosphorylation of one side in a 
protein is dependent on the phosphorylation of another)

  2DE, two‐dimensional electrophoresis; HILIC, hydrophilic interaction chromatography; IEF, isoelectric focusing; IEX, ion‐exchange chromatography; IMAC, immobilized metal affinity 
chromatography; RP, reverse‐phase chromatography; SDS‐PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; SEC, size‐exclusion chromatography.  
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In SEC the separation is based on the differences in 
molecular size. The principle assumes that no interac-
tions between the molecules and the stationary or mobile 
phase exist. Therefore, the separation is an entropy‐con-
trolled process where proteins are transported with a 
mobile phase through a stationary phase composed of 
carefully chosen porous particles. Large proteins do not 
pass through the pores and elute first. The smaller is the 
protein, the more pores it has to pass through, increasing 
the time of elution [40].

6.5.1.2.2 Affinity Chromatography
Affinity chromatography methods are becoming com-
monly used in proteomics, due to their broad range of 
applications and high specificity. The main goal of affinity 
chromatography is significant reduction of sample 
complexity, allowing for identification of low‐abundance 
proteins. These methods can be used for the identification 
posttranslational modifications (PTMs), protein–protein 
interactions, and interaction networks as well as for the 
separation of specific type of proteins from the sample 
(e.g., phospho‐ or glycoproteins). In general, two main 
categories of affinity techniques are established: (i) 
depletion‐based strategies, aiming at removal of highly 
abundant molecules from the sample, thus unmasking 
low‐abundance molecules, and (ii) enrichment‐based 
strategies, where protein of interest is separated from 
the total proteome [41]. An interesting type of affinity 
technique that combines both depletion and enrichment 
strategies is based on combinatorial peptide ligand 
libraries and will also be described in this section.

Depletion strategies allow for rapid and efficient 
removal of targeted proteins, reducing the complexity 
of the sample, hence, in theory, facilitating detection of 
low‐abundance molecules. There are many depletion 
kits commercially available that vary in the number of 
depleted proteins. Immuno‐based methods are most 
common, due to their high specificity and efficiency 
[33, 42]. The typical target for depletion kits is albumin: 
highly abundant plasma protein with a concentration of 
30–50 µg/µl. Its removal reduces the total protein con-
tent by approximately 50%. However, these kits often 
target more proteins, including immunoglobulins, hapto-
globin, and fibrinogen [42]. Abundant protein depletion 
kits are designed to be used for plasma or serum, but 
their applicability was also tested in urine. Still, the added 
value of applying these strategies is questionable, since 
many studies report contradictory results: some describ-
ing increased number of protein identifications, while 
others no added value. Kulloli et  al. [43] depleted 14 
highly abundant proteins from plasma, which allowed to 
increase the number of protein identifications from 71 to 
130 compared with non‐depleted sample. Tu et al. [44] 
depleted 7 or 14 abundant proteins from plasma, increasing 

the number of identified proteins by 25% in comparison 
with unfractionated sample. Still, the applicability of 
this method for biomarker discovery purposes is ques-
tionable, since only 6% of proteins were classified as low 
abundance. Additionally, they did not find any added 
value of removing 14 abundant proteins compared with 7, 
as both of the methods performed similarly. Echan et al. 
[45] also depleted up to six highly abundant proteins 
from serum or plasma, and the samples were afterward 
subjected to 2DE. They found a slight increase in the 
number of visualized spots. After protein identification, 
it appeared that these spots represented mostly minor 
forms of highly abundant proteins (e.g., ceruloplasmin or 
complement factors). Similar contradictory results are 
presented in the case of applying protein depletion in 
urine. Kushnir et al. [46] identified 2.5‐fold more pro-
teins in urine after depleting 6 highly abundant proteins. 
However, Afkarian et al. [47] did not report any increase 
in the number of identified proteins after albumin and 
IgG depletion in normo‐ or macroalbuminuric patients. 
In our hands [48], the application of four different deple-
tion strategies in urine from healthy controls or CKD 
patients did not lead to an increase in the number of 
protein identifications. The analysis was performed 
using low starting urine volumes (500 µl), mimicking 
conditions typical for large cohort biomarker discovery 
studies. Even though the protein depletion was efficient 
in most cases and the concentration of targeted proteins 
substantially decreased, no added value was observed after 
applying such strategies. Altogether, the results imply 
that depletion of only few highly abundant proteins from 
body fluids might not be sufficient. In order to detect 
low‐abundance proteins, a higher number of proteins 
need to be previously depleted. “SuperMix” resin might 
offer a solution to this problem, since it is able to deplete 
a large number of highly and moderately abundant pro-
teins. On the downside, the application of such depletion 
strategies requires high starting protein content, and the 
depletion targets are not specified by the producer. 
SuperMix is used in a combination with resins based 
on avian antibodies, designated for removal of several 
(12–14) highly abundant plasma proteins. The aforemen-
tioned system was successfully applied by Qian et al. [49] 
and Patel et al. [50] in plasma. Qian et al. [49] compared 
IgY12 depletion strategy alone with IgY12–SuperMix 
system using one‐ or two‐dimensional LC‐MS/MS. The 
application of SuperMix system resulted in an increase 
of 60–80% of proteome coverage compared with IgY12 
depletion. Patel et  al. [50] compared Qproteome kit, 
which removes albumin and immunoglobulins, with 
SepproIgY14–SuperMix column. The latter resulted in 
the identification of 276 proteins that were not detectable 
after Qproteome depletion, from which most were classi-
fied as low‐abundance proteins. However, Bandow [51] 
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applied three fractionation strategies on plasma samples 
(i.e., IgY14 depletion, IgY14–SuperMix set, and ProteoMiner) 
and analyzed them by 2DE. Even though obtained gel 
protein patterns between applied methods were different 
in comparison with the unfractionated plasma, analyzed 
spots represent only highly abundant proteins.

ProteoMiner (a commercialized name of combinato-
rial peptide ligand libraries) relies on depletion of highly 
abundant proteins with simultaneous enrichment of 
low‐abundance ones. This is achieved as a result of the 
application of millions of randomized hexapeptides, 
which can capture specific proteins. In contrast to deple-
tion strategies though, the method is not specific for 
one or a group of proteins, but rather affects the whole 
proteome. Highly abundant proteins rapidly saturate 
their binding sites and thus, the excess passes through 
the beads (depletion mechanism). Low‐abundance pro-
teins, however, do not saturate their binding sites that 
quickly, and therefore, the constant flow of the sample 
will cause gradual increase in the number of bound low‐
abundance proteins (enrichment mechanism) [52]. It is 
worth mentioning that if none of the ligands in the 
library demonstrate an affinity to a given protein, the 
latter will not be retained and thus detected by MS. 
Moreover, the strategy substantially affects the relative 
protein concentration in the sample (especially when the 
beads are saturated), increasing the complexity of quan-
titation procedures [53]. Similarly to protein depletion 
strategies, ProteoMiner was also criticized in some 
papers, but according to the “defenders” of the strategy, 
stated complaints are caused by an incorrect application 
of ProteoMiner rather than flaws of the technique [54]. 
In more details, Bandow [51] analyzed plasma samples 
by applying different depletion strategies (including 
ProteoMiner) followed by 2DE analysis. As already 
described in the paragraph earlier regarding depletion 
strategies, analyzed gel spots led to the identification of 
only highly abundant plasma proteins. In the defense of 
ProteoMiner, Righetti et al. [54] stated that they used too 
mild eluant able to desorb less than 30% of bound pro-
teins. For desorption of all the proteins and thus proper 
application of ProteoMiner, stronger elution protocol 
should have been applied. Additionally, the capturing of 
proteins was performed at high ionic strength, reducing 
the interaction efficiency of ProteoMiner. In the second 
example, Keidel et  al. [55] compared the enrichment 
efficiency in plasma of ProteoMiner with five different 
chromatographic beads (Sepabeads) that are based on 
the concept of hydrophobicity. They found only a weak 
increase in the concentration of low‐abundance pro-
teins, while all of the tested methods gave similar results. 
Therefore, they suggested that ProteoMiner uses the 
hydrophobic binding mechanism, while the ligand diver-
sity plays a minor role. Righetti et  al. [54] again stated 

that the capturing of proteins was performed at high 
ionic strength, decreasing the efficiency of formed inter-
actions. Thus, the statement that ProteoMiner applies 
hydrophobic mechanism is incorrect and exploits the 
lack of knowledge of authors regarding the applied 
binding mechanisms. It is therefore very important to 
perform the analysis according to available guidelines 
and taking into consideration all of the recommenda-
tions. Such guidelines are very well described in the 
following chapter to which the readers interested in the 
technique are referred to Ref. [52].

Other available affinity‐based methods do not seem 
as controversial as abundant protein depletion or 
ProteoMiner strategies. These methods rely clearly on 
protein enrichment, rather than depletion and in con-
trast to aforementioned “controversial strategies,” target 
specific protein groups instead of the whole proteome. 
First method that is worth mentioning is the immobi-
lized metal affinity chromatography (IMAC), where the 
enrichment is based on the affinity of proteins to metal 
ions. Such binding can be achieved, due to the exposure 
of functional groups by several proteins (i.e., Cys, His, 
Glu, Asp, Tyr) and their interaction with the metal ions 
(e.g., Al3+ or Ni2+). These moderately specific methods 
usually enrich the samples in proteins with acidic amino 
acids [1]. However, the method can be also used for the 
enrichment of phosphorylated amino acids as further 
described in this section [56].

Two other techniques, aiming at enrichment of glyco-
proteins or phosphoproteins, are widely used in the 
field of proteomics. Since differences in PTMs between 
healthy and disease subjects can be used as biomarkers, 
these techniques evolved into two new subfields of 
proteomics: glycoproteomics and phosphoproteomics.

Two approaches are commonly applied for the enrich-
ment of glycoproteins: lectin affinity and hydrazide 
chemistry‐based enrichment. In the case of the former, 
specific oligosaccharide epitopes bind to the lectin resin. 
A large number of lectins with different selectivity are 
commercially available. For example, concanavalin A 
recognizes mannosyl and glucosyl epitopes, while wheat 
germ agglutinin sialic acid and N‐acetylglucosamine. It is 
worth noting that the specificity of lectins binding O‐
glycosylated proteins is lower compared with these 
binding N‐glycosylated. The hydrazide chemistry‐based 
enrichment method relies on the chemical reaction 
(formation of covalent bonds) between the glycosylated 
proteins and the medium. The method however can be 
only used for the enrichment of N‐glycosylated proteins 
due to the lack of an enzyme that would cut O‐glyco-
sylated bonds [57]. It is very important to take into consid-
eration that the glycoproteomics workflow may differ 
from the one presented in this chapter, including appli-
cation of specific software for bioinformatics analysis. 
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Therefore, readers interested in glycoproteomics are 
referred to the following review [58].

In the case of phosphoproteomics, most of the sepa-
ration methods are used at the peptide level (exception: 
immunoprecipitation), which ensures high efficiency 
and high depletion rate of non‐phosphorylated mole-
cules. However, protein digestion leads to loss of the 
information on the phosphorylation interdependence 
(i.e., if a phosphorylation of one site in a protein is 
dependent on the phosphorylation of another). One of 
the strategies for the enrichment of the phosphopro-
teome (IMAC) was already mentioned in this section. 
The “typical” IMAC however is not specific for phos-
phoproteins and also enriches for proteins or pep-
tides containing acidic amino acids. Therefore, in the 
case of phosphoproteomics, several modifications of 
the method have been introduced, for example, esteri-
fication of the peptides, adjustment of the pH, and 
use of various chelate ions. Another phosphoproteome 
enrichment strategy is called metal oxide affinity chro-
matography, which uses titanium dioxide‐ or zirconium 
dioxide‐based chromatography methods. This strategy 
shows high affinity toward phosphorylated proteins 
and is more tolerant to the presence of salts, denaturation 
factors, or detergents compared with IMAC, making it 
a preferable strategy in phosphoproteomics compared 
with the latter. Other methods used for the enrichment 
of the phosphoproteome include ion‐exchange chro-
matography, HILIC, chemical modification of phos-
phopeptides, and calcium or barium precipitation. 
All of the methods presented are well described in the 
following review [56].

6.5.2 Sample Preparation for MS/MS 
(Tryptic Digestion)

Before describing commonly applied tryptic digestion 
methods, the difference between bottom‐up and top‐
down proteomics is worth mentioning, as only the for-
mer requires protein digestion. In the case of bottom‐up 
proteomics, proteins are digested (usually with trypsin) 
prior to MS analysis, and detected peptides are aligned 
to associated proteins. However, the method has sev-
eral limitations: (i) reduced specificity (identified pep-
tide sequences may belong to more than one protein) 
and (ii) incomplete protein sequence coverage (large 
protein fragments may not be identified at all by MS, 
resulting in the loss of information regarding sequence 
variants or present PTMs). Top‐down proteomics, aim-
ing at the analysis of intact (non‐digested) proteins, can 
tackle these problems, allowing to achieve complete 
protein sequence coverage, identify various proteo-
forms, and present PTMs. Nevertheless, the method is 
more applicable for the identification of proteins in 

simple mixtures. For proteome‐wide studies, bottom‐
up proteomics show higher throughput, proteome cov-
erage, and sensitivity compared with top‐down 
proteomics. Therefore, in this chapter the focus will be 
set on bottom‐up proteomics, while readers interested 
in top‐down proteomics are referred to the following 
review [34].

There are three commonly applied types of protein 
digestion methods: in‐solution digestion, in‐gel digestion, 
and filter‐aided sample preparation (FASP). Advantages 
and disadvantages of each method can be found in the 
following review [35].

In‐solution digestion is probably the most‐known 
sample preparation method, which, in the case of body 
fluids, typically involves the following steps: protein pre-
cipitation, resolubilization in a urea buffer, reduction, 
alkylation, and trypsin digestion. Due to the common 
use of the method, it is challenging to find a publication 
concentrating on its description per se. However, many 
protocols can be found online (e.g., Ref. [59]).

In‐gel digestion offers the possibility to divide the 
 proteome into multiple bands, reducing the sample 
complexity and allowing for in‐depth analysis of com-
plex samples. Moreover, the procedure allows to remove 
impurities of low molecular weight (e.g., buffer compo-
nents or detergents). However, higher amounts of trypsin 
are required compared with in‐solution digestion pro-
cess, which may result in formation of trypsin autolysis 
products. Additionally, casting the gels can increase the 
possibility of contaminating the samples with keratins. 
Both 1DE and 2DE can be used and applied for this 
method, and the protocol for in‐gel digestion is described 
in the following paper [60].

In FASP, all of the steps are performed using centrif-
ugal filter units. According to the original protocol, two 
filter cutoffs are applicable: 10 or 30 kDa. As expected, 
the application of 30 kDa filter is faster, due to more 
rapid sample concentration compared with 10 kDa 
 filters. The digestion comprises of four steps: (i) removal 
of components of low molecular weight in urea buffer, 
(ii) reduction and alkylation, (iii) protein digestion, and 
(iv) peptide isolation by filtration. The use of filters 
ensures that before protein digestion all low molecular 
weight components will be removed, while, after diges-
tion, the same filter allows to retain high molecular 
weight components on the filters, allowing for isolation 
of the peptide mixture. The methodology is described in 
the original paper from Wiśniewski et al. [61].

6.5.3 Separation of Peptides

In proteomics, the separation on peptide level is usually 
achieved by coupling the liquid chromatography system 
with mass spectrometer (LC‐MS‐based proteomics). 
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This procedure reduces the number of analytes that enter 
the mass spectrometer and at the same time (i) decreases 
the potential of ionization suppression, taking place 
when molecules cannot be detected, due to the dynamic 
range limitation of the detector; (ii) reduces the under-
sampling effect, related to the choice of ions by mass 
spectrometer; and (iii) increases the concentration of 
analytes, enhancing the sensitivity of MS detection. In 
the MS setup the LC typically refers to RP chromatogra-
phy [62]. However, recently combinatorial approaches of 
more than one chromatography methods are employed 
and can be used on‐ or offline. Such techniques in 
proteomics are recognized as multidimensional protein 
identification technology (MudPIT). The most common 
setup for MudPIT is the use of strong ion‐exchange 
chromatography as a first dimension and RP as the 
second one. However, other commonly applied systems 
include high‐pH RP coupled with RP or HILIC coupled 
with RP [62, 63]. The separation of peptides using various 
one‐ or multidimensional approaches for MS analysis 
is well described in the following review [62]. Of note, 
instead of applying RP coupled to MS, it is possible to 
use capillary electrophoresis (CE) system. Nevertheless, 
CE is more commonly applied in peptidomics studies 
and, thus, will be described in details in the correspond-
ing chapter.

6.6  Analytical Instruments

Available analysis instruments and ionization tech-
niques will not be covered in this chapter, since, even 
though the instrument setup applied has an enormous 
effect of the analysis (e.g., number of identified proteins, 
comprehensiveness of the analysis, sequence coverage), 
the users are commonly bound to a specific instrument. 
In other words, this aspect is not commonly modifiable 
for every analysis performed. Moreover, applied instru-
ment settings (e.g., collision energy, intensity threshold 
required to trigger MS/MS event or even protein loaded 
onto the column) commonly vary from lab to lab, as 
they are adjusted empirically. There are two aspects of 
LC‐MS/MS setup that should be mentioned though: 
instrument run time and the column length. In general, 
the longer the run time and length of the chromatography 
column, the more proteins can be identified, as demon-
strated by Hsieh et  al. [64] based on Caenorhabditis 
elegans analysis (same rules are applicable for body 
fluids). However, if the concentration of the peptides is 
below the detection limit of applied mass spectrometer, 
increase in the run time will not improve the number of 
protein identifications. Commonly applied instrument 
setups in proteomics are well described in the following 
review [65].

6.7  Data Processing and 
Bioinformatics Analysis

In this section bioinformatics tools for peptide and 
protein identification in shotgun proteomics will be 
briefly presented. Afterward, the focus will be set on 
protein quantitation methods, followed by description 
of data normalization and statistical analysis, which 
ensures obtaining good quality results.

6.7.1 Peptide and Protein Identification

The output from MS/MS analysis comprises of m/z and 
intensity values. However, it can be present in many 
different formats, depending on the instrument provider, 
for example, files “.raw” are produced by Thermo Scientific 
instruments, “.RAW” from Waters Corporation, while 
“.wiff ” from Applied Biosystems (ABI) [66].

Various programs can be used for the identification of 
peptides and proteins. These include software based on 
sequence database searches (e.g., MASCOT, SEQUEST, 
OMSSA, X!Tandem), de novo sequencing of peptides 
(e.g., PEAK, MS BLAST), tag searches (e.g., InsPect), or 
searches in spectral libraries (e.g., X!Hunter). Other pro-
grams were created to validate the assignments of MS/MS 
spectra to corresponding peptides (e.g., PeptideProphet or 
ProteinProphet) [66]. For shotgun proteomics, the most 
commonly applied search algorithm is based on sequence 
database search engines, where obtained fragment ion 
spectra are matched to corresponding predicted and theo-
retical spectra from the database [67]. Since the matching 
is not perfect, the obtained identifications are subjected to 
quality control procedures by calculating the false discov-
ery rate (FDR). This parameter estimates the number of 
false identifications (e.g., 1% of FDR means that 1% of the 
identifications in the dataset may not be correct) [1].

The lack of a common file format produced by differ-
ent programs is an obstacle for further processing of the 
data, since it is difficult for a software to cover all of the 
available data formats. To deal with that issue, two unifi-
cation formats have been established. Firstly, XML type 
of formats have become commonly applied by open‐
source software, including mzXML for processed mass 
spectra, pepXML for identifications and quantitation of 
peptides, and protXML for identification and quantita-
tion of proteins. The second common format, mzML, 
was developed by Human Proteome Organization 
Proteomics Standards Initiative (HUPO‐PSI) [66].

6.7.2 Protein Quantitation

In proteomics there are two commonly applied quantifi-
cation methods: label‐free and label‐based methods.
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In label‐free methods, protein abundance is usually 
calculated on the basis of the number of MS/MS spectra 
(spectral counting) or by integrating signal intensities. 
The principle of spectral counting is based on the 
assumption that highly abundant proteins are analyzed/
detected more often by the mass spectrometer and, 
thus, generate a higher number of MS/MS spectra. The 
spectral counting results exhibit good correlation with 
protein abundance. However, it is limited by the MS/MS 
saturation or undersampling effects, while the linear 
concentration range is lower compared with MS1‐based 
(peptide ion intensity‐based) quantification techniques 
[68]. Moreover, spectral counting can be biased toward 
large proteins, which can produce more peptide digests 
and, thus, more spectra. Therefore, the obtained data 
needs to be corrected, taking into consideration the pro-
tein length. A spectral count‐based quantitation method 
called absolute protein expression (APEX) corrects the 
observed peptide count using learned probabilities to 
identify the peptides. The method is based on the 
assumption that a protein in the sample is represented 
by a fraction of injected peptides. The role of APEX is 
the application of correction factors that makes these 
fractions proportional to each other. Therefore, protein 
abundance is calculated as a fraction of the peptide 
spectra that is correlated with that protein using the 
correction factors of observing each peptide. These factors 
include expected contribution of a protein in the pool of 
identified peptides, total number of putative peptides 
generated by a protein, probability of peptide being ion-
ized and analyzed by mass spectrometer, and peptide 
sequence characteristics that can affect the analysis (e.g., 
effect of PTMs). The method is described in details in 
the original paper [69]. In another method known as 
protein abundance index (PAI), the relative protein abun-
dance is calculated based on the number of identified 
peptides divided by the number of theoretically observa-
ble (tryptic) peptides. A derivation of this method, used 
for absolute quantification, is called exponentially modi-
fied protein abundance index (emPAI), which is calcu-
lated as 10^(PAI)‐1 [70]. Lastly, quantification based on 
ion intensity depends on the integration of intensity 
values for each peptide. Two steps are important for this 
method: detection and alignment of chromatograms and 
quantification of peptide intensities [66]. Each peptide 
needs to be detected in two‐dimensional LC‐MS space. 
Detection in LC dimension attributes appropriate reten-
tion time for each peptide, and since LC runs are not 
completely reproducible, it ensures that correct regions 
are evaluated in different runs. The quantification in this 
method is most commonly performed by calculating the 
area under the curve for each peak.

Label‐based methods rely on labeling the peptides 
with stable isotopes. The frequently applied label‐based 

approach in body fluid proteomics is called isobaric tags 
for relative and absolute quantification (iTRAQ). In this 
technique, N‐terminus and lysine side chains are labeled 
with up to eight different isobaric tags comprising a 
reporter group, mass balancing group, and a group that 
reacts with peptides. The m/z of reporter groups varies 
from 113 to 121, while the m/z of balance groups from 32 
to 24. However, the sum of the m/z of a reporter and 
balancing group for each of the labels remains the same, 
resulting in the generation of reporter ions with charac-
teristic m/z ratios. During peptide fragmentation, the 
balancing group is lost as a neutral fragment. The abun-
dance of the peptide is reflected by the intensity of the 
corresponding reporter ion. Peptide relative abundance 
is determined by calculating the ratio of reported ion 
intensity in different samples. Combining individual 
peptide abundances allows estimation of protein abun-
dance. The method however has some limitations: 
underevaluation of protein fold changes and presence of 
cross‐labeled impurities that causes interference during 
the analysis [67].

6.7.3 Data Normalization (Example of Label‐
Free Proteomics Using Ion Intensities)

Obtained proteomics data needs to be normalized to 
compensate for differences in the amount of sample 
loaded onto the column, variability in ionization effi-
ciency, and detector saturation or LC column carryover 
effect. Correcting for these differences increases the 
accuracy of the analysis. The bias related to protein 
amount injected into the column can be firstly reduced 
by evaluating the total protein content by protein assays 
(e.g., Bradford protein assay) or by taking into considera-
tion the area under the curve of previous runs based on 
UV trace signals. The normalization can be also based 
on the “housekeeping proteins,” whose levels should not 
change between compared conditions or on creatinine 
values in urine [68]. The number of available normaliza-
tion methods in proteomics is vast, and there are a num-
ber of papers focusing on comparison of normalization 
methods in proteomics datasets. For example, Callister 
et al. [71] compared four different normalization meth-
ods using LC‐FTICR MS instrument: (i) central tendency 
normalization (global normalization), which centers 
ratios of peptide abundance over a mean; (ii) linear 
regression normalization, which relies on the principle 
that systematic bias depends linearly on the range of 
peptide abundances; (iii) local regression normalization, 
which, in contrast to linear regression, assumes that the 
systematic bias does not linearly depend on the range of 
peptide abundances; and (iv) quantile normalization, 
which assumes that distribution of peptides in different 
samples is similar. They suggest that global and linear 
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normalization performed the best from the four. In our 
laboratory, for protein ion intensity normalization, we 
usually apply a method based on the total ion current, 
where the ion intensity of a given protein is divided by 
the total ion intensity of all proteins in a sample.

6.7.4 Statistics in Proteomics Analysis

In order to correct for the variability characterizing bio-
logical samples, an appropriate sample size is required. 
The optimum sample size should be determined based 
on statistical power calculations. Underpowered analyses 
are at a very high risk of identifying false positive bio-
markers or of failing to discriminate the true disease 
biomarkers. What is worth noting is that a sample size 
smaller than 12 does not allow to estimate the mean and 
variance based on normal distribution, and thus, larger 
sample sizes are recommended. Sample pooling should 
also be avoided, as it does not allow the extraction of 
information related to sample variability and the identifi-
cation of the outliers. Application of strict and correct 
statistical tests should be considered for every proteom-
ics study. Moreover, the findings should be corrected for 
multiple testing in order to reduce the number of false 
identifications. If a protein is found statistically signifi-
cant prior to application of multiple testing correction, 
but not after, the solution is not to avoid the correction, 
but rather increase the sample size or accept that this 
protein cannot be identified as a biomarker in this study. 
There are many tests available for multiple testing correc-
tion. Frequentist, false discovery, or Bayesian approaches 
are applicable for proteomics studies [10].

6.8  Validation of Findings

Techniques typically used for the validation of findings 
in body fluids are immunoassay‐based methods like 
ELISA and Western blot. These techniques are well 
established and used for many years for validation of 
proteomics findings. However, many disadvantages have 
been associated with the use of antibody‐based strate-
gies. Firstly, in order to perform the analysis, a specific 
antibody has to be produced, which is not always possi-
ble. Secondly, nonspecific binding can take place, 
increasing the variability of the method [72]. Finally, sev-
eral commercially available kits show poor analytical 
performance. This issue was demonstrated by Kift et al. 
[73] where five ELISA assays for neutrophil gelatinase‐
associated lipocalin were tested on urine samples. Only 
two out of five evaluated kits showed good performance, 
the rest of them failed either on testing one (e.g., limit 
of quantitation or parallelism) or more parameters. 

Recently, however, another technique is becoming 
increasingly popular for the validation purposes— 
targeted MS. This technology has many more applica-
tions apart from validation of proteomics findings [74]. 
Nevertheless, in this chapter, the focus will be set on 
the application of targeted proteomics for validation 
purposes.

The technology used for targeted proteomics is called 
selected reaction monitoring (SRM) or multiple reaction 
monitoring (MRM). It is usually performed on a triple‐
quadrupole mass spectrometer, which selects specific 
precursor and product ion pairs, known as transitions. 
The first quadrupole is used for filtering a selected pre-
cursor peptide, which is fragmented in the second quad-
rupole by collision‐induced dissociation (CID). The 
third quadrupole is used to filter a specific fragment ion 
that is finally measured by the detector. The quantitation 
of peptides is based on the measurements of the intensi-
ties of fragment ions. Obtained peptide measurements 
can be afterward assigned to a corresponding protein 
[75]. In MRM it is important to choose appropriate pep-
tides as targets. These must be unique for a given protein 
and easily detectable by the mass spectrometer. Several 
databases are available to make the choice of proper tar-
get feasible, including PeptideAtlas, the Global Proteome 
Machine Database, Pride, and Tranche. Such databases 
contain information from many experiments, enhancing 
statistical significance of findings, providing information 
regarding the global number of observations for the pep-
tide, and ensuring that the submitted data was obtained 
according to generally acceptable criteria. If a protein of 
interest does not have peptides in the database, the user 
can use bioinformatics tools that can predict the proteo-
typic peptides for a given protein. These tools include 
Peptide Sieve, ES Predictor, and Detectability Predictor. 
Similarly to parent peptides, transitions that show high 
intensity and low interference levels should be selected. 
These ion fragments are commonly chosen based on 
empirically obtained data from triple‐quadrupole 
experiments [74]. The verification of findings can be 
performed using publicly available spectral libraries. 
A  typical procedure in MRM experiments involves the 
addition of heavy isotope‐labeled peptide standards that 
improve the confidence of findings. These peptides co‐
elute at the same time as their non‐labeled analogs, and 
their fragment ion intensity ratio should also be the 
same, improving the confidence of identifications [76]. 
Execution of this complicated MRM procedure has been 
substantially facilitated by the development of sophisti-
cated bioinformatics tools. The most commonly used 
open‐access software are MRMer and Skyline, both well 
suited for the analysis of complex MRM experiments. 
Description of various software that facilitate MRM 
analysis can be found in the following review [75].
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6.9  Clinical Applications of Body 
Fluid Proteomics

The following section will describe several studies 
relative to the application of body fluids proteomics for 
biomarker discovery. The search was performed with 
Web of Science using following words: Biomarker AND 
Proteomics AND (Urin* OR Plasm* OR Ser* OR Bloo* 
OR CSF OR Cerebrospin* OR Body Fluid). Articles from 
the last 5 years were taken into consideration. In total 
1989 papers were retrieved. The three top cited articles 
from each year, concentrating on biomarker discovery 
studies in human subjects and applying MS, were taken 
into consideration. Therefore, in total 15 papers will be 
presented.

Addona et  al. [77] analyzed plasma samples for the 
identification of early biomarkers of cardiac injury. For 
the discovery phase, blood from the coronary sinus from 
patients (n = 3) with therapeutic planned myocardial 
infarction to treat hypertrophic cardiomyopathy was 
collected before, 10 and 60 min after the procedure (total 
of 9 samples). The samples were depleted from 12 highly 
abundant proteins, followed by applying strong cation‐
exchange (SCX) chromatography, yielding 80 fractions. 
These fractions were subjected to LC‐MS/MS, leading to 
the identification of a total of 1105 proteins, from which 
70% were identified in all 9 samples. In order to select the 
candidates for validation, they applied several criteria, 
including (i) fivefold change in the precursor ion inten-
sity of minimum two peptides per protein after the 
injury, (ii) prioritization using AIMS technology (targeted 
MS approach on Orbitrap or other high‐performance 
instrument), where proteins identified in coronary sinus 
plasma were also searched in peripheral blood plasma; 
and (iii) evaluation of expression enrichment trend. 
Biomarker candidates were validated by ELISA or MRM 
in peripheral plasma from patients with therapeutic 
planned myocardial infarction, spontaneous myocardial 
infarction, or ischemia (cases) and with routine catheter-
ization (controls). A number of novel cardiovascular 
biomarker candidates were identified (i.e., MYL3, TPM1, 
and FHL1), while discovery of previously reported was 
confirmed in this study (e.g., creatinine kinase, MB, or 
FABP) [77].

Shang et al. [78] studied the proteome of hepatocellu-
lar carcinoma patients in order to identify novel disease 
biomarkers. In the discovery set they analyzed plasma 
samples from 18 cirrhosis (controls) and 17 hepatocellu-
lar carcinoma patients (cases). High‐abundance proteins 
were depleted from plasma samples, and the remaining 
proteins were separated using SDS‐PAGE. Gel pieces 
were afterward destained, digested, and analyzed by 
2D‐LC‐MS/MS. The levels of osteopontin were found 
to be upregulated in cases compared with controls. 

This finding was validated in two independent sample 
cohorts comprising a total of 312 plasma samples of 
hepatocellular carcinoma patients (cases), cirrhosis 
subject (controls), chronic hepatitis C and B individuals 
(controls), and healthy subjects (controls). Higher osteo-
pontin levels were confirmed for cases in both validation 
sets compared with controls.

Da Costa et al. [79] searched for diagnostic biomarkers 
for HBV‐related hepatocellular carcinoma. High‐abun-
dance proteins were depleted from plasma samples from 
patients with hepatocellular carcinoma and chronic liver 
disease and healthy controls. Subsequently, depleted 
samples were subjected to 2D chromatography, followed 
by SDS‐PAGE and LC‐MS/MS analysis. After prioritiza-
tion of findings, latent transforming growth factor‐β 
binding protein 2 and osteopontin with levels signifi-
cantly higher in carcinoma patients compared with other 
groups were chosen for validation. ELISA was performed 
in a total of 684 plasma samples. A biomarker panel 
comprising these two proteins showed an area under the 
curve of 0.85.

Cima et  al. [80] applied a genetically guided strategy 
for the identification of serum biomarkers for diagnosis 
and prognosis of prostate cancer. In general, they were 
interested in biomarkers related to an inactivation of 
phosphatase and tensin homolog (PTEN) tumor sup-
pressor gene, which is commonly observed in prostate 
cancer patients. In the first step, sera and tissue samples 
from Pten‐null mice were analyzed using glycoprotein 
enrichment (hydrazide chemistry‐based method) 
 followed by LC‐MS/MS. This led to the identification of 
775 glycoproteins, and after bioinformatics prioritization, 
39 biomarker candidates were chosen for identification 
in human sera of prostate cancer patients (n = 52) and 
healthy controls (n = 40). The validation was performed 
using SRM or ELISA. Thirty‐nine proteins were quanti-
fied consistently in the validation samples. From these 
proteins, the best candidates for construction of a pre-
dictive model for detection of normal and abnormal 
PTEN were chosen. Ultimately a biomarker panel com-
prising four proteins—thrombospondin‐1 (THBS1), 
metalloproteinase inhibitor 1 (TIMP‐1), complement 
factor H (CFH), and prolow‐density lipoprotein recep-
tor‐related protein 1 (LRP‐1)—was able to discriminate 
between normal and aberrant PTEN with 79.2% sensitivity 
and 76.7% specificity.

Zeng et  al. [81] analyzed serum samples to identify 
biomarkers of breast cancer. Five samples from breast 
cancer patients (stage 2) and five from healthy controls 
were pooled and subjected to abundant protein deple-
tion, followed by multilectin affinity chromatography 
separation into fractions comprising unretained and 
retained proteins. Such prepared fractions were separated 
using IEF technique and finally analyzed by LC‐MS/MS. 
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After bioinformatics prioritization, four proteins were 
chosen as putative biomarker candidates: thrombospondin 
1 and 5, α‐1B‐glycoprotein, serum amyloid, P‐component, 
and tenascin‐X. However, only tenascin‐X was validated 
using ELISA in the same samples (but this time not 
pooled) of five breast cancer patients and five controls.

Bukhari et  al. [82] applied an affinity proteomics 
strategy for the identification of biomarkers of colorectal 
cancer. In brief, they utilized immunological mecha-
nisms and constructed an antibody set in rabbits against 
the secretome of human colon adenocarcinoma HT29. 
This secretome was used as an affinity reagent to capture 
possible tumor‐related antigens from sera of pooled 
samples from five colon cancer patients, five rectal 
cancer, and five healthy controls. The samples were 
subjected to 2DE and spots exclusively present in 
tumor samples were excised and analyzed by MALDI‐
TOF. Two proteins (soluble vimentin and keratin type II 
cytoskeletal) were identified uniquely in colon cancer 
sera, while TGF‐beta‐inhibited protein was found only 
in rectal cancer sera. Pathway and protein–protein inter-
action analyses revealed that only vimentin was linked to 
tumorigenic pathways of colorectal pathways. The levels 
of vimentin were validated in 43 preoperative patients 
with colorectal cancer and 20 controls, revealing that the 
protein levels were approximately 5 times higher in colon 
cancer patients compared with controls or subjects with 
rectal cancer.

Cynthia Martin et al. [83] studied the serum proteome 
in order to identify biomarkers for progression of 
Duchenne muscular dystrophy. For the discovery set, 
four pooled sample groups were analyzed: adult con-
trols, child controls, Duchenne muscular dystrophy 
ambulant patients, and Duchenne muscular dystrophy 
non‐ambulant subjects. Serum pools were processed by 
the ProteoMiner kit and fractionated with SDS‐PAGE. 
The gels were afterward cut into 10 pieces and subjected 
to LC‐MS/MS testing 2 replicates for each pool. After 
performing bioinformatics analysis, fibronectin, in 
which levels were found upregulated in Duchenne 
muscular dystrophy patients compared with controls, 
was chosen for further validation. This validation was 
performed using ELISA, where the levels of fibronectin 
were compared with 68 Duchenne muscular dystrophy 
patients with 71 subjects with various muscular dystro-
phies and 15 controls. Upregulation of fibronectin in 
Duchenne muscular dystrophy patients compared with 
subjects with other dystrophies and healthy controls was 
confirmed by ELISA. Additionally, levels of fibronectin 
were tested in 22 Duchenne muscular dystrophy patients 
over a period of time (6 months to 4 years), demonstrating 
its gradual increase.

Nie et  al. [84] analyzed the serum glycoproteome in 
order to discover putative biomarkers for pancreatic 

cancer. In this study, proteomics profile of pancreatic 
cancer patients (n = 37) was compared with subjects with 
conditions that are related to pancreas: diabetes (n = 30), 
cyst (n = 30), chronic pancreatitis (n = 30), and obstructive 
jaundice (n = 22). From each of the disease groups, four 
to six samples were chosen randomly for the analysis. 
Additionally, pooled sample from 30 healthy controls 
was used as an internal standard. Chosen samples were 
subjected to abundant protein depletion and glycopro-
tein enrichment (lectin chromatography), followed by 
label‐free or tandem mass tag (TMT)‐labeled LC‐MS/
MS analysis. This led to the identification of 243 proteins 
in non‐labeled analysis and 354 in TMT‐labeled approach. 
After bioinformatics analysis, significantly different 
proteins were validated by ELISA and lectin ELISA 
assays in a total of 179 samples. This led to a development 
of a biomarker panel comprising four proteins (α‐1‐
antichymotrypsin, thrombospondin‐1, haptoglobin, and 
carbohydrate antigen 19‐9) that can distinguish pancre-
atic cancer from other diseases with an area under the 
curve values in the range of 0.92 to 0.95.

Linden et al. [85] analyzed urine samples for the iden-
tification of putative biomarkers of non‐muscle‐invasive 
bladder cancer. Urine samples from bladder cancer 
patients (n = 5) and healthy controls (n = 4) were concen-
trated and depleted from highly abundant proteins. 
Afterward, pooled or individual samples were analyzed 
by LC‐MS/MS in two replicates each. These led to the 
identification of 231 and 298 unique protein identifica-
tions in pooled or individual urine, respectively. In total, 
387 unique proteins were identified, from which, after 
the analysis, 29 overexpressed in non‐muscle‐invasive 
bladder cancer candidate biomarkers were discovered. 
Higher levels of four proteins were confirmed with 
Western blot on 17 cases and 26 controls: fibrinogen β‐
chain precursor, apolipoprotein E, α‐1 antitrypsin, and 
leucine‐rich α‐2 glycoprotein 1. Dot‐blot analysis on 
individual urine samples from 99 bladder cancer patients 
and 13 healthy controls further prioritized fibrinogen 
β‐chain precursor and α‐1 antitrypsin as the most inter-
esting candidates showing sensitivity and selectivity in 
the range of 66–85%.

Chen et al. [86] aimed for the identification of poten-
tial bladder cancer biomarkers in urine samples. Hernia 
patients were used as controls (n = 9) and bladder cancer 
subjects as cases (n = 9), which were pooled into one 
control and one case sample. They applied hexapeptide 
library beads or abundant protein depletion column, 
followed by iTRAQ labeling. Afterward the samples were 
subjected to basic RP chromatography, and ultimately 
analyzed fractionated or unfractionated urine was 
analyzed by LC‐MS/MS. The application of depletion 
strategies increased the number of identified proteins 
from approximately 300 (for unfractionated sample) to 
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500 (after any of applied fractionations) per run. Levels 
of six apolipoproteins (APOA1, APOA2, APOB, APOC2, 
APOC3, and APOE) and of serum amyloid A‐4 protein 
were elevated in bladder cancer patients compared with 
hernia individuals, while pro‐epidermal growth factor 
was found downregulated in bladder cancer subjects. 
The findings were confirmed by Western blot or Bio‐Plex 
assay in an independent cohort.

Kentsis et al. [87] analyzed urine samples to identify 
biomarkers for Kawasaki disease. The study cohort for 
discovery is comprised of six patients with Kawasaki 
disease, six subjects with febrile illness that mimics 
Kawasaki disease, and three patients with Kawasaki 
disease after complete response to treatment. Urine 
samples were subjected to centrifugation, protein 
 precipitation, SDS‐PAGE, and RP‐LC, followed by LC‐
MS/MS analysis. In total 2131 unique protein were 
identified. Proteome of patients with Kawasaki disease 
was enriched in biomarkers of cellular injury and 
immune regulators compared with two other tested 
groups. Elevated levels of meprin A and filamin C were 
validated in urine or serum samples in two independ-
ent sample cohorts comprising a total of 236 patients. 
A biomarker panel composed of meprin A and filamin 
C showed very good diagnostic performance for diag-
nosis of Kawasaki disease showing an area under the 
curve value of 0.98.

Sylvester et  al. [88] analyzed urine samples from 
infants to identify diagnostic and prognostic biomarkers 
of necrotizing enterocolitis. The study was divided into 
two phases: discovery set, composed of 45 necrotizing 
enterocolitis patients, 12 sepsis, and 2 healthy controls, 
and validation set, which included 40 necrotizing 
enterocolitis subjects, 5 sepsis, and 15 healthy controls. 
Samples from discovery set were analyzed by LC‐MS, 
which led to identification of 7 putative biomarkers (α‐2‐
macroglobulin‐like protein 1, cluster of differentiation 
protein 14, fibrinogen alpha chain, cystatin 3, pigment 
epithelium‐derived factor, retinol binding protein 4, and 
vasolin), which levels were confirmed by ELISA in the 
validation set. The panel allowed to differentiate medical 
versus surgical NEC, NEC versus sepsis, and NEC 
versus controls with high sensitivity (89–96%) and spec-
ificity (80–90%).

Ringman et al. [89] studied the proteome of patients 
with familial Alzheimer’s disease, caused by mutation in 
PSEN1 and APP genes. Fourteen mutation carriers were 
used as cases and five non‐carriers as controls. Gathered 
CSF samples were depleted from highly abundant pro-
teins and analyzed by LC‐MS/MS. This led to identifi-
cation of 600 proteins, from which 46 were upregulated 
and 10 downregulated in carriers compared with non‐
carriers. Fourteen of differentially expressed proteins 
were previously reported in the literature (e.g., APP, 

transferrin, α1β‐glycoprotein, or plasminogen). Novel 
findings included secreted phosphoprotein 1, calsyn-
tenin 3, and CD99 antigen. Unfortunately, the findings 
were not validated, and considering the relatively small 
sample size, they should be evaluated with caution.

Kroksveen et al. [90] aimed for the identification of dif-
ferentially expressed proteins between patients with 
multiple sclerosis and controls for future evaluation of 
these proteins as disease biomarkers in large sample 
cohorts. In the discovery set, the CSF from patients with 
clinically isolated syndrome (n = 5) and relapsing‐remitting 
multiple sclerosis that had clinically isolated syndrome 
when the lumbar puncture was performed (n = 5) and 
from controls with other inflammatory neurological 
diseases (n = 5) was analyzed. The samples were firstly 
depleted from 14 highly abundant proteins using MARS 
column, digested, and labeled with iTRAQ reagent. Such 
prepared peptides were subjected to SCX chromatogra-
phy, followed by clean‐up from the salts, and analyzed by 
LC‐MS/MS. This led to the identification of a total of 
1291 proteins. From the list, 20 proteins were found dif-
ferentially expressed between 10 patients with clinically 
isolated syndrome, and the controls were validated by 
MRM. The validation population consisted of a total of 
131 patients divided into following groups: 16 patients 
with relapsing‐remitting multiple sclerosis that had clin-
ically isolated syndrome at the time of lumbar puncture, 
15 patients with clinically isolated syndrome, 36 patients 
with relapsing‐remitting multiple sclerosis, 33 patients 
with other inflammatory neurological diseases, and 32 
patients with other neurological diseases. Five proteins 
(α‐1‐antichymotrypsin, contactin‐1, apolipoprotein D, 
clusterin, and kallikrein‐6) were found differentially 
expressed between various groups. Nevertheless, none 
of the validated proteins were able to discriminate 
between multiple sclerosis patients and controls on its 
own, and thus, in the future, an establishment of a bio-
marker panel was recommended.

Liong et  al. [91] analyzed the cervicovaginal fluid to 
predict spontaneous preterm labor in symptomatic 
pregnant women between 22 and 36 weeks of gestation. 
The fluid from eight women who spontaneously deliv-
ered at term and from four women who spontaneously 
delivered preterm was pooled, respectively. The samples 
were subjected to 2D‐DIGE, and subsequently, spots of 
interest were excised and analyzed by LC‐MS/MS. 
This led to identification of 12 differentially expressed 
proteins between compared groups. Elevated levels of 
albumin and vitamin D‐binding protein in women with 
preterm delivery were confirmed by ELISA in an inde-
pendent samples cohort of 129 samples. The biomarker 
panel comprising two proteins showed 66.7% sensitivity, 
100% specificity, 100% positive predictive value, and 
96.7% negative predictive value.
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6.10  Conclusions

Proteomics analysis of body fluids is a complex and 
multistep procedure. Every step of sample preparation, 
starting from collection procedures ending with LC‐MS/
MS analysis conditions, needs to be optimized. Similarly 
to sample preparation, data processing can be performed 
in many different ways. There is no ideal way to conduct 
the analysis, and many steps should be optimized based 
on various factors (e.g., sample type analyzed, type of 
proteins of interest, applied instrument setup or disease 
studied, and many more). All these aspects severely affect 
the final outcome of the analysis. It is therefore recom-
mended to optimize the workflow prior to performing 
the analysis of samples of interest, and this optimization 
should be adjusted specifically to study requirements.

The analysis of body fluids, compared with tissue, shows 
a notable advantage: it is easier to apply the identified 
biomarkers in clinical practice for diagnosis or prognosis 
of a disease. This is possible simply due to easy, noninva-
sive, and low‐cost sample collection. It is worth mentioning 

though that the analysis of tissue is more suitable for the 
elucidation of disease mechanism and, thus, for identify-
ing novel drug targets. Ultimately, analysis of body 
 fluids is required for diagnostic purposes, while analysis 
of tissue samples is required for drug development. 
However, it is impossible to treat a disease if it is not 
diagnosed (i.e., having discovered drug targets, but not 
being able to diagnose the disease). Along the same lines, 
even early diagnosis of a disease is not advantageous, if 
treatment options do not exist (i.e., having diagnostic 
biomarkers, but not developed the drugs). In conclu-
sions, research on both types of samples (tissue and body 
fluids) is needed to reduce the health and economic 
burden related to a disease.

Proteomics analysis of body fluids is for now, to 
some degree, limited by the analytical characteristics 
of current instrumentation/techniques (e.g., resolving 
power, detection limit). In the future, advances in MS 
analysis and bioinformatics should allow for more in‐
depth analysis of body fluids proteomes, facilitating the 
development of disease biomarkers.
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7.1  Introduction

Peptides consist of a chain of 2 to approximately 50 amino 
acids linked by an amide bond [1, 2]. There is no clear 
demarcation between peptides and proteins based on 
molecular weight or the number of amino acids [2]. In 
the post‐genomic era, the term “peptidomics” was firstly 
defined as the study of low molecular weight proteins, 
ranging from 0.5 to 15 kDa [3].

In other words, the peptidome concept could be related to 
biological peptides such as hormones, neuropeptides, 
cytokines, growth factors, and also inhibitors, activators, or 
substrates of a pathway [4, 5], which are generated from 
larger precursors. These molecules are involved in signal 
exchange between cells, and the transport of these mes
sengers is most often performed through body fluids that 
enable communication even between cells that are too 
remote to interact directly or by migration [6]. Another type 
of peptides is fragments derived by the enzymatic cleavage 
of proteins in vivo. Particularly, those proteolytic events 
could reflect specific biological states of individuals, which 
is very interesting in clinical chemistry and modern medi
cine. Moreover, changes in excretion and modification of 
peptides may be associated with pathological events.

In proteomics, proteins are digested to shorter frag
ments by using enzymes to enable analysis by mass spec
trometry (MS), but no such cleavage pattern is employed 
in peptidomics. The native or endogenous peptides are 
formed during protein processing or degradation pro
cesses by the action of proteases; therefore, the peptides 
are no longer part of the precursor protein. As these pep
tides are in general found in nanomolar or picomolar 
range, they are masked by the predominant proteins, hence 
not detectable by the standard proteomics approaches.

7.2  Clinical Application of Peptidomics

Peptidomics studies aim at the identification of peptides 
present in a biological sample that could offer reliable 
information on biological processes. The high concen
tration of the analytes in a compartment can alter their 
diffusion or secretion to other compartments. The deter
mination of the concentration of peptides in body fluids, 
tissues, and cells could contribute to the understanding 
of human pathology. In particular, peptides could be used 
as biomarkers when their concentration varies signifi
cantly in association with a pathological condition.

Analysis of biological fluids could reveal the health  status 
of an individual, provide informative biomarkers across a 
wide spectrum of diseases, and elucidate the cause of a dis
ease [7, 8]. MS‐based approaches are used for the discovery 
of novel biomarkers; the results of these experiments could 
improve clinical diagnosis and prognosis and eventually 
lead to lifesaving medical treatments [9].

7.3  Different Types of Body Fluids Used 
in Biomarker Research

7.3.1 Blood

Blood is a routinely used clinical specimen in disease 
diagnosis and therapeutic monitoring. It is composed of 
cells and extracellular fluid that circulates in the whole 
body; thus it reflects the health status of an individual 
due to the leakage of components from different organs/
cells in addition to the classical plasma proteins (albumin, 
immunoglobulins, transferrin, etc.) [10, 11]. Plasma is the 
liquid obtained after removal of cells from whole blood, 
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while serum is the liquid collected after blood clotting. For 
peptidomic profiling, blood plasma is preferred over serum 
because clotting involves the activation of numerous 
 proteases that cleave highly abundant proteins, thus releas
ing large amounts of peptides that can prevent the identifi
cation of low‐abundance native plasma peptides [12]. 
Moreover, during coagulation process, the low‐abundance 
peptides might be retained in the clot, thus impeding the 
identification of potential biomarkers. The blood plasma 
proteome is the most complex and heterogeneous human‐
derived proteome, and the concentration of total protein is 
typically in the range of 60–80 mg/ml [13]. The plasma 
proteome database developed by the Human Proteome 
Organization (HUPO) contains more than 10 500 proteins. 
These proteins have various posttranslational modifica
tions (PTMs), so the actual number of isoforms present in 
plasma is significantly higher [14, 15].

7.3.2 Urine

Urine can be considered as the “fluid biopsy” of the kid
ney and urogenital tract [16]. Theoretically, urinary pro
teins can originate from glomerular filtration of plasma 
proteins, secretion of proteins from renal tubular epithe
lial cells, and shedding of whole cells along the urinary 
tract: shedding of apical membranes of renal tubular epi
thelial cell and exosome secretion. Under normal condi
tions, low molecular weight  proteins and only a small 
fraction of proteins with middle molecular weight pass 
freely through the glomerular barriers and reach renal 
tubules. Because of the high efficacy of the reabsorption 
process by proximal tubular epithelial cells, all proteins 
in the tubular lumen are excreted in small amounts 
under physiological conditions into urine [17].

A protocol for urine collection has been reported by 
the Human Kidney and Urine Proteome Project (HKUPP) 

and the European Urine and Kidney Proteomics (EuroKUP) 
initiatives (see http://www.hkupp.org and http://www.
eurokup.org for detailed information).

Urine collection is not invasive and a volume sufficient for 
peptidomics analysis can be easily obtained. The urinary 
proteome is quite stable because urine stays in the bladder 
for a considerable time before collection. This provides suf
ficient time for total proteolytic processing at 37°C by 
endogenous proteases. Urine is less complex than blood, 
which allows simpler sample preparation procedures. 
Samples can be stored for several years at −20°C without 
significant alteration of the urinary proteome [18, 19].

Due to these advantages, urine has been often used 
as a convenient source for biomarker discovery. In 
order to incorporate the huge amount of data gener
ated from urinary studies, to collect those data, and to 
allow researchers to discover new relationships 
between diseases and proteins, several databases were 
created [20–24]. A large dataset including over 20 000 
data of human naturally occurring urinary peptides 
under patho physiological conditions was developed 
by Mischak et  al. (http://mosaiques‐diagnostics.de/
d i a p a t p c m s / m o s a i q u e s c m s / f r o n t _ c o n t e n t .
php?idcat=257).

A list of urinary databases is reported in Table 7.1.
Besides blood and urine, researchers are investigating 

other biological fluids such as cerebrospinal fluid (CSF), 
saliva, interstitial fluid, amniotic fluid, and follicular 
fluid for diagnostic biomarker discovery. The useful
ness of these alternative body fluids for biomarker dis
covery has not been yet clearly established as that of 
plasma and urine specimens. The main aim of the clini
cal proteomics is to acquire reliable data possible for 
diagnostic and therapeutic purposes. Therefore, in this 
chapter, the use of plasma and urine in clinical peptid
omics via MS is presented.

Table 7.1 Proteomics and peptidomics urinary databases.

Database Link Topic Reference

HKUPP Database http://www.hkupp.org Proteome of normal kidney and urine
EuroKUP http://www.eurokup.org Human and kidney proteomics
MAPU Urine Dataset http://www.mapuproteome.com Human urinary proteins [20]
Clinical Urine 
Proteomics Database

http://alexkentsis.net/urineproteomics/ Proteomics database [21]

Urinary Exosome 
Protein Database

https://hpcwebapps.cit.nih.gov/ESBL/Database/
Exosome/

Proteins identified from exosomes in normal human 
urine

[22]

Urinary Peptide 
Biomarker Database

http://mosaiques‐diagnostics.de/mosaiques‐
diagnostics/human‐urinary‐proteom‐database

CE‐MS results of naturally occurring human urinary 
peptides under pathophysiological conditions

[23]

Urinary Protein 
Biomarker Database

http://122.70.220.102/biomarker Manually curated human and animal urine protein 
biomarker database

[24]
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7.4  Sample Preparation and Separation 
Methods for Mass Spectrometric Analysis

7.4.1 Depletion Strategies

Analysis of plasma by mass spectrometric techniques 
either quantitatively or qualitatively offers the possibility 
for identification of biomarkers for a particular disease. 
However, 90% of the total protein content corresponds 
to highly abundant proteins like albumin and immuno
globulins [25]. Moreover, the identification of low‐
abundance proteins/peptides is hindered by the presence 
of high‐abundance proteins/peptides, and thus the dis
covery of novel biomarkers is challenging. For example, 
angiotensin II levels were found to be 18 pM in healthy 
subjects and gradually increase as the stage of chronic 
kidney disease (CKD) progresses [26]. The prostate‐
specific antigen (PSA) and other biomarkers are also 
present at low levels, that is, in pg/ml [27]. Consequently, 
the quantification of the whole proteome in a single assay 
is quite challenging and constitutes a major bottleneck 
for new biomarker discovery. In addition, potential 
biomarkers are often found in concentrations below the 
limit of detection of the available MS [28]. Therefore, 
improvements in both sample preparation and peptide 
analysis are required in order to increase the analytical 
performance of peptidomics assays.

Currently, different fractionation methods are employed 
in order to fractionate the peptides and reduce the 
sample complexity prior to mass spectrometric analysis, 
such as chromatography (reversed phase, affinity, size 
exclusion, ion exchange, etc.), electrophoresis (1D‐PAGE, 
2D‐PAGE, capillary, etc.), ultrafiltration, and precipita
tion [29, 30]. These techniques differ in their principles 
and instrumentation and achieve fractionation by 
exploiting the differences in physicochemical properties 
of peptides. Nowadays, a combination of different tech
niques is applied in a single step by packing different 
matrices in a single column interfaced with a mass 
spectrometer enabling fast sample processing. One such 
example is Multidimensional Protein Identification 
Technology (MuDPIT) where a strong cation‐exchange 
resin and a reverse‐phase resin are packed in a single 
column that is interfaced with electrospray ionization 
(ESI) tandem mass spectrometry (MS/MS) [31]. Affinity‐
based depletion of highly abundant proteins is also 
applied in peptidomics studies prior to mass spectrometric 
analysis [32].

In any multidimensional technique, the primary step 
in the workflow involves the depletion of predominant 
proteins that substantially increases the sensitivity for 
identifying low‐abundant proteins/peptides. However, 
other proteins are present in the high‐abundance protein 
fraction. So it is important to analyze all the fractions in 

order to ensure that no other vital proteins are omitted 
by chance. In the past, albumin was depleted using the 
Cibacron blue F3GA column, a hydrophobic chlorotriazine 
dye conjugated to sepharose, which has more affinity 
toward albumin [33, 34]. This is a simple and inexpensive 
method for removing albumin from plasma. Other 
synthetic dyes are developed, which mimic the Cibacron 
blue dye and have an even greater affinity toward albu
min. However, these dyes bind nonspecifically to other 
proteins too [35, 36]. Immunoglobulins are removed 
using protein G/A by affinity chromatography that can 
be combined with the dye ligand for removal of albumin 
[37–40]. Nowadays, antibody/immunoaffinity ligands 
for albumin and immunoglobulins are used more widely 
than other less specific methods (dyes, protein G/A). 
Multiple Affinity Removal Column or immunoaffinity 
capturing columns allow the partial elimination of the 
most abundant plasma proteins, namely, albumin, IgG, 
antitrypsin, IgA, transferrin, haptoglobin, and apolipo
proteins [41, 42]. Chicken IgY antibodies have been used 
successfully for depletion of high‐abundance plasma 
proteins, allowing the enrichment for low‐abundance 
peptides [43–49]. However, these approaches cannot 
totally remove a high‐abundance protein; hence a more 
appropriate term is immunoaffinity‐based protein sub
traction chromatography (IASC).

Besides the antibody‐based methods, Bio‐Rad developed 
a protein enrichment technology under the trade name 
of ProteoMinerTM where a combinatorial hexapeptide 
library is utilized to achieve enrichment of low‐abun
dance proteins based on hydrophobic and charge‐to‐
charge interactions between proteins and immobilized 
hexapeptides [50, 51]. Moreover, the isolated peptides or 
proteins are in their native state, hence retaining their 
biological activity. Another approach aiming to enrich 
for phosphopeptides is based on titanium dioxide chro
matography. The hydrophilic phosphate of phospho
peptides interacts with porous titanium dioxide surface 
by forming coordinate covalent bonds [52]. A recent 
report presents data on high‐abundance protein depletion 
with the use of anionic hydrogel particles of poly(N‐
isopropylacrylamide‐co‐acrylic acid) [53].

7.4.1.1 Ultrafiltration
Ultrafiltration is a simple, fast, and affordable sample 
preparation method that uses defined molecular weight 
cutoff membrane filters to separate proteins into low 
molecular weight and high molecular weight fractions by 
centrifugation [54]. High molecular weight molecules 
are retained on the membrane, whereas low molecular 
weight molecules pass through the membrane. Amicon 
Ultra Centrifugal filters are generally used for protein 
purification and concentration and for desalting [55]. 
Zougman et  al. separated the low molecular weight 
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peptides (neuropeptides) from the CSF by ultrafiltration, 
which led to the identification of 563 peptides by nano‐
LC‐MS/MS [54]. Prior to ultrafiltration, acetonitrile 
(ACN) is added to the samples to disrupt the interaction 
between proteins and peptides in order to increase the 
recovery of low molecular weight peptides [56].

7.4.1.2 Precipitation
By addition of organic solvents, acids, or salts, high 
molecular weight proteins are precipitated, and low 
molecular weight peptides remain in solution. Normally, 
in organic precipitation, proteins are efficiently precipi
tated using ice‐cold acetone or ACN [29, 55]. Chertov 
et al. extracted low molecular weight proteins by ACN 
with 0.1% TFA as an ion pairing reagent that can disturb 
the interaction of peptides or low molecular weight 
proteins with predominant proteins [57]. Different 
percentages of ammonium sulfate can be used for precipi
tation of proteins; however this salt interferes with the 
MS analysis. Kawashima et al. developed a new peptide 
extraction method called differential solubilization based 
on plasma dilution with a denaturating solution and 
addition of ice‐cold acetone followed by centrifugation. 
Later, the precipitate was dissolved in 70% ACN contain
ing 12 mM HCl followed by centrifugation. The super
natant contained low molecular proteins/peptides that 
were lyophilized and then fractionated by RP‐HPLC [58]. 
This method is more effective and reproducible than 
ACN precipitation and ultrafiltration. Recently, Pena 
et  al. used 70% perchloric acid for the precipitation of 
proteins followed by neutralization with potassium 
hydroxide. After centrifugation the peptides contained 
in the supernatant were fractionated by RP‐HPLC [8].

7.4.1.3 Liquid Chromatography
Size‐exclusion chromatography (SEC) is used to separate 
the molecules based on the size or the hydrodynamic 
volume of a molecule. This technique is also applicable 
to separate low molecular weight proteins/peptides from 
abundant proteins of higher molecular weight. The 
beads utilized in this technique are available in different 
pore sizes [59]. However, this technique has certain dis
advantages: it requires a large sample volume, the eluted 
peptides are diluted, and the resolving power is limited 
[60]. Ueda et al. used SEC for the enrichment of pepti
dome of serum samples from patients suffering from 
lung adenocarcinoma in order to identify biomarkers by 
using nano‐LC‐MS/MS [61].

Reverse‐phase chromatography is routinely used in 
proteomics prior to MS. It separates the peptides accord
ing to their hydrophobicity and can be directly coupled 
to ESI. In general, the stationary phase is made of C18, 
C8, and C4 carbon chains that provide a hydrophobic 
surface for peptide binding. In peptidomics, C18 columns 

are commonly used, and the peptides are eluted by using 
an increasing concentration of ACN. Factors that influ
ence the resolution include the type of hydrophobic 
stationary phase, particle size, sample volume, column 
length, and the pH of the mobile phase. The efficiency 
can be improved by increasing the column length and 
reducing the inner diameter. However, a small inner 
diameter increases the backpressure and thus requires 
higher pressure [62, 63].

7.4.1.4 Capillary Electrophoresis
Numerous protocols for extraction, purification, and 
analysis of proteins are well established. However, few of 
these methods are applicable in the case of peptides. For 
example, a standard separation technique for proteins is 
2D electrophoresis combined with MS, which cannot be 
applied for smaller proteins and native peptides (<10 kDa). 
The concentration of peptides in biological samples is 
usually low, and the presence of highly abundant proteins 
prevents peptide detection by the standard proteomics 
approaches. Moreover, gel‐based methods cannot effi
ciently fractionate peptides. Trypsin digestion, commonly 
used for large proteins, is not useful for peptides, resulting 
in a limited number of fragments. Capillary electrophore
sis is a separation technique based on the differential 
electrophoretic velocities of ions in a high‐voltage electric 
field, in which molecules migrate depending upon the 
charge of the molecule. A broad number of separation 
modes are available: capillary zone electrophoresis (CZE), 
capillary gel electrophoresis (CGE), micellar electrokinetic 
capillary chromatography (MEKC), capillary electrochro
matography (CEC), capillary isoelectric focusing (CIEF), 
and capillary isotachophoresis (CITP). CZE is widely used 
among the CE techniques due to the fast and highly 
efficient separation coupling [64].

In CZE (generally referred to as CE), the separation of 
the peptides depends on differences in electrophoretic 
mobility applying high voltage to a capillary filled with 
electrolyte solution. The migration of peptides is directly 
proportional to the charge of the molecule and inversely 
proportional to its size [9].

CE is usually coupled to MS via ESI or matrix‐assisted 
laser desorption/ionization (MALDI). ESI is the most 
common type of ionization coupled online to the CE due 
to the high ionization efficiency and the soft nature of 
the ionization process [65].

The coupling of CE to MALDI can only be achieved 
offline and requires fractionation (spotting) on a target 
plate, leading to a separation step that is not physically 
coupled to the ionization step [66].

CE‐ESI‐MS has demonstrated robustness, relatively 
short run times (about 60 min per run), and high repro
ducibility, which is suitable for clinical application and 
biomarker discovery [65] (Figure 7.1).
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7.4.1.5 Instrumentation
MS is a technique used to determine the molecular weight, 
structural information, and elemental composition (iso
tope pattern) of a wide range of compounds/analytes. 
The key components of MS are the ion source, the mass 
analyzer (ToF, quadrupole, quadrupole ion trap, Fourier 
transform ion cyclotron resonance, Orbitrap), and a detec
tor that records the ion abundance and the mass‐to‐charge 
(m/z) ratio. The main requirement for MS analysis is that 
peptides must be converted to ions in gaseous state. Since 
peptides are thermally labile and nonvolatile, soft ioniza
tion techniques are employed, namely, ESI and MALDI. 
A wide range of sensitive MS instruments are available. 
Modern instruments have hybrid mass analyzers that fur
ther increase the sensitivity of the instrument [8, 9, 66, 67].

7.5  Identification of Peptides and Their 
Posttranslational Modifications

In order to identify peptides by MS, the precursor ions 
must be fragmented. Fragmentation is carried out by 
collision‐induced dissociation (CID), electron transfer 
dissociation (ETD), or high energy collision dissociation 
(HCD), either independently or in combination. Thus, a 
high‐resolution fragmentation spectrum is generated 
and evaluated with different algorithms [68, 69]. The 
most extensively used algorithms for peptide identifica
tions are SEQUEST [70], Mascot [71], X! Tandem [72], 
MS‐Fit [73], and OMSSA [74]. Many software tools have 
been developed to deconvolute the spectra for more 
confident peptide identifications (e.g., Thrash algorithm 
[75], MS‐Decconv [76], Xtract [77], DeconMSn [78]). 
Yufeng et al. [79] compared different collision methods 
for plasma peptidome identifications using conventional 
software tools (SEQUEST, Mascot) and the counts of 
peptide backbone cleavages (CBC) [80]. Analysis of very 
large raw spectral that are generated through MS‐based 

peptidomics is quite challenging because naturally 
occurring peptides have variable termini compared with 
the peptides that are generated by cleaving proteins with 
specific enzymes (trypsin). Moreover, amino acids can 
be modified, and these modifications impede unambigu
ous peptide identification. In addition, the available 
databases sometimes yield contrasting results; hence a 
definitive identification must be supported with addi
tional experimental data [5]. Reisinger et al. [81] intro
duced an online custom tool, “Database on Demand,” 
that can produce a wide variety of customized sequence 
databases based on UniProtKB/Swiss‐Prot, UniProtKB/
TrEMBL, and the International Protein Index (IPI).

Within a single MS experiment, a limited number of 
spectra are confidently designated to specific peptide 
sequences, and the rest are ignored due to many reasons. 
Some of them are (i) flaws in the scoring systems that 
are employed in the database search tools, (ii) peptide 
sequence variations due to single nucleotide polymor
phisms, (iii) variations from the genomic sequences 
(splice variants, processed proteins), and (iv) modifica
tions of peptides. Nesvizhskii et al. developed a method 
(“Spectrum Quality Score”) to extract high‐quality spectra 
from tandem spectra that are not identified by the con
ventional databases and also assign a quality score to each 
spectrum. The score is assigned based on the spectrum 
features, sequence tag features, and complementary frag
ment ions or neutral losses due to loss of ammonia, car
bon monoxide, and water [82]. The conventional databases 
partially utilize the advantages of multiple complementary 
fragmentation ion spectra generated from Fourier trans
form instrument. Therefore, Savitski et al. [83] developed 
a new scoring algorithm (S‐Score, ModifiComb) that can 
filter out the poor data and false positive identifications 
based on the maximum length of the peptide tag prior to 
database search. By employing Fisher’s linear discriminant 
analysis, Wu et al. [84] constructed a classifier based on 12 
features that evaluate the quality of CID spectra generated 
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by ion trap instruments in order to distinguish the assigned 
and unassigned spectra. The spectra with high‐quality 
score that were not matched to a peptide sequence in the 
database might lead to the identification of novel peptides 
or PTMs. Analysis of PTMs in peptidomics is important 
as these PTMs are associated with the stability and activity 
of the peptides [85].

Spectral clustering is the best approach for identification 
of novel PTMs from tandem spectra [86]. For identification 
of PTMs by the search engines, each modification has to 
be specified in advance, and as result unexpected or 
novel PTMs cannot be detected. Ma et al. [87] developed a 
tier‐wise scoring algorithm that can identify the unexpected 
modifications based on the mass shift peaks that are statis
tically significant. QuickMod, a tool developed to identify 
the modified peptides from the spectrum libraries without 
prior specification, utilizes a support vector machine to 
score the final spectrum based on the spectrum–spectrum 
match [86]. OpenSea [88] and MS‐Alignment [89] are algo
rithms that improve the identification of PTMs.

Spectral searching became an alternative to sequence 
database searching. Currently, PeptideDB [90], Peptidome 
[91], SwePep [92], EROP‐Moscow [10, 93], and NeuroPep 
[94] are used specifically to identify peptides by spectral 
matching. SpectraST [95], X!Hunter [96], and BiblioSpec 
[97] are proteomics‐based peptide spectral libraries that 
could be used to construct a particular peptidomics 
library in order to facilitate the identification process. 
Finally, to evaluate the error rates of peptide identifica
tions, Kim et al. [98] developed a validation methodology 
called “generating functions” where spectral energy and 
probability features are used to identify the peptides. This 
approach offers an alternative to decoy database search.

In order to apply peptidomics approaches to the clini
cal setting, peptide identification must be complemented 
by accurate quantification. Quantification of peptide 
abundance in clinical samples is an arduous task, espe
cially in the case of biological fluids where peptide con
centrations have a significant dynamic range. Variability 
can be observed due to sample collection, processing, 
and experimental conditions. Moreover, peptides have 
highly variable ionization efficiencies based on their 
chemical properties. Two main quantification methods 
are applied in peptidomics, namely, label based and 
label‐free. In label‐based quantification, the peptides are 
labeled with different isotopes. Isotope‐coded affinity 
tag (ICAT) is a widely used method [99]. Isobaric tags 
for relative and absolute quantification (iTRAQ) and 
tandem mass tags (TMT) are general labeling techniques 
applied for biofluids. iTRAQ is a single‐step chemical 
labeling procedure where the peptides are identified and 
quantified simultaneously and has multiplexing capacity 
[100]. It involves the labeling of primary amine (N‐terminal 
amino and epsilon amino group of lysine) of peptides by 

N‐hydroxysuccinimide chemistry [101]. It consists of 
reporter, balance, and peptide reactive group that 
 provides the quantitative information only in the fragmen
tation spectra at lower collision energy. The TMT have 
an extra specific linker group to ensure the fragmenta
tion of reporter ion and relies on the same principle as 
the iTRAQ method. Vaudel et al. [102] described these 
quantification methods in detail.

Due to shortcomings in the labeling techniques in 
untargeted peptidomics approach, label‐free quantifica
tion methods have gained an immense importance. As the 
definition itself indicates, labels are not used, and each 
sample is analyzed separately through LC‐MS, and the 
acquired spectra are compared. Quantification is achieved 
by extracting feature intensities or by spectral counting. 
In feature‐intensity‐based methods, all signal peaks are 
considered corresponding to one specific charged state of 
the peptide in the MS/MS spectrum, whereas in spectral 
counting the peptides are quantified based on the number 
of fragmentation spectra associated with their identifica
tion. Nahnsen et al. [103] presented the available tools for 
label‐free quantification. Label‐free quantification methods 
(i) do not require special sample preparation protocols, 
(ii) can be applied to small sample volumes, and (iii) are 
compatible with many different analytical platforms. 
For differential expression studies, the peptide data are 
analyzed using different software packages like DeCyder 
MS Differential Analysis Software (GE Healthcare), 
ProfileAnalysis (Bruker Daltonics), and Quant.

7.6  Urinary Peptidomics 
for Clinical Application

7.6.1 Kidney Disease

As thousands of different low molecular weight peptides 
are naturally occurring in urine and among them a sig
nificant proportion is associated with the status of the 
kidney, urine is typically used as a source of biomarkers 
for renal diseases. The majority of urinary peptidomics 
studies for CKD used capillary electrophoresis coupled to 
mass spectrometry (CE‐MS) as an analytical platform. 
However, this approach does not usually allow the deter
mination of peptide sequence. For peptide sequencing 
LC‐MS/MS is instead superior [104]. MALDI‐MS is also 
reported for biomarker discovery [105]; however the 
relative abundance of peptides cannot be assessed with 
confidence based on MALDI‐TOF‐MS [106]. In this 
section, we aim to report the main clinical peptidomics 
studies relative to kidney diseases and urogenital cancers.

CKD is defined by a progressive loss of kidney function 
and a reduction in the glomerular filtration rate (GFR) or 
by an increase in urinary albumin excretion.
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Good et al. [107] used CE‐MS to develop a classifier 
based on 273 urinary peptides (CKD273 classifier) for 
diagnosis of CKD. The study included 379 healthy sub
jects and 230 patients with various kidney diseases. Most 
of the urinary biomarker peptides were fragments of 
collagen type (I) chain, downregulated in CKD patients. 
In contrast, CKD patients displayed increased urinary 
excretion of fragments of highly abundant plasma pro
teins (serum albumin and fibrinogen), which may reflect 
chronic renal damage of the glomerular filtration barrier. 
The validity of the CKD273 classifier was confirmed in 
several studies for diagnosis and prognosis of CKD. In a 
population of diabetic patients, Andersen et  al. [108] 
studied therapeutic effects of irbesartan in microalbu
minuric type 2 diabetes patients in urine. They used the 
CKD273 classifier to evaluate the peptides that showed 
significant changes upon irbesartan treatment. Eighteen 
of these CKD markers showed significant differences in 
urine of patients before and after a 2‐year treatment with 
irbesartan. Zurbig et al. [109] showed that the CKD273 
classifier was able to diagnose early the onset of diabetic 
nephropathy (DN).

Roscioni et al. [110] showed that the CKD273 classifier 
was independently associated with transition to microal
buminuria or macroalbuminuria and predicted the 
development and progression of CKD. A recent study by 
Schanstra et  al. [111] demonstrated that the CKD273 
classifier performed significantly better in detecting and 
predicting progression of CKD than the current clinical 
standard biomarkers (urinary albumin and estimated 
GFR). The classifier was also more sensitive for identifying 
patients with rapidly progressing CKD. In this study, 
novel urinary biomarkers associated with the progression 
of CKD were identified. These biomarkers mostly included 
peptides derived from proteins related to inflammation 
and tissue repair [111].

The application of CE‐MS was also explored for auto
somal dominant polycystic kidney disease (ADPKD), 
which is a hereditary kidney disease causing progres
sive kidney dysfunction and leading to end‐stage renal 
disease (ESRD). The main cause of this disease is muta
tions on PKD1 (85% of cases) or PKD2 gene (15% of 
cases). Kistler et al. [112] identified 38 urinary biomark
ers that efficiently discriminate ADPKD patients from 
patients with other renal diseases, resulting in a sensi
tivity of 87.5% and specificity of 97.5% in the validation 
set. A  similar approach was performed also for acute 
kidney injury (AKI), which is characterized by a sudden 
increase of serum creatinine levels [113, 114]. Metzger 
et  al. [115] defined 20 potential biomarkers for AKI 
with a sensitivity of 89% and a specificity of 82% in the 
validation test. The majority of the identified peptides 
were derived from collagen type I fragments and 
α1‐antitrypsin.

7.6.2 Urogenital Cancers

Urine has been demonstrated to be a source of biomarkers 
for urogenital cancers, such as renal cell carcinoma 
(RCC), bladder cancer (BCa), and prostate cancer (PCa). 
RCC affects 210 000 patients each year worldwide [116]. 
It is characterized by the presence of histological necrosis 
and malignant tumors [117]. Recently, Frantzi et al. [118] 
identified 86 urinary peptides that could be specifically 
associated to RCC. A diagnostic classifier was developed 
and evaluated in an independent set of 76 samples, result
ing in 80% sensitivity and 87% specificity for diagnosis of 
RCC. The peptide biomarkers reported in this study were 
fibrinogen chains, immunoglobulin Fc regions, hemo
globin subunits, and proteins most likely expressed in the 
kidney, such as Na/K‐transporting ATPase subunit γ, 
retinitis pigmentosa GTPase regulator, VPS10 domain‐
containing receptor SorCS3, and the endothelial adhesion 
molecule CD99 antigen‐like protein 2.

BCa is the sixth most common of all malignancies in 
men [119]. In the context of urinary peptidomics, two 
studies were performed for this disease. Theodorescu 
et al. [120] developed and validated a panel of 22 peptides 
achieving high sensitivity (100%) and specificity (100%) in 
a study involving 31 patients with urothelial carcinoma, 11 
healthy controls, and 138 patients with nonmalignant 
genitourinary diseases. Schiffer et al. [120] identified poly
peptides associated with muscle‐invasive BCa. In this 
study, the majority of identified peptides were derived 
from four proteins: collagen α‐1 (I), collagen α‐1 (III), 
membrane‐associated progesterone receptor component 
1(PGRMC1), and uromodulin. The results were validated 
in a blinded cohort of 130 samples from patients with 
urothelial BCa. In another study, Frantzi et al. [121] used 
an LC‐MS/MS approach for the discovery of native uri
nary peptides potentially associated with invasive BCa, 
noninvasive BCa, and benign urogenital diseases [121]. A 
total of 1845 peptides were identified, corresponding to a 
total of 638 precursor proteins. Specific enrichment for 
proteins involved in nucleosome assembly and for zinc 
finger transcription factors was observed. The differential 
expression of two candidate biomarkers, histone H2B and 
NIF‐1 (zinc finger 335), in BCa was verified in independ
ent sets of urine samples by ELISA and by immunohisto
chemical analysis of BCa tissue. The results indicated 
changes in the expression of both of these proteins with 
tumor progression, suggesting their potential role as bio
markers for discriminating BCa stages. In addition, the 
data indicated a possible involvement of NIF‐1 in BC 
progression, likely as a suppressor and through interac
tions with transcription factors Sox9 and HoxA1 [121].

PCa is the second most common cancer worldwide in 
men. In the context of urinary peptidomics, some studies 
have proposed putative biomarkers for PCa diagnosis.
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Theodorescu et  al. [122] investigated urine samples 
from patients with PCa and healthy controls and identi
fied a panel of 12 biomarkers for PCa using CE‐MS [122].

Schiffer et al. tested the validity of a peptide‐based classi
fier in comparison with PSA, a biomarker used for PCa 
diagnosis. In 184 participants, PCa was detected in 49 
cases. The peptide classifier identified 42 out of 49 tumor 
patients, showing a sensitivity of 86%. Of 135 PCa‐nega
tive patients, 79 had a negative urinary proteome analysis 
for PCa test (specificity 59%). Negative and positive predic
tive values were 92 and 43%, respectively. A significant 
improvement (P < 0.0005) in terms of diagnostic accuracy 
was observed in comparison with serum PSA [123].

M’Koma et al. [124] employed MALDI‐TOF to identify 
potential biomarkers for PCa. Urine samples were 
fractionated using reverse‐phase chromatography, and 
subsequently peptides were analyzed using MALDI‐
TOF. 130 signals with a mass range between 1000 and 
5000 m/z resulted in a urinary peptide classifier with 
71.2% specificity and 67.4% sensitivity in discriminating 
PCa from benign prostate hyperplasia. However, the 
sequence of the peptides was not determined.

7.6.3 Blood Peptides as Source of Biomarkers

Blood is in contact with all human tissues, so it is suitable 
for biomarker discovery. However, it is challenging to 
discover blood biomarkers for a specific disease.

Serum and plasma have been employed to investigate 
changes in the peptidome in certain diseases. However, 
most clinical studies focused on proteome analysis [125, 
126]. Serum peptides are susceptible to degradation due to 
the high proteolytic activity associated with clot formation 
[127]; thus plasma is preferable for peptidomics studies.

Luczak et al. [128] investigated CKD related to athero
sclerosis using plasma as source of possible biomarkers. 
They used three different sample fractions: high‐abun
dance, low‐abundance, and low molecular weight proteins/
peptides. Low molecular weight proteins/peptides were 
directly injected in the LC‐MS/MS. The analysis revealed 
the presence of 36 differentially expressed proteins/pep
tides; unfortunately only 4 peptides could be identified. 
Pena et al. [8] studied patients with hypertension (n = 125) 
and type 2 diabetes (n = 82) to predict the development of 
micro‐ or macroalbuminuria in hypertension or type 2 dia
betes. They developed a plasma peptide classifier based on 
improved risk prediction for transition in albuminuria 
stage on top of the reference model (C‐index from 0.69 to 
0.78; p < 0.01). Hansen et al. [129] investigated plasma pep
tidomics in patients with type 1 diabetes. In this study, they 
identified three candidate biomarkers for DN.

Blood‐derived peptides have been investigated also in the 
context of cancer diagnosis. CE‐MS was employed to inves
tigate serum alpha‐1‐acid glycoprotein one of eight patients 
with BCa and eight individuals without bladder [130]. 

Using an enzymatic digestion to deglycosilate glycopro
teins, they found higher levels of tri‐antennary and tetra‐
antennary fucosylated oligosaccharides in patients 
with BCa. Schwamborn et al. [131] investigated the serum 
peptidome of 41 patients with BCa and 39 healthy individ
uals. In particular, they established two mathematical 
models based upon serum peptidome profiles generated 
by MALDI‐MS. Two models were generated using five and 
six peptides, respectively, ranging from 3.5 to 5.9 kDa. 
After independent validation in the test set of 64 patients 
with BCa and 59 healthy individuals, the sensitivity of the 
two classifiers for the detection of BCa was reported to be 
96.4%, while the specificity was 86.5%. However, this study 
included only a small number of patients and thus requires 
further validation. Villanueva et  al. [132] analyzed by 
MALDI‐MS the serum peptidome of 73 patients with 
advanced prostate (n = 32), breast (n = 21), and bladder 
(n = 20) cancer, as well as serum samples from 33 healthy 
volunteers. The resulting signatures for the three cancer 
types consisted of 26 (prostate), 50 (bladder), and 25 (breast) 
naturally occurring peptides, several of which occur in 2 or 
all 3 cancer groups. One peptide from complement C4a 
protein and two from the inter‐α‐trypsin inhibitor heavy 
chain H4 cluster had consistently higher ion intensities in 
all cancers than in healthy controls. Instead 3 fibrinopeptide 
A fragments were lower in all cancers.

7.6.4 Proteases and Their Role in Renal 
Diseases and Cancer

Numerous studies have been published on the role of 
more than 550 human proteases in human diseases. 
Proteases catalyze peptide bond cleavage and contribute 
to the formation of naturally occurring peptides. They are 
involved in many physiological processes, and their regu
lation affects the pathogenesis of various diseases. They 
are usually present in nature as zymogens that need to be 
activated. Activators and inhibitors of proteases establish 
proteolytic networks that regulate many biological path
ways. In order to elucidate this complex process, systems 
biology approaches and conventional biochemical meth
ods are applied. In vitro experiments and combinatorial 
chemistry are used to generate potential substrate librar
ies for mapping protease specificity [133, 134]. Several 
bioinformatics tools such as WebLogo [135] and iceLogo 
[136] helped to identify consensus substrate sequences for 
each protease. However, these in vitro methods cannot 
identify all the possible substrates cleaved by proteases.

MS‐based data coupled to bioinformatics made a 
 substantial contribution to identify in vivo substrate 
cleavage sites. Mapping N‐ and C‐terminal residues gener
ated by in vivo digestion of proteins [137–139] define 
protease substrate sequences with higher accuracy in 
comparison with the in vitro experiments. In order to 
achieve this goal, it is necessary to measure accurately the 
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amount of peptides in biological samples. Quantitative 
methods for MS such as ICAT [140], iTRAQ [141], and 
SILAC [142] have been used to identify substrates of 
several proteases. In addition, label‐free approaches such 
as multiple reaction monitoring (MRM), performed on 
triple‐quadrupole instruments, have provided reliable 
data for peptide concentration. The application of this 
method provides accurate peptide quantification [143].

In order to assist scientists in disseminating the large 
amount of data generated by MS‐based experiments, there 
are several websites dedicated to proteases, such as the 
Proteolysis Map (PMAP [144]), the TopFIND knowledge
base (http://clipserve.clip.ubc.ca/topfind/) [145], MEROPS 
(http://merops.sanger.ac.uk) [146], and the Mammalian 
Degradome Database [147]. Recently, a new tool to predict 
proteases responsible for generating naturally occurring 
peptides was developed. Proteasix (http://proteasix.org/) 
allows in silico prediction of proteases based on peptide 
cleavage sites. This tool was already used to test proteases 
involved in CKD and cardiovascular diseases [104, 148].

Extracellular matrix (ECM) is a noncellular structure 
present in all the tissues that modulates interaction with 
epithelial cells, regulating migration, proliferation, cell 
adhesion, and apoptosis events. Cleavage and remode
ling of ECM is promoted by several proteases. The most 
important class of proteases involved in remodeling of 

ECM is represented by matrix metalloproteinases 
(MMPs). Endogenous inhibitors such as specific tissue 
inhibitors of metalloproteinases (TIMPs) and α‐2‐
macroglobulin regulate metalloproteinase activity [149]. 
Other important enzymes involved in ECM remodeling 
are adamalysins (ADAMs) and meprins [150]. Alteration 
of protease regulation is often associated with pathologi
cal conditions, for example, in cancer and renal diseases 
[151–154]. MMP2 was found to be upregulated in the 
urine of patients with type 2 diabetes [155], but it was 
downregulated in the serum proteome of patients with 
IgAN and lupus nephritis [156]. Moreover, MMP2 was 
upregulated in the serum of patients with CKD at stages 
3 and 4 [157]. Important findings were reported by 
Caseiro et al. [158] for the regulation of MMP9 in urine, 
saliva, and serum of type 1 diabetes patients suffering 
from retinopathy and nephropathy. The study showed 
the upregulation of MMP9 in saliva and urine; on the 
contrary, in the serum, MMP9 was downregulated [158].

Interesting results were also reported in BCa research. 
On the basis of three different studies, upregulation of 
MMP2 was found in serum [159], plasma [160], and 
urine [161] of patients with BCa.

In this section we report an overview regarding the 
proteases involved in pathogenesis of renal disease and 
BCa (see Table 7.2).

Table 7.2 Protease regulation in human diseases.

Protease Disease
Regulation in 
established disease Type of fluid Study

MMP2 Diabetic type 2 Up Urine [155]
MMP2 IgAN, LN Down Serum [156]
MMP2 CKD stage 3–4 Up Serum [157]
MMP2 CKD Up Serum [161]
MMP2 CKD Up Plasma [162]
MMP2 Bladder cancer recurrence Up Serum [159]
MMP2 Bladder cancer Up Plasma [160]
MMP2 Bladder cancer Up Urine [161]
MMP3 Diabetic type 2 Up Serum [163]
MMP7 Diabetic type 2 Up Serum [163]
MMP7 Bladder cancer, lymph node metastasis Up Serum [164]
MMP7 Bladder cancer Up Plasma [165]
MMP9 Diabetic type 1 with retinopathy and nephropathy Up Saliva and Urine [158]
MMP9 Diabetic type 1 with retinopathy and nephropathy Down Serum [158]
MMP9 Lupus nephritis Up Serum [166]
MMP9 Bladder cancer Up Serum [167]
MMP9 Bladder cancer Up Urine [168]
MMP9 Bladder cancer Up Serum [169]
ADAMTS13 CKD Down Plasma [170]
ADAM10 Glomerular kidney disease UP Urine [171]
ADAM28 Bladder cancer UP Urine [172]
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7.7  Concluding Remarks

Peptidomics studies offer novel insights on human 
diseases by the discovery of clinical biomarkers and 
 biological processes (mainly proteolysis). The main 
challenge for the future is to increase the efficiency 

of peptide identification and quantification. Con
fident determination of known and novel PTMs 
in  peptides will contribute significantly to our 
understanding of biological processes. The field of 
peptidomics is rapidly developing and the prospects 
are bright.
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8.1  Introduction

Analysis of tissue specimens is well integrated into clini-
cal research and clinical practice, since tissue is a site of 
different stages of the disease from initiation to progres-
sion. The function of the tissue is determined by the set 
of proteins made by the cells that comprise the tissue. 
However, analysis at the level of individual proteins 
does not fully reflect the alterations underlying disease 
 pathophysiology. To meet this challenge, proteomics 
approaches have been introduced, aiming at comprehen-
sive analysis of all proteins in a tissue. Global analysis 
of  tissue proteome has greatly contributed to putative 
biomarker discovery as well as to improvement of our 
knowledge on disease‐associated mechanisms, while 
analysis of individual proteins is broadly applied for 
 validation of biomarker candidates as well as assessment 
of their prognostic and/or predictive value. An overview 
of the potential application of tissue proteomics is pre-
sented on Figure 8.1.

Advancement in mass spectrometry (MS)‐based 
approaches enabled to move toward more comprehen-
sive characterization of the tissue proteome. Within the 
past years, several initiatives have been undertaken to 
describe in depth the human proteome including the 
investigation of the protein content from specific tissues. 
As an output, three independent and at the same time 
complementing human proteome drafts have been 
developed analyzing more than 60 tissue types (Table 8.1) 
[1–3]. Moreover, these efforts led to identification of 
numerous novel proteins, which resulted in  improvement 
on proteome coverage and enhanced further proteomics 
research. Collected data can be also considered as 
 invaluable reference to support the validity of analytical 
workflow applied for the collection of new proteomics 
data. Considering the possibility of false positive identifi-
cations in shotgun experiments [4], even accounting for 

the false discovery rate (FDR), identified proteins may 
require further verification. The reliability of protein 
identity can be partially assessed by searching against 
different proteomics repositories, evaluating, if possible, 
identifications obtained in the analysis of specific type of 
tissue. Following the same principle, by using the human 
proteome maps, the expression of proteins derived from 
animal disease models can be assessed in human speci-
mens, particularly when the findings discovered in ani-
mal models are planned to be investigated in human 
tissue. Considering also the validation of the proteomics 
findings in human tissue, the database developed by 
Uhlen et al. is a powerful tool to help with the selection 
of antibodies, as the antibodies used in the context of this 
initiative have undergone a strict validation.

Despite significant advances, application of tissue pro-
teomics is still accompanied with several challenges. 
First of all, tissue proteome is characterized by high com-
plexity and broad dynamic range of protein concentra-
tions. In an effort to overcome this challenge, the 
experimental design has to be adjusted, particularly by 
the introduction of fractionation step(s) prior to MS 
analysis. This can be achieved at (i) tissue level (subcel-
lular fractionation or laser capture microdissection 
(LCM)), (ii) protein level (protein fractionation), (iii) 
peptide level (peptide fractionation), and (iv) MS level 
(gas‐phase fractionation). Moreover, tissue proteomics 
analysis is also affected by high cellular heterogeneity of 
the tissue sample. As an example, during resection of the 
tumor, apart from the tumor cells, the tissue contains 
also several other non‐tumoral elements such as blood 
vessels, supporting stromal cells, infiltrating lympho-
cytes, and so on. The homogeneity of studied population 
of cells can be improved by applying LCM. However, 
when the size of available tissue is small, the application 
of LCM might be very difficult. Last but not least, due to 
the invasive procedure of tissue sampling, availability of 
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fresh‐frozen tissue sample is often limited. Even though 
formalin‐fixed paraffin‐embedded (FFPE) tissue speci-
mens are readily available, formalin fixation hampers 
their utility in proteomics experiments. Recently, several 
protocols have been established for processing FFPE 
samples prior to proteomics analysis [5–7], resulting in 
more frequent application of this type of specimen. 
Considering the notable contribution of MS‐based tech-
niques in the field of tissue proteomics, we present an 
overview of sample collection/storage, sample prepara-
tion, analytical platforms, and data evaluation.

8.2  Tissue Proteomics Workflow

Proteomics analysis of tissue specimens is a complex and 
time‐consuming process, with the main steps illustrated 
in Figure 8.2.

Tissue proteomics study begins with defining a study 
design and collection of tissue specimens. In the case of 
a biomarker discovery study, disease and control groups 
have to be carefully selected in order to place the bio-
marker in the context of existing clinical needs. In addi-
tion, an added value of the putative biomarker over the 
current practice has to be shown along with the potential 
therapeutic consequence [8]. These requirements might 
be particularly challenging in the tissue‐based investiga-
tions. Tissue samples are not easily accessible, particu-
larly from control or healthy subjects as well as for 
monitoring purposes, mainly because of the invasive way 
of collection. Due to the limited availability of tissue 

samples, tissue proteomics studies usually suffer in sta-
tistical power, and the detected biomarkers might reflect 
more the intraindividual heterogeneity rather than the 
association with pathophysiological events. Therefore, 
the verification of the findings in an independent cohort 
is required. However, findings from global analysis of tis-
sue proteome can be verified in archival tissues by anti-
body‐based approaches. Since these paraffin‐embedded 
tissue blocks can be preserved and stored in biobanks for 
years, a high number of samples (of up to thousands) 
with valuable clinical follow‐up data can be available. 
The main problem is that antibody‐based assays have 
certain limitations, mostly related to antibody availabil-
ity and high cross‐reactivity. On the contrary, when 
studying physiological events underlying diseased con-
dition, the biological relevance of the findings has to be 
investigated by using ideally multiple in vitro and/or 
in vivo models.

To ensure good quality of the tissue proteomics data, 
each step has to be adjusted and optimized for a specific 
study. More importantly, several guidelines and recom-
mendations on study design and reporting of proteomics 
findings have been introduced [8, 9], particularly in the 
area of biomarker research. In the frame of the STROBE‐
ME project [10], guidelines for the epidemiological stud-
ies have been developed, while PROBE and REMARK 
standards have been suggested in the context of predic-
tive [11] and prognostic [12] biomarkers, respectively. 
However, the detailed description of the guidelines on 
reporting of proteomics biomarkers is not within the 
scope of this chapter.

Understanding disease-associated mechanisms

Development of protein signature for disease

Identification of drug targets

Biomarker development
Proteomics

Figure 8.1 Application and significance of tissue proteomics in clinical research. Through a global proteomic profiling of tissue 
specimens, disease mechanisms can be highlighted at the molecular level, leading to the discovery of potential biomarkers and 
drug targets.
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Proteomics analysis can be performed either on intact 
proteins (top‐down analysis) or on peptides obtained 
from protein digestion with proteases (bottom‐up analy-
sis, also called shotgun proteomics) [13]. These two 
approaches have been extensively described in the litera-
ture (for bottom‐up proteomics see, e.g., Refs. [14–16]; 
for top‐down proteomics see, e.g., Refs. [17–19]). Briefly, 

the peptide‐centric analysis is well established and readily 
applicable for the high‐throughput analysis of complex 
samples like tissue or body fluids, whereas, due to the 
poor dynamic range of methods employed to resolve 
intact proteins from complex protein mixtures, the top‐
down proteomics approach has been rather limited to the 
analysis of single proteins or simple protein systems [13]. 

Table 8.1 An overview of the studied tissue proteomes.

Proteome resources/characteristics Tissues/organs

Tissue‐based map of human 
proteome

 ● Available online at http://www.
proteinatlas.org/
humanproteome [1]

 ● Methodology: tissue microarray‐
based IHC

 ● Number of studied tissues/
organs: 44

Cerebral cortex, hippocampus, nasopharynx, salivary gland, soft tissue, bronchus, lung, 
lymph node, liver, adrenal gland, gallbladder, duodenum, small intestine, colon, 
appendix, smooth muscle, rectum, seminal vesicles, prostate gland, testis, epididymis, 
skeletal muscle, lateral ventricle, cerebellum, oral mucosa, tonsil, thyroid gland, 
parathyroid gland, esophagus, heart muscle, breast, stomach, spleen, kidney, pancreas, 
placenta, fallopian tube, ovary, endometrium, uterine cervix, vagina, urinary bladder, 
bone marrow, skin

The Human Proteome Map
 ● Available online at http://

humanproteomemap.org/ [2]
 ● Methodology: mass spectrometry
 ● Number of studied tissues/ 

organs: 20

Spinal cord, frontal cortex, retina, esophagus, pancreas, colon, rectum, ovary, testis, 
prostate gland, urinary bladder, kidney, adrenal gland, gallbladder, liver, heart, lung, gut, 
heart, brain, placenta

ProteomicsDB
 ● Available online at https://www.

proteomicsdb.org [3]
 ● Methodology: mass spectrometry
 ● Number of studied tissues/

organs: 37

Gallbladder, kidney, seminal vesicle, oral epithelium, esophagus, tonsil, liver, lung, 
pancreas, colon, rectum, salivary gland, skin, prostate gland, myometrium, uterus, ovary, 
testis, cardia, stomach, tube, placenta, adrenal gland, thyroid gland, uterine cervix, 
lymph node, spleen, adipocyte, ascites, cerebral cortex, nasopharynx, vulva, heart, bone, 
breast, hair follicle, blood platelet

Proteomics DB

The human proteome map

Tissue-based map of human proteome

20

1

5

12

11

12

2

Comparison
Overlapping investigated proteomes:
lung, liver, adrenal gland, colon, rectum, prostate gland, testis, esophagus, kidney, pancreas, placenta, ovary
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On the other hand, the top‐down approach allows to 
 preserve information on posttranslational modifications 
(PTMs) present in vivo [20], polymorphisms [21], and 
protein isoforms [22] and provides higher sequence 
 coverage of targeted protein. More intriguingly, recent 
advancements in fractionation techniques, instrumenta-
tion, and software tools allow to observe even thousands of 
proteins in top‐down experiments (reviewed in Ref. [23]). 
However, when the global characterization of a complex 
proteome is the main purpose of the study, the bottom‐
up approach has become the most popular method of 

choice, and further information on this approach will be 
more thoroughly described in the next sections.

8.3  Tissue Sample Collection 
and Storage

Application of an optimal protocol for sample collection 
and storage has a substantial impact on quality of the 
proteomics output. Multiple factors including tissue 

Study design

Ethics approval

Tissue collection (SOPs)

Pathological diagnosis

Sample shipment

Sample labeling Biobanking

Sample processing

Whole tissue analysis LCM

Protein extract

Subcellular fractionation

Protein digestionProtein separation Protein enrichment

• 1DE-SDS-PAGE
• Isoelectric focusing

2DE/DIGE

Protein spots visualization

Protein identification

Peptide separation

• Capillary electrophoresis
• Liquid chromatography
• MudPIT

Peptide enrichement

Mass spectrometry
MS or MS/MS

Protein quantification

Figure 8.2 Schematic representation of tissue proteomics workflow. The main steps during the tissue proteomics  
studies are marked in bold.
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type, time of collection, materials utilized (container 
type, additives or preservatives), and procurement (con-
dition and duration) may have a notable impact on qual-
ity of the collected specimens and thus stability of 
assessed proteome [24]. Therefore, samples have to be 
handled and stored according to well‐established proto-
cols that are ideally verified in the initial phase of the 
study. This is of paramount importance, particularly in 
the context of the translational multicenter studies, as it 
allows for the collection of the samples in an unbiased 
way, and thus, the results of the studies are comparable 
across the different centers. In order to address these 
issues and assure for the high quality of collected tissue 
specimens, standard operating procedures (SOPs) have 
to be established. Depending on the context of use of tis-
sue specimens, different SOPs have been established. 
These include guidelines of sample collection for molec-
ular epidemiological studies [24], EORTC‐related trans-
lational research [25], the European human frozen tumor 
tissue bank (TuBaFrost) [26], clinical trials (i.e., breast 
cancer clinical trial [27]), and many other projects 
(Endometriosis Phenome and Biobanking Harmonisation 
Project [28]; prospective study of inflammation and the 
host response to thermal injury [29]). Although the 
aforementioned SOPs are not specific for the collection 
of the tissue specimens for proteomics analysis, the 
reported recommendation/guidelines present basic rules 
of proper tissue collection for various molecular studies. 
Some SOPs have been established for tissue sample col-
lection, freezing, and storage for SELDI, MALDI, or 2DE 
applications [30] or MS‐based proteomics analysis of 
laser microdissected FFPE tissue [31].

As highlighted in the aforementioned SOPs, sample 
collection involves numerous steps and requires direct 
collaboration between patients, researchers, clinicians, 
and hospital staff. The overview on the critical issues 
concerning the collection of tissue samples is presented 
in Table 8.2.

Independent of the context of use of tissue specimens, 
several challenges have been associated with tissue col-
lection. Prior to collection of tissue samples (or any other 
kind of human biological material), the study has to be 
approved by an ethics committee and informed consent 
has to be provided [24]. The main critical point of tissue 
collection is the time interval between tissue excision 
and snap freezing. During the excision of the tissue spec-
imen, tissue loses vascular supply (ischemia), leading to 
increased protease activity, protein degradation, and tis-
sue autolysis. The effect of tissue ischemia time on gene 
[32–34] or protein expression [34] in the excised tissue 
has been demonstrated in several investigations. In a 
study of Spruessel et al. [34], initial changes in gene and 
protein expression profiles of healthy and tumor colon 

tissues have been observed after 5–10 min upon tissue 
excision, while 30 min after surgery, 20% of detectable 
genes and proteins differed significantly from the base-
line values [34]. In general, it has been reported that the 
time frame between completion of surgery and sample 
freezing should be around 30 min to assure for the good 
quality of the material for most of the proteomics tech-
niques [30]. Therefore, to preserve the tissue proteome, 
the specimens have to be frozen as soon as possible after 
excision and subsequently stored at –80°C freezer. 
Moreover, tissue procurement should be arranged with-
out any delay under the proper condition (usually dry ice 
shipment is a method of choice), as de‐freezing of the 
sample during the shipment may affect to large extent 
the quality of tissue material. In order to protect the 
 sample from the protease activity, the formalin fixation is 
often applied. However, application of formalin intro-
duces irreversible modification in proteins (cross‐links) 
and may affect the quality of tissue extracts. Therefore, 
analysis of the “fresh” tissue is preferable.

8.4  Sample Preparation

Sample preparation has to be performed under con-
trolled conditions and according to standardized proce-
dure. This is a critical point in the context of translational 
research, as the information based on the established 
biomarkers or disease models may be used for clinical 
decision making. Up to now, several sample preparation 
methods have been established and depend on the type 
of tissue specimens employed including (i) analysis of 
fresh‐frozen tissue, (ii) analysis of FFPE tissue, or (iii) 
analysis of specific type of cells isolated using LCM.

8.4.1 Homogenization 
of Fresh‐Frozen Tissue

Homogenization (i.e., sample disruption) is an initial 
step of sample preparation workflow aiming at disinte-
gration of tissue structure and extraction of tissue‐asso-
ciated molecules such as proteins, nucleic acids, and so 
on. In general, three homogenization strategies can be 
distinguish including (i) mechanical homogenization 
(based on shearing cells using liquid flow, explosion of 
the cell by pressure differences inside/outside cell, colli-
sion forces induced by beads, or combination of different 
methods), (ii) enzymatic homogenization (lysis by using 
hydrolytic enzymes), and (iii) chemical homogenization 
(by using lysis buffers with detergents, chaotropic agents, 
or other additives) [35]. Very often, a combination of dif-
ferent kind of homogenization strategies is the method 
of choice. Particularly in the context of tissue analysis, 
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Table 8.2 An overview on the workflow for collection of fresh‐frozen tissue specimens and associated critical factors.

Step Critical factors

Ethical concerns Prior beginning of the tissue collection, the study needs to be approved by the ethics 
committee, and participants of the study have to give informed consent. The ethical 
concerns should be addressed based on the law applicable in the collecting country

Tissue excision Storage:
Upon excision of the tissue, sample should be stored on ice in labeled sterile pot/bag; 
keeping the tissue in low temperature may delay possible degradation processes
Timing:
Excised tissue (fresh and unfixed) has to be transferred for the pathological examination 
as soon as possible

Pathological examination Tissue dissection:
Representative parts of the tissue should be fixed and embedded for routine diagnosis; 
remaining material (if in sufficient amount) can be dedicated for specific research and/ 
or storage in biobank
Tissue size:
The recommended minimal tissue size for freezing should be around 0.5 cm3

Labeling Labeling:
Labeling system depends on local practice; vial containing tissue specimens can be 
labeled by using unique code, that is, barcode/sequential code/institutional code, etc. 
Of note, labeling has to be made by using a waterproof pen, suitable for long‐term storage 
at low temperatures. Personal information of the patient should not be included in the 
labeling process
Recording:
All collected samples should be recorded in the inventory book, and upon completion of 
procedure, the collected data should be transferred into computerized database system

Freezing Temperature:
An optimal freezing point for the tissue is −160°C
Timing:
Ideally, tissue should be snap frozen within 30 min of excision from patient. However, the 
lag time between excision of specimen and freezing should be as short as possible. 
Establishment of proper organizational structure may help to avoid unnecessary delay, 
which may affect the quality of the specimen
If the time interval between tissue excision and snap freezing is up to 2 h, the delay has to 
be reported

Storage Storage options:
Tissue samples have to be stored at −80°C freezer or liquid nitrogen storage facility
Storage details:
Storage details should be recorded; ideally duplicate samples should be kept in separate 
freezers, if available

Procurement Sample should stay frozen during the shipment. Only dry ice shipment is acceptable. The 
distance and required time of shipment has to be evaluated in advance to assure that the 
sample stays frozen until reaching the destination place. The package should be also 
tracked to control the time of the shipment

Source: Adapted from Mager et al. [25] and Morente et al. [26].
The summary presented herein has been prepared based on the information collected from previously published SOPs for tissue collection and 
biobanking [25, 26].



Tissue Proteomics 135

the mechanical method and its combination with chemi-
cal disruption are frequently employed. The enzymatic 
disruption might not be preferable for the purpose of tis-
sue proteomics; although easy to use, it is associated 
with the low reproducibility and requires additional 
steps to remove the utilized enzymes.

There is no universal method applied for homogeni-
zation of tissue specimens, and several factors have to 
be considered prior to deciding on optimal strategy. The 
latter includes the type of the tissue, sample volume, 
experimental setup (analysis of total cell lysate; sample 
enriched in specific organelles; molecules of interest, 
i.e., proteins, RNA, DNA, etc.), and intended character-
istics of final homogenate [36]. Additionally, practical 
aspects of applicability of respective methods have to be 
considered in the context of a specific experimental 
setup, as some of the procedures might not be optimal 
when a high number of samples have to be processed. In 
any case, the sample homogenization procedure requires 
optimization, and the performance of the method 
should be evaluated in the context of efficiency of pro-
tein recovery and reproducibility. Additionally, when 
reporting the experimental procedure, it is crucial to 
describe in detail the sample processing workflow as it 
may have a  substantial impact on the outcome. Currently, 
there are not many guidelines or SOPs on how tissue 
homogenization (e.g., tumor tissue) should be con-
ducted. To address this issue, EORTC Pathobiology 
Group developed the SOP protocols for the preparation 
of tumor tissue extracts suitable for quantitative bio-
marker analysis [35]. The established method relies on 
the disruption of the tissue in the deep frozen state by 
using Mikro‐Dismembrator S machine (bead mills tech-
nology), resulting in generation of a frozen tissue 
powder. A detailed protocol is included in the manu-
script of Schmitt et al. [35].

An overview on the mechanical methods of tissue 
homogenization as well as selection of the lysis buffer is 
summarized in the following sub-sections. Data pre-
sented later were assembled from Schmitt et  al. [35], 
Hopkins et al. [37], Goldberg et al. [38], and Burden et al. 
[36]. 

8.4.1.1  Mechanical Methods of Tissue 
Homogenization
8.4.1.1.1 Bead‐Based Homogenizers
Bead‐based homogenizers rely on collision of the beads 
with tissue. Beads can be accelerated by vortexing (bead 
mill homogenizers), shaking (shaking‐type bead mills), 
or spinning (rotor‐type bead mills). Depending on the 
type and volume of the tissue and bead type (density, 
diameter, material, and quantity), speed of agitation and 
procedure duration have to be adjusted. However, 
the temperature during the homogenization has to be 

controlled, as application of excessive forces may cause 
sample heating. Application of this method allows for 
effective homogenization of tissues that are difficult to 
disrupt. Multiple bead‐based homogenizers are  currently 
on the market including Bullet Blender® (Next Advance), 
Mixer Mill (Retsch), Mini‐BeadBeater (BioSpec), and 
others.

8.4.1.1.2 Blade Homogenizers (Called “Blenders”)
Blade homogenizers disrupt tissue by shearing using 
high speed rotating steel cutting blades. This homogeni-
zation method is easy to use and also fast in processing. 
It allows for an efficient extraction of molecules from 
both small and large tissue pieces. However, homogeni-
zation using blade homogenizers might be associated 
with aeration and foaming. It may also require cooling 
of the sample during homogenization or between 
homogenization steps to avoid overheating. Some 
examples of blade homogenizers include the following: 
Bio‐Gen PRO200 Hand‐Held Homogenizer (PRO 
Scientific Inc.) or GLH Blade‐type Homogenizer (Omni 
International).

8.4.1.1.3 Rotor‐Stator Homogenizers (Also Called  
Willems Homogenizers)
Rotor‐stator homogenizers have a rapidly spinning pad-
dle placed into an open‐ended, static tube (stator) with 
slots close to working end. This allows for quite fast sam-
ple processing, although the processing time is associ-
ated with toughness and size of the tissue. Rotor‐stator 
homogenizers have been successfully applied to a broad 
range of sample size/volume and various sample types. 
However, depending on the application, the geometry of 
the rotor/stator has to be adjusted, and for small rotors, 
tissue samples may need to be chopped prior to homog-
enization. In comparison with blade homogenizer, foam-
ing, aeration, and sample heating are minimized. On the 
other hand, this type of homogenizer is not easy to clean 
and it is expensive. Some examples of this type of homog-
enizer include the following: Polytron (Glen Mills) or 
Tissue Tearor (Glen Mills).

8.4.1.1.4 Tissue Grinders
Tissue homogenization is based on friction of the sample 
between two surfaces, causing tearing and ripping of 
samples. Several tools utilizing grinding as a homogeni-
zation strategy were developed including mortar and 
pestle, tube and pestle, glass homogenizers, CryoGrinder, 
and others. This homogenization strategy is gentle and 
has been frequently applied for sample enrichment in 
subcellular organelles. Tissue grinders are suitable for 
homogenization of small tissue pieces, while in case of 
processing of larger tissue specimens, tissue should be 
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cut into smaller parts. Additionally, sample processing is 
simple and does not require expensive equipment. 
However, homogenization is performed manually, 
although some of the tools can be driven electrically. 
Therefore, application of grinders can be laborious, par-
ticularly for high number of samples, and may result in 
poor homogenization efficiency, particularly for fibrous 
and membranous components that remain relatively 
intact. Some examples of tissue grinders include the fol-
lowing: Potter‐Elvehjem grinder (Wheaton), Dounce tis-
sue grinder (Sigma Aldrich), mortar and pestle (Sigma 
Aldrich), or CryoGrinder™ (CoreCommerce).

8.4.1.1.5 Ultrasonic Homogenizers
Disruption of the tissue occurs through microbubbles 
that are generated by sonic pressure waves in liquid 
medium. Depending on the type and volume of the tissue, 
amplitude has to be adjusted. Ultrasonic homogenizers 
are suitable for disintegration of “tough” tissue after initial 
tissue maceration. However, samples can be easily over-
heated; thus cooling on ice between sonication steps is 
required. Some examples of ultrasonic homogenizers 
include the following: Bioruptor® Sonicator (Diagenode) 
or Sonicator® (Qsonica Sonicators).

8.4.1.2  Chemical Methods of Tissue 
Homogenization
Chemical homogenization usually assists mechanical 
disruption of tissue. Prior to downstream proteomics 
analysis, dissociation of protein complexes, protein 
denaturation, and solubilization of hydrophobic proteins 
are required for efficient protein digestion. Achieving a 
good solubilization of proteins extracted from tissue 
remains a challenge in MS‐based experiments. Several 
chemicals regularly applied for protein denaturation are 
not compatible with proteomics analysis, imposing 
application of additional purification steps. This includes 
application of chaotropic or denaturating agents. 
Addition of chaotropic agents such as urea may impair 
digestion of proteins via (i) denaturation of proteolytic 
enzymes or (ii) modification of peptides/proteins by iso-
cyanic acid produced by urea upon sample heating. Urea 
can be easily removed using reverse‐phase chromatogra-
phy (RPC). Sodium dodecyl sulfate (SDS), an ionic deter-
gent frequently used for protein solubilization, interferes 
with chromatographic separation of proteins/peptides 
and electrospray ionization. Additionally, a high concen-
tration of SDS might hamper protein digestion. It has 
been shown that reliable MS analysis is possible for pep-
tide solutions containing up to 0.01% SDS [39]. 
Considering the benefits associated with SDS use, sev-
eral methods have been established aiming at removal of 
SDS prior to LC‐MS/MS analysis. These include protein 

precipitation [40], filter‐aided sample preparation 
(FASP) [41], in‐gel protein digestion [42], application of 
ultrafiltration columns [43], and many others. However, 
comparison of different protocols for SDS removal is 
presented elsewhere [39, 44].

Alternatively, several MS‐compatible detergents 
have been developed to facilitate direct proteomics 
analysis, without additional purification steps. These 
include acid‐labile surfactants [e.g., RapiGest SF 
(sodium 3‐[(2‐methyl‐2‐undecyl‐1,3‐dioxolan‐4‐yl)
methoxy]‐1‐propanesulfonate), PPS Silent Surfactant 
(sodium 3‐(4‐(1,1‐bis(hexyloxy)ethyl)pyridinium‐1‐yl)
propane‐1‐sulfonate), MS‐compatible degradable sur-
factant (MaSDeS) (sodium 3‐((((1‐(thiophen‐3‐yl)
undecyl)oxy)carbonyl)amino)propane‐1‐sulfonate)] 
that are hydrolyzed at low pH prior to MS analysis or 
surfactants having different elution time than most of 
the peptides [e.g., Invitrosol (dimethylbenzylammo-
nium propane sulfonate, 3‐(1‐pyridinio)‐1‐propane-
sulfonate)]. Particularly, application of MaSDeS was 
well demonstrated for the purpose of tissue proteom-
ics [45]. MaSDeS performance in protein solubiliza-
tion is comparable with SDS. Importantly, improved 
protein solubilization as well as number of identified 
proteins was higher in comparison with other com-
mercially available MS‐compatible surfactants 
(RapiGest, PPS Silent Surfactant, ProteaseMAX, octyl 
β‐d‐glucopyranoside, and others) [45].

8.4.2 LCM

Tissues consist of heterogeneous cell populations. 
Therefore, analysis of proteins extracted from the entire 
tissue sample may affect interpretation of obtained 
results, as the origin of a given molecule cannot be easily 
determined. Investigation of specific cell population 
might be of high relevance in the context of quantitative 
tissue proteomics, as the percentage of specific type of 
cells (e.g., tumor/stromal cells) might differ between 
samples as well as individual cell populations may behave 
in a different way under pathological condition. To over-
come the problem of tissue heterogeneity and to provide 
an accurate snapshot on protein alterations, analysis of 
specific cell populations is required. This can be achieved 
by using different microdissection techniques. Both 
manual and automated procedures have been developed, 
although the former are characterized by limited 
throughput and reproducibility. These shortcomings 
were addressed by the introduction of laser‐assisted 
methods. Generally, two laser‐based technologies have 
been implemented including (i) LCM and (ii) laser abla-
tion. However, in the context of this chapter, the focus 
will be placed on LCM.



Tissue Proteomics 137

LCM method allows for the analysis of tissue areas of 
interest by using microscope and laser beam [46, 47]. 
This method is compatible with different types of tissue 
preservation techniques, for example, fresh frozen or 
formalin fixed [30]. Detailed description of sample prep-
aration protocols for each of these techniques has been 
extensively reviewed here [30, 48–50]. However, micro-
dissection of the cells of interest is a time‐consuming and 
laborious procedure; thus it is not easily applicable when 
a large number of samples have to be analyzed. Usually 
the amount of material collected by LCM is limited 
imposing the need for application of high‐resolution 
proteomics platforms. An overview of recent studies 
based on LCM in combination with proteomics tech-
niques is presented in Table 8.3.

8.4.3 Protein Digestion

As aforementioned, bottom‐up/shotgun proteomics is 
widely utilized for the analysis of complex samples like 
tissue. In this approach, prior to MS analysis, proteins are 
digested to peptides, with a molecular weight (MW) in 
the range of approximately 500–3000 Da [85]. In com-
parison with intact proteins, peptides can be fractionated 
more efficiently and have lower mass and fewer charge 
states. These properties improve the sensitivity of the 
analysis [86]. Two types of protein digestion procedures 
can be followed, that is, enzymatic (using proteolytic 

enzymes) and nonenzymatic (using chemicals). Trypsin 
digestion is the most common approach because of the 
high cleavage efficiency, limited enzyme autolysis, high 
availability, low cost, and high specificity. Trypsin cleaves 
peptide residues after Lys and Arg (except when they are 
followed by Pro), which are found frequently in protein 
sequence, resulting in generation of peptides comprised 
of approximately 14 amino acids, with at least 2 positive 
charges. These peptides are suitable for MS analysis, 
and their fragmentation results in good quality spectra. 
However, besides trypsin, several other proteolytic 
enzymes are available, for example, endoproteinase LysC, 
LysN, chymotrypsin, and others [85], and can be applied 
either separately or in combination [87–89]. Since each 
protease has defined digestion specificity, efficiency, and 
optimum reaction conditions, utilization of multiple 
enzymes results in increase of the number of identified 
proteins and protein sequence coverage (as a result of 
generation of complementary peptides). However, this 
approach is not routinely applied in proteomics laborato-
ries, as it typically requires a higher amount of initial 
material and it may also increase MS run time.

In general, three protein digestion strategies are regu-
larly applied: (i) in‐solution digestion [90], (ii) in‐gel 
digestion [42], and (iii) FASP [41]. For the latter method, 
various modifications have been developed including 
N‐glyco‐FASP (a method for generation of deglyco-
sylated peptides from tissue samples for MS analysis 

Table 8.3 Overview on the application of LCM on human tissues in combination with proteomic analysis.

Proteomics platform Type of tissue Biological samples

LC‐MS/MS, iTRAQ Fresh frozen Oral cancer [51], bladder cancer [52, 53], colon carcinoma [54], lung squamous cell 
cancer [55, 56], oral cavity squamous cell carcinoma [57]

FFPE Nasopharyngeal carcinoma [58], diabetic glomerulosclerosis [59], multiple 
sclerosis lesions [60]

LC‐MS/MS, label‐free Fresh frozen Lung adenocarcinoma [61], breast cancer [62–64], pancreatic ductal 
adenocarcinoma [65], biopsies of normal skin, chronic wound keratinocytes from a 
diabetic patient and glomeruli from needle biopsies of patients with diabetic, lupus 
and genetic kidney diseases [66], endometrial cancer [67], ductal carcinoma [68]

FFPE Pancreatic tissue [69], benign prostatic hyperplasia [70], colonic adenomas [71], 
colorectal cancer [72], colon cancer [73], pancreatic ductal adenocarcinoma [74] 
(MudPIT)

LC‐MS/MS, 
O‐18/O‐16 labeling

Fresh frozen Gastric adenocarcinoma [75]

LC‐MS/MS, SILAC/
SUPER‐SILAC

Fresh frozen Breast cancer [64]
FFPE Lung cancer [76]

Reverse‐phase protein 
array

Fresh frozen Colorectal cancer [77]
FFPE Prostate gland [78]

2DE (DIGE) + LC‐MS/
MS or MALDI‐TOF

Fresh frozen Gastric cancer [79], nasopharyngeal carcinoma [80], colorectal cancer [81, 82], 
prostate cancer [83], lung adenocarcinoma [84]
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[91]), FFPE‐FASP (protocol for processing of FFPE tis-
sue samples for MS analysis [92]), and MED‐FASP 
(protocol combining multienzyme sample digestion 
and FASP [87]). An overview of these digestion strate-
gies is presented in Table 8.4. Several manuscripts have 
been published aiming at comparing the performance 
of different digestion techniques for both fresh‐frozen 
[94] and FFPE tissues [95, 96]. However, protein extrac-
tion and digestion protocols have to be adjusted for 
each specific experimental setup. The type of analyzed 
tissue samples, source of clinical material (fresh frozen 
or FFPE), sample availability, and amount of starting 
material should be considered when selecting the opti-
mal protocol.

8.5  Overcoming Tissue Complexity 
and Protein Dynamic Range: 
Separation Techniques

Tissue samples are characterized by high complexity and 
high dynamic range of protein concentration. It is esti-
mated that a single eukaryotic cell contains an average of 
20 000–50 000 unique proteins, while the total number of 
proteins found in tissue may exceed 100 000 [97]. 
Moreover, protein abundance within a single cell varies 
in the range between approximately 100 and 100 000 000 
copies per cell (106 orders of magnitude) and might be 
even higher at the tissue level [97]. On the contrary, the 

Table 8.4 Comparison of the three main enzymatic digestion strategies applied in bottom‐up proteomics.

In‐solution digestion In‐gel digestion FASP

Principle Digestion of the extracted 
protein mixture in solution [90]

In‐gel digestion is carried out 
within polyacrylamide matrix after 
protein electrophoresis [42]

FASP is employed for the on‐filter digestion 
of detergent lysed cells and tissue prior to 
MS analysis [41]. By using ultrafiltration 
devices, lysis buffer is exchanged with urea 
and ammonium bicarbonate buffer in a 
series of centrifugations

Practical 
aspects

 ● In‐solution digestion has to 
be preceded by protein 
denaturation, reduction, and 
alkylation

 ● Prior to LC‐MS/MS analysis, 
the peptide solution has to 
be purified to remove the 
interfering substances, for 
example, using C18 ZipTip

 ● Applicable after SDS‐PAGE or 
2D SDS‐PAGE

 ● Applicable with no or minor 
adjustments to gels stained with 
silver Coomassie colloidal blue

 ● Operations should be performed 
in laminar flow hood; pipets/
tips/tubes should be dust‐free

 ● Filter devices: Amicon ultra centrifugal 
filter devices (0.5 ml, 30 kDa MWCO, 
Merck Millipore), 0.5 ml Microcons 
(Sartorius‐Stedim), Vivacon 500 units (30 
or 50 kDa MWCO); Recommended 
MWCO: 30 kDa

 ● High performance for starting protein 
amount in the range of 25–100 µg [93]

Advantages  ● All steps are performed in 
one tube

 ● Possible automatization, 
reduction of sample handling

 ● New‐generation surfactants 
(e.g., RapiGest SF, PPS Silent 
Surfactant) have been 
developed to improve 
protein solubilization

 ● Easy in handling and fast

 ● If the proteins are fractionated 
by the electrophoresis, the 
analysis of individual bands/ 
spots increases the dynamic 
range and depth of the analysis

 ● Removal of low molecular 
impurities

 ● Enables the analysis of wide 
range of proteins in the lysate

 ● Digestion protocol compatible with high 
detergent concentration

 ● Improved solubilization of membrane 
fraction due to the high detergent 
concentration

 ● Allows for collection of protein digest 
free from nucleic acids and other cellular 
components

 ● Peptide eluate is clean (no further 
desalting step required)

Disadvantages  ● Incompatible with most 
detergents

 ● Proteins have to be dissolved 
in a solution compatible with 
digestion; otherwise removal 
of interfering substances is 
mandatory

 ● Usually, additional desalting 
step is required

 ● Increases risk of sample 
contamination with keratins 
during casting the gels and 
processing the excised gel slices

 ● Laborious and time consuming

 ● Requires multiple centrifugation steps
 ● Due to the application of filters, peptide 

recovery might be reduced

Examples of studies that have implemented these digestion strategies in the context of tissue proteomics are presented.
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dynamic range of proteomics platforms spans only a few 
orders of magnitude, reducing the success rate for 
 identification of low‐abundance proteins. Therefore, to 
overcome challenges related to tissue complexity and 
protein dynamic range prior to MS analysis, several frac-
tionation methods have been established. These include 
fractionation applied at the tissue/cell level (subcellular 
fractionation) and at the peptide/protein level. Separation 
techniques applicable at the protein and peptide level are 
categorized into gel based (one‐dimensional (1D) or 
two‐dimensional (2D) gel electrophoresis, isoelectric 
focusing (IEF)) and gel‐free (HPLC, multidimensional 
chromatography, affinity chromatography). A detailed 
description and comparison of these approaches was 
covered in the context of several recently published 
review articles. Gel‐based and gel‐free approaches have 
complementary properties allowing for identification of 
unique proteins by each approach [98]. The benefits 
derived from the combination of different strategies to 
analyze complex samples were demonstrated in several 
studies [99]. It has been reported that adjustment of cer-
tain parameters in proteomics experiments associated 
with the separation at protein/peptide level (the degree 
of protein separation, initial amount of peptides sub-
jected to chromatographic separation, and the degree of 
peptide separation) may lead to improvement of com-
prehensiveness of proteomics analysis [100]. This indi-
cates that successful and comprehensive proteomics 
analysis requires a series of optimization steps. Besides 
classical fractionation strategies, novel methods are 
being developed to address the high tissue complexity 
and broad dynamic range in protein expression such as 
heat stabilization of the tissue proteome [101].

8.5.1 Subcellular Fractionation

Reduction of tissue proteome complexity can be 
attempted even prior to the peptide/protein separation 
step. This can be achieved using LCM (as described ear-
lier) and/or subcellular fractionation techniques. In gen-
eral, subcellular fractionation includes a homogenization 
step to disrupt cellular structure of analyzed material and 
separate the cellular components. The latter is  possible, 
since different organelle have specific physicochemical 
properties such as size, charge, density, and others, allow-
ing for their separation [102]. Several  methods have been 
described to enrich tissue sample in specific type of sub-
cellular organelles (e.g., nuclear envelope [103], nuclear 
matrix [104], mitochondria [105, 106], plasma membrane 
[107, 108]). Moreover, some protocols have been devel-
oped to capture multiple subcellular fractions in a single 
experiment. For example, application of differential cen-
trifugation in density gradients allows for isolation of 
nuclear, mitochondrial, microsomal, and cytosolic 

proteins within approximately 5 h [109]. Even though 
these fractionation strategies  enable isolation of multiple 
cellular fractions from a single tissue sample, they may 
not provide as good purity as methods focused on isola-
tion of an individual fraction. However, applying subcel-
lular fractionation strategies prior to proteomics analysis 
is associated with additional experimental steps, and may 
introduce an additional variablity [102]. Various subcel-
lular fractionation methods as well as challenges associ-
ated with proteomics analysis of isolated organelles have 
been extensively reviewed elsewhere [102, 110, 111, 112]. 
Moreover, some commercially available kits designed for 
subcellular fractionation of tissue samples have been 
developed (e.g., Subcellular Protein Fractionation Kit for 
Tissues from Thermo Fisher, Mitochondria Isolation Kit 
for Tissue from Abcam, FOCUS™ SubCell Kit from G‐
Bioscience, and others). Performance of some of the 
available kits for subcellular fractionation of cell pellets 
was compared by Bünger et al. [113] and Rockstroh et al. 
[114]. However, to the best of our knowledge, this com-
parison has not been performed yet for kits available for 
tissue fractionation.

8.5.2 Gel‐Based Approaches

Gel‐based approaches relied on protein separation in 
gels based on their MW, isoelectric point, or sequential 
combination of both features. These include separation 
of proteins using gel‐based systems such as 1D (SDS‐
PAGE, native PAGE), 2D electrophoresis or IEF. Gel‐
based approaches represent a group of simple and 
easy‐to‐use fractionation strategies, allowing for removal 
of interfering substances and assessment of sample 
amount and sample complexity. On the other hand, sep-
aration of proteins characterized by similar MW or iso-
electric point might be difficult in a complex mixture. 
Additionally, identification of the proteins from gel 
matrix involves excision of individual bands/spots and 
further in‐gel digestion, which requires usually manual 
sample handing. A comparison of the gel‐based tech-
niques [i.e., 1D PAGE, 1D preparative PAGE, 2D PAGE, 
and IEF‐IPG (immobilized pH gradient)] was recently 
published by Jafari et al. [115], advocating the comple-
mentarity of different methods. However, one of the 
highest number of identified proteins was reported for 
1D SDS‐PAGE and IEF‐IPG. In addition, benefits derived 
from sequential application of 1DE SPS‐PAGE (protein 
level), IEF‐IPG (peptide level) prior to RP‐HPLC‐ LC‐
MS/MS resulted in notable increase in number of identi-
fied proteins in HeLa cell line [116]. An overview on the 
gel separation strategies, focusing on their applicability 
in tissue proteomics, is provided below.

1D gel electrophoresis under denaturing conditions 
(1DE SDS‐PAGE) separates proteins based on their MW. 
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This technique provides information about sample 
purity and protein degradation level, efficiency of frac-
tionation procedure, reproducibility of sample prepara-
tion, and relative quantification of individual proteins 
[117]. Therefore, it is widely applied during optimization 
of experimental protocols. More importantly, 1DE SDS‐
PAGE followed by the identification of the proteins using 
LC‐MS/MS has become one of the most frequently 
applied gel‐based techniques (called GeLC‐MS/MS). 
Upon protein separation, gel is sliced into several bands 
or one band, which is subjected to enzymatic digestion 
and tandem mass spectrometry (MS/MS) analysis. Due 
to the compatibility with detergents, GeLC‐MS/MS is a 
convenient method applied for the analysis of samples 
difficult to be homogenized or solubilized. Additionally, 
it can be applied to process a low amount of starting 
material (10 µg), which is important in the analysis of 
clinical tissue specimens, as their availability is usually 
limited. However, GeLC‐MS/MS is a laborious and time‐
consuming procedure; thus more experimental errors 
could occur such as keratin contaminations.

2D gel electrophoresis is a classical gel‐based separa-
tion method, usually combined with protein identifica-
tion using peptide mass fingerprinting (MALDI‐TOF 
MS) or MS/MS. Using 2DE‐SDS‐PAGE, proteins are first 
separated based on their isoelectric point followed by 
subsequent separation based on MW. Application of this 
method allows for resolving up to 10 000 of proteins, 
including also protein isoforms. However, limited gel‐to‐
gel reproducibility and resolving capacity of hydropho-
bic, low abundance, high MW proteins or proteins with 
an isoelectric point beyond the pH range of IPG strips 
are still considered as shortcomings of this method. 
However, problems associated with gel‐to‐gel reproduc-
ibility have been partially eliminated through develop-
ment of DIGE. Additionally, identification of complete 
set of separated proteins is time consuming, as single 
protein spot has to be excised and analyzed separately. 
This can be automated though application of spot‐pick-
ing machines. Numerous studies up to now have utilized 
2DE to study tissue proteome. Additionally, several 2DE 
reference maps for human (liver, kidney) as well as 
mouse tissues (adipose tissue, gastrocnemius muscle, 
liver, etc.) were established [118]. Up to date only 36 of 
2DE reference maps (including yeast, Escherichia coli, 
Staphylococcus aureus, Mus musculus, Homo sapiens, 
etc.) have been deposited on SWISS‐2DPAGE, which 
might reflect the trend toward application of LC‐MS/MS 
in the proteomics field.

IEF separates molecules on the basis of their charge. 
Separation is carried on acrylamide gel matrix with a pH 
gradient IPG. Besides the classical way of separation using 
IPG strips, several novel systems have been developed; 
IEF can be also performed using OFFGEL fractionation 

system (e.g., Agilent 3100 OFFGEL Fractionator) or capil-
lary system, and these systems will be more thoroughly 
described in the next section. IEF has been employed to 
separate both proteins and peptides mixture in combina-
tion with other gel‐based or gel‐free approaches (online or 
offline), leading to multidimensional separation. This 
includes application of the IPG‐IEF to separate the protein 
mixture prior to 2DE as well as to separate protein/pep-
tide mixture prior to LC‐MS/MS analysis [119, 120]. 
Benefits derived from application of IPG strips are related 
to highly reproducible pH gradient, allowing for easy 
assessment of pI range of individual fractions. Upon com-
pletion of IEF, IPG strips are cut in small and equal pieces 
followed by peptide extraction from the strip. However, 
peptides are diffuse in the strip while cutting the strip into 
fraction, leading to decreased resolution. Additionally, it 
has been reported that extraction of peptides from the 
strip is more efficient than in‐gel digestion. Moreover, 
extracted peptides require further purification prior to 
MS analysis. Peptides identified from the individual IEF 
fractions can be further filtered on the basis of their pI 
supporting the identification process [120]. More details 
about fractionation of peptides using IPG‐IEF can be 
found in the review by Cargile et al. [120]. Comparison of 
performance of IPG‐IEF peptide separation method with 
other strategies used for shotgun analysis has been 
recently reported [120, 121].

8.5.3 Gel‐Free Approaches

Gel‐free separation techniques have become a standard 
for the purpose of MS‐based proteomics. These include 
capillary isoelectric focusing (CIEF), high‐pressure liq-
uid chromatography (HPLC), multidimensional chroma-
tography, and affinity chromatography [13]. Among 
these, HPLC is the most commonly applied method in 
MS‐based proteomics, allowing for the separation of 
molecules based on different properties, depending on 
the chromatographic materials employed. The following 
chromatographic material has been broadly applied in 
MS‐based experiments: ion exchange (IEX), reverse 
phase (RP), hydrophilic interaction chromatography 
(HILIC), affinity, and hybrid materials [13]. For the pur-
pose of tissue proteomics, application of CIEF has also 
received an increased attention [122, 123]. The success-
ful application of this technique was also demonstrated 
for the analysis of laser capture microdissected tissue 
[124]. Combination of CIEF with RPLC allowed for iden-
tification of 6866 peptides and 1820 distinct proteins 
from glioblastoma multiforme tissue.

Due to the high complexity of biological material, 
which increases even more in cases of tryptic digests, a 
single‐dimensional separation might not have a  sufficient 
resolving power to separate unfractionated peptides. In 
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an effort to improve the resolving power, multidimen-
sional separations were introduced by combining various 
fractionation methods, representing either the same or a 
combination of different experimental approaches (gel 
based/gel‐free). In addition, each of the individual strate-
gies must separate peptides according to different physi-
ochemical properties [13]. Several setups allowing for the 
multidimensional separation have been developed and 
can be either implemented in online or offline system 
[13]. Furthermore, multidimensional separation strate-
gies to analyze tissue‐derived glioblastoma multiforme‐
derived cancer stem cell (i.e., capillary isotachophoresis 
(CITP)‐based multidimensional separations and multidi-
mensional liquid chromatography (LC) system) were 
conducted by Fang et  al. [125]. The most common 
approach allowing for multidimensional separation is 
multidimensional protein identification technology 
(MudPIT) [126], resolving the molecules using 2D LC 
(i.e., strong cation‐exchange (SCX) and RPC chromatog-
raphy). The first dimension involves the separation of the 
molecules based on the charge. Peptides are eluted in a 
series of washes with increasing salt concentration, and 
collected fractions are subjected to RPC (separation 
based on hydrophobicity). Since SCX is not compatible 
with MS, several improvements of MudPiT procedure 
were developed. More information on designing on 
MudPiT experiment can be found in Florens et al. [127]. 
Several studies have applied MudPiT to investigate tissue 
proteome. Using MudPiT, Kislinger et al. established an 
analytical and experimental approach for unbiased prot-
eomics analysis of mammalian cells and tissues (prot-
eomic investigation strategy for mammals (PRISM)), 
which has been initially applied to investigate proteome 
from mouse lung and liver tissue [128]. PRISM combines 
analysis of individual cellular fractions (nucleus, cytosol, 
soluble mitochondria, insoluble mitochondria, micro-
somes), multidimensional MS analysis, and further bioin-
formatics analysis of identified proteins using developed 
bioinformatics software [128]. MudPiT was also applied 
to perform a proteomics profiling of nuclear proteins 
extracted from eight human tissues: brain, heart, liver, 
lung, muscle, pancreas, spleen, and testis [129]. Many 
other studies applied also MudPiT in the context of tissue 
proteomics aiming at establishment of novel biomarkers 
or better understanding of disease pathophysiology using 
different types of starting material, for example, fresh‐
frozen [130] or FFPE tissue sections [74].

8.6  Instrumentation

Due to the technical advancements in MS instruments, 
MS‐based proteomics have become the most prominent 
branch of proteomics research. Typically, a mass spec-

trometer consists of an ion source, a mass analyzer, and a 
detector (to record the number of ions at each m/z). MS 
analysis starts from conversion of analyte molecules into 
gas‐phase ion (ion source, e.g., MALDI, ESI) following 
by their storage and separation in a basis of their mass‐
to‐charge ratio (m/z) (mass analyzer). In the last phase, 
the number of ions at each m/z is recorded (detector) 
[13]. Several different types of ion sources (e.g., ESI, 
MALDI), mass analyzers (ion trap (IT), Orbitrap, ion 
cyclotron resonance (ICR), quadrupoles, and time of 
flight (TOF)), and detectors have been introduced [13]. 
Particularly, each type of the mass analyzer exhibits dif-
ferent analytical performance using different strategy to 
characterize ions. As an example, TOF analyzers meas-
ure the flight time of the ions to detector, quadrupoles 
separate the ions based on the stability of their trajecto-
ries in the oscillating electric fields, and in case of IT, 
Orbitrap, and ICR the separation of ions is based on m/z 
resonance frequency. This topic has been extensively 
covered in several excellent reviews. Therefore, the trend 
to develop hybrid instruments combining different mass 
analyzers have evolved and resulted in development of 
several instrument configurations.

For the purpose of proteomics research, several types 
of instrument configurations have been widely employed 
including IT, triple quadrupoles, triple TOF, and hybrid 
instruments such as LTQ Orbitrap, Quadrupole‐TOF, 
and others [13]. In addition, based on publically available 
MS datasets deposited in ProteomeXchange platform 
from 2012, LTQ Orbitrap, LTQ Orbitrap Velos, Q 
Exactive, and TripleTOF 5600 were frequently applied 
to analyze tissue proteomes. An overview on their ana-
lytical performance is provided in Table 8.5. The three 
most commonly applied instrument configurations are 
described in the following sub-sections.

8.6.1 LTQ Orbitrap

LTQ Orbitrap (Thermo Scientific) is a hybrid mass spec-
trometer combining linear IT and Orbitrap technology. 
The broad applicability of LTQ Orbitrap in proteomics 
field is attributed to properties of both LTQ (the high 
sensitivity, speed, capability of MS/MS) and Orbitrap 
mass analyzers (high resolution and high mass accuracy) 
[13]. This technology has been used for quantitative bot-
tom‐up and top‐down proteomics experiments as well as 
in proteomics analysis of PTMs. Additionally, high mass 
accuracy allows for improved quantification of low‐
abundance peptides [131] as well as reduction of false 
positive identifications, which is of paramount impor-
tance for identification of new biomarkers as well as 
understanding of disease‐associated mechanisms. 
Several proteomics studies demonstrated successful 
application of LTQ Orbitrap to investigate tissue 



Integration of Omics Approaches and Systems Biology for Clinical Applications142

 proteomes (e.g., Refs. [132, 133]). Kume et al. using SCX 
pre‐fractionation and LTQ Orbitrap XL (Thermo Fisher 
Scientific) identified a total of 5566 proteins from mem-
brane fraction collected from colorectal cancer tissue 
[132]. In another study, the same technology allowed to 
establish protein signature for triple‐negative breast can-
cer. Proteomics analysis of a total of 126 tissue samples 
from patients with lymph node‐negative and adjuvant 
therapy‐naive triple‐negative breast cancer resulted in 
development of multi‐protein panel comprised of 11 
proteins [133].

8.6.2 LTQ Orbitrap Velos

LTQ Orbitrap Velos (Thermo Scientific) is a new genera-
tion of LTQ Orbitrap. Velos instrument combines 
Orbitrap and dual‐pressure linear IT technology. Ions 
are captured and fragmented in the first IT at relatively 
high pressure, while the second IT allows for a fast scan 
speed at reduced pressure [134]. Further improvements 
in the LTQ Orbitrap Velos are related to improved effi-
ciency of vacuum systems as well as the presence of 
C‐trap/HCD collision cell. This allows to achieve 
increased dynamic range and sensitivity at a higher scan 
speed. The detailed performance of LTQ Orbitrap versus 
LTQ Orbitrap Velos was compared in a study by Olsen 
et al. [134]. The improved performance of LTQ Orbitrap 
Velos was demonstrated in multiple studies. Proteomics 
analysis of 95 tumor samples (colon and rectal cancer), 
characterized before by the Cancer Genome Atlas 
(TGCA), allows for identification of a total of 124 823 
distinct peptides representing 7 526 protein groups, 
with an FDR of 2.6% [135]. Moreover, by applying multi-
dimensional chromatography and high‐resolution 

 proteomics  profiling, five molecular subtypes were 
identified for colon and rectal cancer, two of which 
overlapped with transcriptomics subtypes established 
in the frame of TCGA [135].

8.6.3 Q Exactive

Q Exactive (Thermo Scientific) is a hybrid instrument 
combing the high‐performance selection of precursor 
ions in a quadrupole instrument with the high accuracy 
and high resolution derived from Orbitrap technology 
[136]. The performance of Q Exactive and new‐genera-
tion LTQ Orbitrap Velos was evaluated in RAW 264.7 
cell lysate with a range of protein amount 1 ng to 1 µg 
[137]. Under these conditions, a higher number of pep-
tides and proteins were identified using Q Exactive in 
comparison with LTQ Orbitrap Velos (HCD) [137]. This 
is likely attributed to the faster scan rate and higher reso-
lution. On the other hand, Sun et al. [137] pointed out 
advantages of LTQ Orbitrap Velos including availability 
of multiple dissociation modes, proving to be beneficial 
in large‐scale proteomics experiments, and analysis of 
PTMs. Q Exactive is broadly applied in proteomics 
research. In the context of tissue proteomics, using this 
technology, Welinder et  al. performed an analysis of 
lymph node metastasis tissue (n = 10), which resulted in 
development of protein sequence database for meta-
static melanoma. By analyzing unfractionated and frac-
tionated (SCX) peptide mixture, 5326 unique proteins 
were identified, among which 2641 proteins overlapped 
between the two approaches [138]. In another study, 
Noberini et al. established a method to analyze histone 
PTMs on FFPE tissues [139]. As a proof of concept, this 
method was applied to analyze breast cancer samples, 

Table 8.5 Specification of commonly used mass spectrometers to analyze tissue proteome.

Instrument
Dynamic 
rangea Resolving power Mass accuracy Mass range (m/z)

Dissociation 
techniques

LTQ Orbitrap Velos 
(Thermo Scientific)

>5000 Min. 7 500 <3 ppmb  < 1 ppmc 50–2000, 
200–4000

CID, HCD, 
optionally ETDMax. 100 000 at m/z 400

LTQ Orbitrap (Thermo 
Scientific)

>4000 Min. 7 500 <3 ppmb  < 1 ppmc 50–2000, 
200–4000

CID, PQD, HCD, 
ETD upgradeableMax. 100 000 at m/z 400

Q Exactive (Thermo 
Scientific)

>5000 Max. 140 000 at m/z 200 <3 ppmb  < 1 ppmc 50–6000 HCD

LTQ Orbitrap Elite 
(Thermo Scientific)

>5000 Min. 15 000 <3 ppmb  < 1 ppmc 50–2000, 
200–4000

CID, HCD, 
optionally ETDMax > 240 000 at m/z 400

The instruments were shortlisted based on publicly available ProteomeXchange datasets using the following search criteria: “Title contains 
Tissue” and “Species contains Homo sapiens.” These instruments were also defined as most frequently used in the field of proteomics research 
(according to ProteomeXchange datasets collected for Homo sapiens).
a Dynamic range within a single scan. 
b Using external calibration.
c Using internal calibration.
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indicating notable changes in histone H3 methylation 
patterns between triple‐negative and luminal A‐like dis-
ease subtypes [139].

8.7  Quantitative Proteomics

One significant advantage of proteomics analysis is the 
capability to assess protein abundance. Since tissue is a 
site of disease initiation and progression, comparative 
analysis of the protein abundance between different 
physiological states provides a global “snapshot” on dis-
ease‐associated changes. Information on the absolute 
(exact amount of protein or concentration) or relative 
protein abundance (protein expression trend: up‐ or 
downregulation in comparison with control group) are 
subsequently utilized in a systems biology analysis tar-
geting establishment of in silico disease models.

The classical quantification strategy applied in prot-
eomics research combines separation of proteins using 
2DE and application of dyes or fluorophores, whereas for 
the purpose of gel‐free MS‐based proteomics, two main 
quantification strategies have been distinguished includ-
ing label‐based and label‐free approaches [140]. The for-
mer method relies on introduction of isotope labels. 
Depending on the strategy of incorporation of the labels, 
several type of label‐based quantification approaches 
were developed such as metabolic labeling (stable iso-
tope labeling with amino acids in cell culture (SILAC), 
15N), chemical labeling [isobaric tag for relative and 
absolute quantitation (iTRAQ), isotope‐coded protein 
labeling (ICPL), isotope‐coded affinity tag (iCAT), tan-
dem mass tags (TMT)], or proteolytic labeling (18O) 
[140]. Both chemical and proteolytic labeling have been 
utilized to quantify tissue proteomes, with the former 
being most commonly applicable. Even though meta-
bolic labeling is typically limited to the analysis of cell 
line models, due to recent developments, SILAC can be 
also applied for the analysis of tumor tissue proteomes 
(called super‐SILAC). Super‐SILAC uses as a reference/
internal standard a mixture of different cancer cell lines 
labeled with SILAC reagent, which is added to tissue 
extracts in a fixed ratio [141]. Successful application of 
super‐SILAC was reported in the context of breast can-
cer, brain tumors [141], and lung squamous cell adeno-
carcinoma [142]. Additionally, a protocol combining 
super‐SILAC with FACS sorting or LCM was developed 
for quantification of protein changes in cancer cell sub-
populations derived from liquid and solid tumors, 
respectively. This method allows for identification of up 
to 8000 proteins from patient‐derived samples using 
hybrid quadrupole‐Orbitrap MS [76]. An overview on 
recent developments and application of super‐SILAC is 
provided by Shenoy et al. [143].

On the contrary, label‐free approach is easier to use, as 
it does not require additional labeling steps. Additionally, 
in the label‐free approach there is no limitation with 
regard to the number of analyzed samples in comparison 
with label‐based methods. However, each sample has to 
be analyzed individually, which may increase MS instru-
ment use and variability. The accuracy and linearity of 
the label‐free quantification can be affected particularly 
by the presence of other compounds in the samples, 
causing suppression effect. Irreproducibility in sample 
preparation is also a major concern. This might be reme-
diated to some extent using labeled internal standards 
[140]. Two quantification methods in label‐free prot-
eomics are spectral counting and intensity‐based quanti-
fication [140]. The first method relies on counting the 
number of MS/MS spectra for a specific protein. 
Therefore, more abundant proteins generate more abun-
dant peptides, increasing the probability of ion selection 
for MS/MS analysis. However, differences in the physic-
ochemical properties of peptides might affect detection 
of peptides by MS and thus may have an impact on quan-
tification using spectral counting. These include peptide 
length, mass, amino acid sequence, solubility, net charge, 
and others. Therefore, to address this issue Lu et  al. 
developed a novel method called absolute protein 
expression (APEX) measurements [144]. In this method, 
considering the physicochemical properties of individual 
peptides, probability of their detection is assessed by a 
supervised classification algorithm. In the intensity‐
based approach, the quantitation is performed at the 
MS1 level based on the area under the curve (AUC) from 
the extracted‐ion chromatogram.

Independent of the quantification strategies used, in 
an effort to accurately compare the quantification results 
between different samples, data normalization is 
required. By normalizing the data, an effect associated 
with differences in protein loading, ionization efficiency, 
carryover effect, and others can be taken into account. 
Up to now several normalization methods have been 
developed and are well described in the context of sev-
eral manuscripts [145–147].

Based on the aforementioned, numerous techniques 
are currently being applied to quantify the tissue pro-
teome. It has been shown that both quantification meth-
ods were successfully applied either for the analysis of 
total tissue proteomes [148, 149] or tissues subjected to 
LCM. Moreover, quantitative proteomics was used to 
analyze fresh‐frozen as well as FFPE tissues. Some stud-
ies are listed in Table 8.3. The outcome of these studies is 
strictly associated with both proteome coverage and 
accuracy and precision of applied quantification strate-
gies. Comparative analysis of label‐free and label‐based 
methods has been broadly described in in vitro cultured 
cells [150–154], while performance in highly complex 
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tissue samples has not been thoroughly studied. Recently, 
Latosinska et  al. compared label‐free (intensity‐based) 
and iTRAQ quantification methods using as starting 
material BC tissue samples [148]. It has been shown that 
both methods, that is, label‐free and pre‐fractioned 
iTRAQ sample, enable achievement of high proteome 
coverage and apparently valid predictions in terms of 
protein differential expression [148]. However, higher 
sequence coverage and higher number of differentially 
expressed proteins were demonstrated in the case of 
label‐free approach. However, due to the limited number 
of analyzed samples, the risk for receiving false associa-
tions exists, indicating the need for the analysis of higher 
sample numbers and/or application of adjustment for 
multiple testing [148].

8.8  Functional Annotation 
of Proteomics Data

Untargeted proteomics analysis is capable of identifying 
hundreds to thousands of proteins, which have to be 
subsequently interpreted within a specific biological 
context. Although, in most of the comparative studies, 
emphasis is given on a shortlist of disease‐related pro-
teins (i.e., differentially expressed proteins between case 
and control groups), the number of features remains 
high. Therefore, numerous resources and tools have 
been developed in order to elucidate biological meaning 
of the proteomics data. Specifically, functional analysis 
of differentially expressed proteins allows better under-
standing of disease‐associated biological processes and 
could assist in the selection of specific proteins for fur-
ther in vitro/in vivo experiments.

Functional analysis is conducted at the level of 
 individual proteins (analysis of biological processes, 
molecular function, and subcellular localization), pro-
tein–protein interactions (PPIs), or pathways [155, 156]. 
However, due to the diversity of research aims and pro-
teomics data, there is no consensus on how to extract 
the biological significance from collected data. Briefly, 
annotation of proteomics data can be performed 
either  by searching protein databases (e.g., UniProt 
(http://www.uniprot.org/) [157, 158], neXtProt (http://
www.nextprot.org/) [159], Human Protein Atlas (www.
proteinatlas.org/) [1, 160], etc.) or applying various 
computational tools (Table  8.6). Independent of 
the  approach followed, protein identifiers have to be 
converted to be compatible with selected tools. For 
that  purpose, several ID mapping tools have been 
 developed (e.g., Synergizer [179] (http://llama.mshri.
on.ca/synergizer/translate/), PICR  [180] (http://www.
ebi.ac.uk/Tools/picr/), protein‐ centric ID mapping 

 service  [158, 181] (http://www.uniprot.org/mapping/), 
and others, as manual adjustment of IDs is prone to 
mistakes. Moreover, converted identifiers should be 
checked for the presence of duplicates. Only unique 
identifiers should be used for functional analysis, as the 
presence of duplicates may biased results.

Currently, the vocabulary system developed by Gene 
Ontology (GO) Consortium is commonly applied to 
annotate ‐omics data according to their contribution in 
biological processes, molecular function and subcellu-
lar localization [182]. The annotation system devel-
oped by GO has a hierarchical structure with general 
annotations at high level of hierarchy and more spe-
cific annotations at lower level. Of note, association of 
GO term to specific protein is supported by specific 
level of evidence. Most of the evidence codes are 
assigned manually by a curator (except those defined 
as Inferred from Electronic Annotation) and are 
divided into four main categories: (i) experimental, (ii) 
computational analysis, (iii) author statements, and 
(iv) curatorial statements. Up to now numerous tools 
have been developed to both map GO terms and per-
form enrichment analysis. The latter approach allows 
identification of biological information that is overrep-
resented in selected datasets. This feature is frequently 
used to assess the efficiency of sample preparation 
procedures, particularly in the context of subcellular 
fractionation analysis.

Analysis of GO annotation provides an overview on 
the biological relevance of proteomics findings, but it 
does not show relations/interactions between proteins 
as well as associated biological outcome. Since pro-
teins usually function as a part of a complex machinery, 
PPI analysis (including factional and physical interac-
tions) enables studying of functional modules of pro-
teome. One step further, pathway analysis reflects 
series of interactions, which leads to specific biological 
outcome. Available network databases and pathway 
resources are summarized in the context of meta‐data-
base called Pathguide (http://pathguide.org) [183]. 
Specific resources may have different content, focus, and 
coverage. Therefore, its selection should be based on the 
scope of analysis. Similarly to the GO‐based analysis, rel-
evance of findings revealed by network and pathway 
analysis can be priorities using enrichment analysis. 
However, special caution is advised when evaluating net-
works, as FDR at the level of retrieved interaction is 
higher than in other types of analysis. As presented in 
Table  8.6, many of the currently available tools (e.g., 
DAVID [173, 174], PANTHER [176], Babelomics [175], 
and other) integrate information about GO, pathways, 
domains, interactions, and so on. Some further informa-
tion on bioinformatics analysis of proteomics data were 
described by Bhat et al. [184].
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8.9  Application of MS‐Based Tissue 
Proteomics in Bladder Cancer 
Research

To exemplify the applicability of tissue proteomics in 
BC research, relevant manuscripts were retrieved by lit-
erature search using the Web of Science (TOPIC: (“tis-
sue” or “laser capture”) AND TOPIC: (“bladder ca*” or 
“urothelial ca*” or “transitional cell*”) AND TOPIC: 
(“protein*” or “proteom*”)). Only original articles pub-
lished within the last 5 years and utilizing MS‐based 
proteomics platforms were selected and are described 
below.

The BC tissue proteome has not been extensively stud-
ied. Within the last 5 years, a couple of reports have been 
published offering some insights into tumor biology as 
well as identification of novel biomarker candidates. 
The overview on the research activities conducted in 
the field of BC tissue proteomics is provided in Table 8.7. 
In most of the studies, proteomics profiles were 

generated by using LC‐MS/MS analysis in combination 
with either label‐free or label‐based (iTRAQ) quantifica-
tion. These two quantification methods were compared 
by Latosinska et al. using as starting material BC tissue 
samples from non‐muscle‐invasive and muscle‐invasive 
cases [148]. The reported result indicated better capabil-
ity of label‐free quantification to identify differentially 
expressed proteins. However, the results have not been 
interpreted in the context of tumor biology.

In a series of reports, Niu et al. extensively investigated 
BC tissue proteins by combining LCM with shotgun pro-
teomics analysis [186–188, 191, 192]. Proteomics profil-
ing of cancer cells/adjacent urothelium as well as cancer 
stromal cells/adjacent normal stromal cells originated 
from superficial [185, 186] and muscle‐invasive BC [187, 
188] was conducted. Through application of various bio-
informatics approaches to functionally characterize the 
identified differentially expressed proteins as well as to 
predict altered pathways, better understanding of tumor 
biology could be achieved. In a study of superficial BC, a 

Table 8.6 Examples of tools/resources applied for functional annotations of proteomics datasets.

Name Description Reference

GO analysis
AmiGO http://amigo.geneontology.org/amigo [161]
GoMiner http://discover.nci.nih.gov/gominer/index.jsp [162]
WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ [163]
GOrilla http://cbl‐gorilla.cs.technion.ac.il/ [164]
Network analysis
STRING http://string‐db.org/ [165]
IntAct http://www.ebi.ac.uk/intact/ [166]
BioGRID http://thebiogrid.org/ [167]
MINT http://mint.bio.uniroma2.it/ [168]
Pathway analysis
IMPaLA http://impala.molgen.mpg.de/ [169]
KEGG http://www.genome.jp/kegg/pathway.html [170]
Reactome http://www.reactome.org/ [171]
Ingenuity Pathway Knowledge Basea http://www.ingenuity.com/products/ —
MetaCorea https://clarivate.com/products/metacore/ —
Meta‐tools
Cytoscape/Cytoscape Plugins http://www.cytoscape.org/ [172]
DAVID https://david.ncifcrf.gov/ [173, 174]
Babelomics http://babelomics.bioinfo.cipf.es/ [175]
PANTHER Classification System http://www.pantherdb.org/ [176]
Enrichr http://amp.pharm.mssm.edu/Enrichr/ [177]
Blast2GO https://www.blast2go.com/ [178]

a Commercially available tools.
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  Table 8.7    Overview on tissue proteomics studies performed in the context of bladder cancer. 

Reference Methodology Context of the study Cohort/proteomics analysis Type of specimens Prominent findings   a       

Kato et al.   [149]  LC‐MS/MS Biomarker discovery 6 bladder cancers and paired normal 
mucosa

Proteomics: fresh 
frozen

BCAP31, CCT4, DDX39, 
FKBP4, IDH1, KRT19, 
MYH9, P4HB, YBX1  iTRAQ Verification: 

FFPE  
Niu et al.   [185]  LCM Understanding of cancer biology (superficial 

bladder cancer)
4 paired superficial BC and adjacent 
normal urothelial tissue sample

Fresh frozen N/A  
2D‐LC‐MS/MS  

Niu et al.   [186]  LCM Understanding of cancer biology by studying 
stromal cells (superficial bladder cancer)

4 paired superficial BC and adjacent 
normal urothelial tissue samples

Fresh frozen N/A  
2D‐LC‐MS/MS  

Niu et al.   [187]  LCM Understanding of cancer biology by studying 
stromal cells (muscle‐invasive bladder cancer)

4 paired muscle‐invasive BC and 
adjacent normal urothelial tissue samples

Fresh frozen N/A  
2D‐LC‐MS/MS  

Niu et al.   [188]  LCM Understanding of cancer biology by parallel 
analysis of urothelial and stromal cells (muscle‐
invasive bladder cancer)

4 paired muscle‐invasive BC and 
adjacent normal urothelial tissue samples

Fresh frozen N/A  
2D‐LC‐MS/MS  

Liu et al.   [189]  LCM Understanding of heterogeneity for muscle‐
invasive bladder cancer

30 paired muscle‐invasive BC and 
adjacent normal urothelial tissue samples

Fresh frozen N/A  
2D‐LC‐MS/MS  
iTRAQ  

Liu et al.   [53]  LCM Understanding of heterogeneity for muscle‐
invasive bladder cancer by analyzing stromal cells

30 paired muscle‐invasive BC and 
adjacent normal urothelial tissue samples

Fresh frozen N/A  
2D‐LC‐MS/MS  
iTRAQ  

Latosinska 
et al.   [148]  

LC‐MS/MS Evaluation of quantification strategies for tissue 
proteomics research

4 pTa, 4 pT2+ Fresh frozen N/A  
iTRAQ/ LFQ  

Chen et al.   [52]  LCM Biomarker discovery 4 pairs of primary bladder cancer tumor 
and adjacent non‐tumorous tissue

Proteomics: fresh 
frozen

CA2, PGK1, SFN, 
SLC3A2, STMN1, 
TAGLN2, TXN  LC‐MS/MS Verification: 

FFPE, urine  
iTRAQ   

Oezdemir et al. 
  [190]  

MALDI‐TOF 
IMS

Grading of urothelial neoplasms Samples from patients with pTa BC 
including 27 low grade (G1), 21 high 
grade (G3), and 31 high grade (G2)

Fresh frozen Classification SVM‐based 
model of 23 peaks

  LCM, laser capture microdissection; LFQ, label‐free quantification; MALDI‐TOF IMS, matrix‐assisted laser desorption/ionization time‐of‐flight imaging mass spectrometry; N/A, not applicable. 
  a    Most promising proteomics findings selected for validation by using alternative techniques.  
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total of 580 differentially expressed proteins were defined 
[185]. These include proteins previously associated with 
carcinogenesis (e.g., fibronectin, MMP9, galectin‐1, 
alpha‐enolase, etc.) as well as novel findings (achaete‐
scute like‐2 protein). Further interpretation of the find-
ings in the context of biological functions or pathways 
indicated the role of differentially expressed proteins in 
oxidative phosphorylation (e.g., ATP5A1, CYC1, 
NDUFA3, etc.), metabolic processes (glycolysis, gluco-
neogenesis, e.g., ADH1A, ALDOA, ENO2), focal adhe-
sion (e.g., ACTN1, COL3A1, FLBN), ribosome (e.g., 
RPL10A, RPL12, RPS8), and others [185]. In a subse-
quent study, the same approach was applied to charac-
terize the proteomics profile of cancer/normal stromal 
cells in superficial BC [186]. The analysis resulted in 
identification of 637 differentially expressed proteins 
[186]. Evaluation of those findings revealed an alteration 
in multiple pathways including ECM receptor interac-
tion (e.g., ITGA5, LAMA4, LAMB2, VNT), cell commu-
nication (e.g., TNC, DES, DSG1, COL3A1), focal 
adhesion (e.g., CDC42, FLNA, FLNC, MYLK), metabo-
lism (fatty acid metabolism, e.g., ACAA1, ACOX1, 
ALDH1B1), oxidative phosphorylation (e.g., COX17, 
COX5B, NDUFA8), and others [186]. Some of these 
pathways and/or associated proteins were also identified 
by proteomics profiling of cancer/normal cells [185]. 
Following the same principle, parallel analysis of prot-
eomics profiles in both cancer/cancer stromal cells and 
normal urothelial/normal stromal cells was performed 
in the context of muscle‐invasive BC [188]. The parallel 
analysis enabled for identification of 1753 differentially 
expressed proteins between cancer and normal tissue. 
These proteins were associated with metabolic pathways 
(e.g., ACAA1, ACO1, ATP5B), spliceosomes (e.g., 
ACIN2, EIF4A3, RBM8A), endocytosis (e.g., ACAP2, 
ARP23, CDC42), regulation of actin cytoskeleton (e.g., 
ARPC1B, ARPC2, CYFIP1, ROCK), and others. In fol-
low‐up studies, Liu et al. quantified protein changes in 
muscle‐invasive BC of different metastatic risk groups by 
using label‐based approach (iTRAQ) [53, 189]. 855, 
2210, and 633 proteins were considered as differentially 
expressed (fold change >1.5) in high‐/median‐/low‐risk 
groups’ relative to normal groups [189]. Interestingly, 
based on the specific set of changes in each metastatic 
risk group, the most prominent deregulated pathways 
were predicted (top 10 pathways based on significance). 
The main difference was observed between low‐risk and 
medium‐/high‐risk group. In the higher‐/medium‐risk 
group, majority pathways were relevant to genetic infor-
mation processing or metabolism, while in the low‐risk 
group significantly affected pathways were related to 
focal adhesion, ECM receptor interaction, complement 
and coagulation cascade, and others [189]. Along the 
same lines, cancer stroma proteomics expression profiles 

of muscle‐invasive BC in different metastatic risk groups 
were conducted [53].

Chen et al. evaluated the diagnostic potential of tissue 
proteomics‐derived findings. Similarly to the previous 
studies, proteins derived from the homogeneous popula-
tion of cancer and normal urothelial cells were analyzed 
by LC‐MS/MS [52]. In a series of two iTRAQ experi-
ments, a total of 3217 proteins were identified, with an 
overlap of 1585 proteins. Considering the magnitude of 
the fold change (≥1.5 for upregulated and ≤0.67 for 
downregulated in cancer vs. noncancerous tissue) and 
frequency of identification of the proteins with this spe-
cific change (at least in 2 out of 4 paired samples), 131 
and 181 proteins were characterized by increased or 
decreased expression in BC versus noncancerous sam-
ples, respectively. Seven potential biomarkers (i.e., CA2, 
PGK1, SFN, SLC3A2, STMN1, TAGLN2, TXN) were 
shortlisted accounting for their biological relevance to 
human cancer and frequency of detection of differential 
expression in analyzed samples (proteins overexpressed 
in at least 3 out of 4 paired microdissected tissue speci-
mens) [52]. Differential expression of STMN1, TAGLN2, 
and SL3A2 was confirmed in an independent sample set 
by immunohistochemistry (IHC). In parallel, diagnostic 
performance of those seven candidates was assessed in 
urine samples from BC and hernia patients (control 
group) by using Western blot or ELISA. Collected results 
indicated proteins that are able to discriminate between 
early‐ and late‐stage BC (CA2, PGK1, STMN1, TAGLN2), 
low‐grade (LG) and high‐grade (HG) tumors (CA2, 
PKG1, TAGLN2), and BC and control individuals (PKG1, 
STMN1, TAGLN2), with the AUC value in the range of 
0.631–0.712. Among those candidates, tissue and uri-
nary TAGLN2 exhibited the most significant increase in 
expression in BC patients versus controls [52].

In another study by Kato et al. [149], tissue proteomics 
analysis was also applied to identify biomarkers for BC 
progression. From the list of 493 identified proteins, only 
15 proteins showed increased expression in cancer tis-
sues compared with adjacent normal tissues (fold change 
above 1.2) and were detected in at least four out of six 
sets of BC and paired normal mucosal samples. This 
includes ACTR3B, BCAP31, CCT4, DDX39, EZR, 
FKBP4, IDH1, KRT19, MYH9, NPM1, P4HB, PTMA, 
S100A11, S100P, and YBX1. IHC validation was subse-
quently performed only for those proteins, which have 
not been previously investigated in BC. However, in the 
case of ACTR3B, IHC could not be conducted due to the 
lack of available antibody. For these proteins, the IHC 
results support the proteomics findings. Additionally, 
only the expression of DDX39 was found to be correlated 
with cancer stage and grade [149]. An inverse correlation 
between expression of DDX39 and cancer stage and 
grade was reported. Moreover, based on the follow‐up 
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data, low DDX39 expression was associated with more 
rapid disease progression (p = 0.0083) [149].

Another interesting application of tissue proteomics in 
the area of BC research was presented by Oezdemir et al. 
[190]. Compared with other studies described earlier, 
MALDI‐TOF imaging MS was employed to establish the 
proteomics profile able to discriminate between low grade 
(LG) and high grade (HG) BC tumors. Classification model 
was developed based on the data from G1/LG (n = 27) and 
G3/HG (n = 21) [190]. From a total of 46 significantly differ-
entially expressed peaks, 23 were selected to be incorporated 
into a support vector machine (SVM)‐based model [190].

8.10  Conclusions

The investigation of tissue proteome is an invaluable 
approach in clinical research enabling comprehensive 
molecular characterization of protein complement of 
specific tissue. This opens up new perspectives to better 
understand disease‐associated mechanisms and thus 
could contribute to establishment of disease molecular 
models, allowing for development of biology‐driven 
therapeutic targets. Moreover, application of tissue 

 proteomics may also help to assess the validity of prog-
nostic and/or predictive biomarkers of disease outcome 
and/or treatment response. Considering a clear clinical 
demand in the field of cancer research to improve on 
therapeutic treatment options and develop novel bio-
markers, application of tissue proteomics appears to be a 
suitable tool that can help to fulfill these needs. Recent 
advances in analytical tools applied in the context of tis-
sue proteomics (e.g., LCM, separation techniques, and 
MS) as well as developments of novel methodologies 
(e.g., MS analysis of FFPE tissue specimens) have allowed 
to some extent to overcome the tissue proteomics asso-
ciated challenges such as high sample heterogeneity, 
broad dynamic range of proteins expressed in tissue, or 
limited sample availability. The impact of these improve-
ments can be further exemplified by their successful 
application in tissue proteomics‐based research. Tissue 
proteomics has greatly contributed to our understanding 
of different diseases, but for the moment its application 
in clinical setting is limited. However, efforts should be 
made to further validate and interpret the collected data 
in the context of existing literature by employing a sys-
tems biology approach as well as explore their biological 
role in the cell using in vitro and in vivo models.
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9.1  Introduction

Mass spectrometry (MS) is one of the most important 
tools for the characterization and identification of a wide 
range of biomolecules, including metabolites, lipids, and 
proteins. The study of such molecules constitutes the 
major ‐omics disciplines studied using MS techniques. 
In MS, analyte molecules are first ionized in the source 
and can be present in solid, liquid, or gaseous form, 
depending upon the type of ion source employed. The 
ionized analytes are then separated in the mass analyzer 
according to their physical properties, with the corre
sponding electrical signals then recorded by a detector. 
These detected signals are correlated with a particular 
mass‐to‐charge ratio (m/z). Results are then displayed in 
the form of a mass spectrum, with the relative intensity 
of each signal presented as a function of its m/z.

The concept of mass spectrometry imaging (MSI) first 
came to the fore nearly 50 years ago, representing a 
technique suitable for the analysis of elements and other 
small molecules. In first instances, MSI instruments 
employed secondary ion mass spectrometry (SIMS) 
technology, which was then shortly followed by the 
laser microprobe analyzer. Both of these techniques 
were capable of performing high spatial resolution sur
face analysis of small organic and inorganic molecules. 
However, it was not until the late 1990s when the research 
of Richard Caprioli and coworkers led to the introduction 
of MSI into a clinical setting, employing matrix‐assisted 
laser desorption/ionization (MALDI) as a means of ana
lyzing a wider range of biomolecules, including proteins, 
directly on intact tissue [1]. In this early body of work, 
Caprioli et al. were able to demonstrate the ability of 
MSI to localize the distribution of biomarkers within 
tissue, without the need for labeling. This early research 

subsequently led to an explosion of MSI‐based studies, 
having a substantial impact on clinical and pharmaco
logical research.

Currently, there are a number of MSI techniques 
employed in clinical studies, including SIMS, desorption 
electrospray ionization (DESI), laser ablation electrospray 
ionization (LAESI), and rapid evaporative ionization 
mass spectrometry (REIMS) (Table 9.1). In addition to 
this, there are a number of newly emerging MSI tech
niques that have shown promise for employment in 
this field of research, including liquid junction surface 
sampling and mass cytometry [2]. However, as a result 
of its widespread availability, ability to analyze proteins, 
and numerous other advantages (Table  9.2), MALDI 
remains the most commonly applied MSI technique. 
Given that proteins play a significant role in a large num
ber of pathways involved in defective cellular signaling 
cascades, the ability to spatially resolve the localization 
of a number of proteins concurrently within the same 
section of pathological tissue can enable the detection of 
pathological processes and, ultimately, disease candi
dates. Additionally, it has also become increasingly com
mon for lipids and metabolites to be analyzed in order to 
study disease mechanisms and provide complementary 
information that can be integrated with proteomic 
findings. Since its inception, MALDI‐MSI has been used 
in a plethora of clinical‐based studies, covering the fields 
of oncology, pathology, diagnostics, and surgery [3]. 
Furthermore, it has been regularly used to monitor the 
distribution of xenobiotics and their metabolites, estab
lishing itself as an invaluable tool in drug distribution 
studies [4]. This chapter will focus on the methodo
logical aspects underpinning on‐tissue MALDI‐MSI and 
proceed to discuss its application and relevance in 
clinical‐based studies.
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9.1.1 MALDI‐MSI: General Principles

MALDI‐MSI was formally introduced in 1997 by Richard 
Caprioli, and its use has increased exponentially in 
recent years to become the most widely employed MSI 
technique. This technique relies on the use of a MALDI 
matrix, which consists of small organic molecules that 
are designed to absorb the energy of a pulsed laser 
beam. These molecules commonly possess a suitable 

chromophore, usually in the form of an aromatic core, 
and it is this property of the matrix that facilitates the 
absorption of the UV laser energy. When this matrix is 
applied to the surface of a sample, it  promotes the 
formation of a ubiquitous layer of co‐crystals, which 
incorporates both matrix and analyte molecules in its 
network. This co‐crystallization process, which occurs 
on the surface of the sample, is characterized by signifi
cant variability and is related to a number of different 
parameters including the choice of solvent, time of 
incubation, and matrix concentration [5]. When the 
laser beam is applied to the surface of the sample, the 
absorbed energy leads to rapid desorption of both 
the matrix and analyte crystals and subsequent ioniza
tion (Figure 9.1). This ionization process is similar to 
electrospray ionization (ESI) in the aspect that both 
techniques are capable of generating large gaseous 
phase ions without extensive fragmentation occurring 
during the procedure. This is termed “soft” ionization. 
The most significant difference between MALDI and 
ESI is that MALDI produces far fewer multiply charged 
ions, leading to less complex spectra, which are, ulti
mately, easier to interpret.

MALDI sources can be combined with a wide array 
of mass analyzers, including time of flight (TOF) and 
Fourier transfer ion cyclotron resonance (FT‐ICR), 

Table 9.1 An overview of the most commonly used ionization sources for MSI experiments.

Ionization Pretreatment Analyte class Mass range Spatial resolution

MALDI Laser ablation of the surface 
sample and desorption/
ionization of analytes

Coating of the sample 
with a MALDI matrix 
solution

Metabolites, lipids, 
peptides, or proteins 
(matrix dependent)

1 Da to 
500 kDa

<5–10 µm 
(commercial 
instruments)

SIMS The sample surface is 
sputtered with a primary ion 
beam, generating secondary 
ions

Not required. However, a 
matrix/metal coating can 
be used to increase the 
yield of generated ions

Static SIMS: elements, 
fatty acids, and lipids

1 Da to 
10 kDa

Static SIMS: >1 µm

Dynamic SIMS: elements Dynamic SIMS: 
<1 µm

DESI Droplets are generated via 
an electrospray mechanism 
and directed toward the 
surface sample

None Small metabolites (from 
tissue)

1 Da to 
2 kDa

>100 µm

Nano‐DESI A liquid bridge samples the 
surface molecules which are 
then ionized by nano‐ESI

None Metabolites, peptides, 
and proteins (solvent 
combination dependent)

1 Da to 
2 kDa

<10 µm (dependent 
upon the size of 
liquid bridge)

LAESI Generation of gas‐phase 
particles by laser ablation 
and ionized by electrospray

None Metabolites, peptides, 
and proteins

50 Da to 
100 kDa

MSI: <200 µm
Cell‐by‐cell analysis: 
<50 µm

REIMS Rapid evaporation of 
analyte molecules 
generating gas‐phase ions

None Metabolites and lipids 150 Da to 
2 kDa

<500 µm

Mass 
cytometry

Functionalized antibodies 
bound to polymers 
containing lanthanide

Addition of 
functionalized antibodies

Proteins 50 Da to 
250 Da

<1 µm (when 
coupled with a 
SIMS instrument)

Table 9.2 Advantages and disadvantages of MALDI‐MSI.

Advantages Disadvantages

High throughput No intracellular information
Label‐free Matrix application can be tissue 

dependent, yielding variable results
Relative quantitation Difficulty in identifying peptides 

directly on tissue
Applicable to a wide 
range of analytes
Maintains 
morphological structure
Maintains spatial 
localization of analytes
Well established
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which are commonly employed for the analysis of 
intact proteins due to the wide mass range that they 
cover. Alternatively, multiple‐stage quadrupole TOF 
and various forms of ion traps can be used for the 
analysis of smaller molecules, including metabolites, 
lipids, and peptides. However, coupling MALDI with 
TOF mass analyzers appears to be the most common 
approach for  MALDI‐MSI studies. This combination 
enables the analysis over a large mass range (50 Da to 
more than 150 kDa), the spatial resolutions higher than 
20 µm, and the possibility of performing MS/MS experi
ments directly on tissue when TOF/TOF is employed. 
The ability to identify proteins of interest, by utilizing 
MS/MS fragmentation directly on tissue, is of para
mount importance when considering the progression of 
this MSI technique in terms of facilitating the transla
tion of these findings into tests that are suitable for use 
in a routine clinical setting.

In MALDI imaging, a mass spectrum is acquired at 
each desired x,y coordinate within a defined measure
ment region, which is usually related to an entire section 
or particular regions of interest (ROIs) present within 
a tissue section. Using the acquired mass spectra, the 
spatial distribution of any of the biomolecules present 
can be visualized and a molecular image of the tissue 
reconstructed. These molecular images can then be 
correlated with tissue images obtained using histological 

techniques. The distance between spectral acquisitions 
in MALDI‐MSI analysis is referred the rastering, which 
is inversely proportional to the spatial resolution (i.e., the 
smaller the distance between the two raster positions, 
the higher the spatial resolution). MALDI‐TOF instru
ments are capable of high‐throughput MSI analysis 
with spatial resolutions higher than 20 µm. Although 
other instruments, such as TOF‐SIMS, are capable of 
acquiring images with a higher spatial resolution (as high 
as 1.5 µm), they are unable to do so in the same high‐
throughput manner and the mass range is more limited 
in comparison.

Notwithstanding the rapid evolution of MALDI‐MS 
instrumentation and sample preparation protocols [6], 
several technical issues related to MALDI‐MSI still need 
to be improved, such as increased spatial resolution 
and sensitivity. However, next‐generation instruments 
are beginning to address these limiting factors, not 
only improving spatial resolution and sensitivity but 
also increasing the spectral acquisition rate as well as 
minimizing pixel‐to‐pixel variability, facilitating higher 
quality and more robust analysis. Perhaps of greater 
importance is the imaging and visualization of single 
cells, and, in fact, when using the correct cell fixation 
protocols and a laser with a smaller diameter (<7 µm), 
this has already been shown to be possible with currently 
available MALDI‐MSI instrumentation [7]. Continuing in 

Laser
N2(339 nm)

Nd-YAG (355 nm)

UV-adsorbing
co-crystals

+

+
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Figure 9.1 The general principles of MALDI‐MSI. Laser ablation leads to the desorption and ionization of matrix and analyte ions. 
The detected ions yield the generation of mass spectra at discrete spatial coordinates and the spatial distribution of any of the ions 
present in these spectra can be visualized following the generation of a molecular image.
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this vein, MALDI‐MSI will be able to not only analyze 
single cells, but also potentially delve deeper and offer 
insights at a subcellular level. Furthermore, it will also be 
possible to routinely generate three‐dimensional (3D) 
MALDI images in order to obtain a snapshot of the 
pathological state of an entire organ by combining 
MALDI‐MS images of consecutive tissue sections and 
reconstructing a 3D representation using the appropri
ate (and currently available) software [8].

9.2  Experimental Procedures

9.2.1 Sample Handling: Storage, Embedding, 
and Sectioning

Sample handling is arguably the most critical aspect for 
obtaining satisfactory results from MALDI‐MSI exper
iments, with sample collection, storage, embedding, 
and sectioning all to be carefully considered. The first 
challenging aspect is related to how the sample is treated 
following collection. At this initial phase, it is imperative 
that protein degradation is minimized and the analyte 
molecules are stabilized in a consistent manner. This 
ensures that chemical integrity of biomolecules and 
spatial organization of tissue structure are maintained.

Fresh samples represent the primary source of tissue 
for MALDI‐MSI experiments and are routinely collected 
for this type of analysis. However, fresh samples need to 
be frozen directly after collection in order to stabilize 
the proteome by inhibiting enzymatic proteolysis. The 
major advantage of using fresh‐frozen (FF) tissue is that 
it closely mimics the native state of the tissue, preserving 
its morphology and integrity. The freezing process 
here must be gentle and homogeneous in order to 
avoid different parts of the tissue from cooling at differ
ent rates, which can lead to the formation of ice crystals 
and, ultimately, tissue cracking. The most common 
approach involves loosely wrapping the tissue in 
 aluminum foil and freezing in liquid nitrogen or cooled 
alcohol (to ~ −70°C) for approximately 1 min. Alter
natively, the tissue can also be cooled in isopentane dry 
ice. One final solution to avoid protein degradation can 
be through the use of conductive heat transfer. However, 
it is important to check the compatibility of each tissue 
with this treatment, as, in some cases, tissue morphology 
can be altered during the process. Once stabilization has 
been performed, the tissue is stored at −80°C prior to 
MALDI‐MSI analysis.

More recently, and of perhaps greater importance to 
employing MALDI‐MSI in a clinical setting, protocols 
have been developed in order to facilitate the analysis of 
formalin‐fixed paraffin‐embedded (FFPE) tissue, which 
represents a large percentage of the patient samples 

collected and stored in hospitals and other medical 
centers, thus representing potential gold mines of 
information for histopathological studies involving 
MALDI‐MSI [9]. Ultimately, the analysis of FFPE tissue 
enables retrospective studies with much larger cohorts 
of patients. This can be of particular importance when 
attempting to collect samples of particularly rare diseases, 
which would take a considerably longer period of time if 
attempting to obtain an appropriate number using FF 
specimens. In terms of sample storage, FFPE tissue can 
also be stored for up to 10 years at room temperature (RT).

Upon treatment with formalin, a reaction occurs 
between formaldehyde and the amine groups of the 
tissue proteins, promoting the formation of methylene 
bridges between amino acids. This ultimately leads to 
the formation of inter‐ and intramolecular cross‐links in 
proteins. While at RT, lipids, nucleic acids, and mole
cules not cross‐linked to formaldehyde can degrade, the 
formed cross‐links promote the stability of the proteins 
present in the tissue and preserve the morphological 
structures present. However, as a result of this extensive 
cross‐linking, specific sample preparation steps are 
required in order to facilitate the MALDI‐MSI analysis 
of FFPE samples. Firstly, the paraffin in which the sample 
is embedded needs to be removed as it acts as a strong 
ion suppressant. Secondly, antigen retrieval is required 
in order to unmask the epitopes in order to allow for 
the enzymatic digestion to occur, most commonly using 
trypsin. This protein digestion can be completed in situ 
using a number of automated devices, which keep the 
localization of the peptides intact and produce highly 
reproducible results. The peptides generated from this 
enzymatic digestion can be submitted not only for 
MALDI‐MSI analysis but also for direct MS/MS analysis 
when using a TOF/TOF instrument, facilitating protein 
identification.

The sectioning of FFPE samples is usually performed 
at RT, with the thickness of the sections commonly being 
5 µm. Sections are then transferred into a water bath at 
37°C and mounted onto a conductive surface compatible 
with MALDI‐MSI instruments, such as indium titanium 
oxide (ITO) glass slides. Once the sections are mounted, 
excess water is removed and the slides are gently warmed 
at 30–37°C for a few minutes in order to ensure proper 
adhesion. Following this step, the sections mounted onto 
the ITO glasses can be stored at RT for up to 10 years 
prior to the MALDI‐MSI preparation process; however 
it is preferable to analyze within the first 2 years [10].

On the contrary, the sectioning of FF tissue is usually 
performed in a cryostat set to approximately −20°C. 
Additionally, the tissue requires an embedding medium 
in order to ensure proper attachment of the tissue to the 
stage of the cryostat, improve the ease of cutting, and 
avoid tissue damage. However, embedding the tissue 
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entirely in this medium should be avoided because it 
leads to ion suppression. Therefore, it is recommended 
to add only a very small amount of the cutting medium 
to the bottom of the organ in order for it to adhere 
correctly to the stage, while the major proportion of the 
tissue remains uncovered for the purpose of sectioning 
for MALDI‐MSI experiments. Optimal cutting tempera
ture (OCT) compound is the most common polymer 
used in standard histological applications, but, like other 
polymer‐based embedding media, it has been shown to 
be a strong ion suppressant [11]. Therefore, once the FF 
tissue sections have been cut and mounted onto glass 
slides, any remaining OCT that surrounds on and around 
the tissue has to be carefully and efficiently removed. 
Alternatively, the sample can also be embedded in gela
tin or in 15% poly[N‐(2‐hydroxypropyl)methacrylamide] 
(pHPMA) [12], with both of these compounds being 
reportedly more compatible with MALDI‐MSI analysis. 
Once the section has been mounted onto the glass slide, 
it is also recommended to assist the adhesion of the 
tissue to the slide by placing a finger on the back of the 
slide, where the tissue section is mounted, and this is 
known as thaw mounting.

The thickness of the section is often set to between 
10 and 12 µm, representing a balance between tissue 
conductivity and robustness. For example, the rate of 
moisture evaporation is accelerated when the thickness 
of the section is reduced. This can be an important factor 
that limits proteolysis and other enzymatic activities. 
However, thin sections are also more fragile and more 
difficult to manipulate onto the slide. Once the section 
has been mounted onto the slide, it is recommended to 
dry it under vacuum in order to remove condensation 
from the surface of the tissue and minimize protein 
diffusion. At this time, if the cutting of the sections is 
done outside of the routine clinical workflow (where the 
following steps are always performed), it is advised to cut 
some additional consecutive sections to which immuno
histological staining is applied in order to combine 
molecular and histological findings [13].

Prior to MALDI‐MSI analysis, it is highly recommended 
to wash the tissue in order to remove any molecules that 
may interfere with the ionization of proteins (e.g., salts, 
lipids). Standard protocols recommend washing the 
tissue sequentially in increasing concentrations of EtOH, 
commencing with a short wash (~30 s) in 70% EtOH in 
order to remove cell debris and salts followed by 95 and 
100% EtOH in order to fix the tissue. A solvent such 
as EtOH is recommended for this step as it does not pro
mote the diffusion of proteins. However, it has been 
widely reported that optimization of the washing steps, 
based upon the chemical composition of the tissue, can 
lead to enhanced sensitivity of the MALDI‐MSI analysis. 
For example, brain tissue is often associated with a high 

content of lipids, a strong protein ion suppressant, and 
washing this tissue with chloroform or xylene can 
improve protein detection. Conversely, a different washing 
protocol should be used if the intended analytes are not 
proteins, for example, EtOH (70%) with the addition of 
ammonium acetate (NH4Ac) is recommended for the 
desalting of tissue prior to tissue lipidomic analysis [14].

Following these washing steps, it is again recommended 
to perform an additional drying step under vacuum. 
However, the drying time should be selected carefully 
based upon the thickness of the tissue and the type/
percentage of solvents used in the washing procedure. 
Once this additional drying phase has been performed, 
the FF tissue is then ready for matrix application.

9.2.2 Matrix Application

Matrix deposition plays a critical role in MALDI‐MSI 
experiments, being a major limiting factor in the lateral 
resolution that can be achieved. The general aim of 
the matrix deposition is to achieve an optimal balance 
between crystal dimension/shape (homogeneous and 
small) and maximal analyte extraction while at the 
same time avoiding diffusion. Thus, matrix deposition 
represents arguably the most crucial step in the sample 
preparation phase. Depending upon the target analyte of 
choice, a number of different matrices can be used. For 
example, sinapinic acid (SA) (3,5‐dimethoxy‐4‐hydroxy
cinnamic acid) and α‐cyano‐4‐hydroxycinnamic acid 
(α‐CHCA) are most commonly the matrices of choice 
for the extraction of proteins, peptides, and lipids 
(1–20 kDa). Furthermore, ferulic acid (3‐(4‐hydroxy‐3‐
methoxy‐phenyl)‐prop‐2‐enoic acid) has also been 
reported for the extraction of high molecular weight 
proteins (up to 140 kDa). For MALDI‐MSP purposes, 
DHB (2,5‐dihydroxybenzoic acid) is also commonly 
used for the extraction of low molecular weight proteins. 
However, due to the large crystal size, it is unsuitable for 
modern imaging applications as this large crystal size 
severely hampers the spatial resolution achievable. 
Additionally, ionic matrices, such as CHCA/aniline 
(CHCA/ANI) and CHCA/N,N‐dimethylaniline 
(CHCA/DANI), have also been employed alone or in 
combination with other matrices in order to improve 
the homogeneity of the crystallization and the detec
tion of protein signals [15]. It is also important to note 
the increased prevalence of metabolomic‐targeted MSI 
analysis in clinical studies. In  these instances, the 
matrix9AA (9‐aminoacridine) is often employed and 
the mass spectrometer is set in negative ion mode [16].

It is also important to note that with the increased 
demand for higher spatial resolution images and the rapid 
evolution in instrument technology, new matrices have 
been explored. For example, Garate et al. [17] demonstrated 
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the use of 2‐mercaptobenzothiazole (MBT) and 2,5‐
diaminonapthalene (DAN) as MALDI matrices that can 
enable the acquisition of higher spatial resolution 
images (with pixel sizes as low as 5 µm), both in positive 
and negative ion modes. Furthermore, it stressed the 
importance of the correct choice of matrix and crystal 
size with regard to the spatial resolution achievable in 
MALDI‐MSI experiments, suggesting that higher spatial 
resolutions can yet be obtained with the instrumentation 
currently in place in many research laboratories.

Focusing on the most commonly employed matrices, 
the matrix concentration for SA is usually between 
10–30 mg/ml and 7–20 mg/ml for CHCA. The choice 
of concentration is dependent upon the choice of 
 deposition, ensuring the correct balance between 
 minimizing analyte diffusion and maximizing analyte 
inclusion into the matrix co‐crystal network. For 
example, low matrix concentration can lead to analyte 
diffusion, whereas high matrix concentration induces 
rapid crystal formation and prevents proper analyte 
incorporation into the crystals.

Matrices such as SA and CHCA are dissolved in a solu
tion containing organic solvents, water, and trifluoro
acetic acid (TFA). TFA is added to the matrix solution in 
order to assist in the MALDI ionization process, while 
the organic solvents facilitate optimal crystal formation. 
The balance between the rate of solvent evaporation and 
time of incubation of the analytes is highly important in 
order to achieve the optimal analyte extraction, and this 
is directly related to the ratio between the organic sol
vent and water. Usually, a good balance between solvent 
evaporation and crystal formation can be obtained with 
the use of a 1 : 1 ratio between solvent and water. The 
choice of organic solvent is dependent upon the physical 
properties of the analyte molecule. However, 50% 
acetonitrile (ACN) and 50% ethanol (EtOH) are most 
commonly employed, with a higher ratio of solvents, 
such as methanol (MeOH) or isopropanol, to extract 
more hydrophobic molecules from tissue.

It is also important to note that this crystallization 
process can also be affected by the particular type of 
 tissue used, with the surfaces of some sample types not 
being conducive to optimal and homogeneous crystal 
formation. Therefore, it is imperative that the protocol 
for matrix deposition is optimized for each type of tis
sue used. Furthermore, the presence of salts, lipids, and 
other compounds (e.g., hemoglobin) can also impact 
upon the crystallization process, thus affecting spectral 
quality. The impact of these interfering molecules can 
be minimized by performing washing steps prior to 
matrix deposition. Additionally, other strategies can be 
used in order to improve spectral quality, with the addi
tion of detergents to the matrix solution being a success
ful method to obtain increased sensitivity of proteins. 
For example, the addition of 0.05% Triton X‐100 to an 
SA solution deposited onto brain tissue, a tissue with a 
high abundance of lipids, which can often lead to ion 
suppression of protein signals, led to an increase in 
intensity of 42% of the peaks present in the average 
spectrum compared with the deposition of SA without 
the detergent [18].

The choice of method for matrix deposition is depend
ent upon the spatial resolution desired in the MALDI‐MSI 
experiment. However, there are a number of methods, 
both manual and automated, that can be employed for 
various purposes. For tissue profiling, manual spotting 
can be performed by pipetting the matrix solution 
directly onto the tissue ROI. This approach deposits 
large droplets onto the surface of the sample (a few µl), 
extracting analytes from a region that is a few millime
ters in diameter. However, there are devices that can 
be used to spot matrix in an automated fashion across 
the entire surface of the sample or in specific regions of 
the tissue. Quite commonly, the droplet area is reduced 
to below 200 µm in diameter, thus leading to less efficient 
analyte extraction but enabling higher spatial resolution 
images (Figure 9.2). Deposition using an automated spot
ter offers the advantage of the droplets generally being 

MALDI-MS profiling MALDI-MS imaging
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Figure 9.2 The different approaches in matrix deposition for MALDI‐MS profiling and MALDI‐MSI.
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deposited in discrete positions. Thus, if any diffusion of 
the analyte occurs, then it is limited to a relatively small 
region and the spatial localization of the analyte is main
tained. However, the disadvantage of this approach 
means that it can be quite difficult to obtain a completely 
homogeneous layer of matrix. Automated matrix spot
ters are often associated with piezoelectric nozzles and 
acoustic wave transfer. In these instances, the dimension 
of the droplets depends on the following factors: solvent 
composition and surface tension, number of layers 
deposited, tissue structure, and chemical composition of 
the analytes.

In order to achieve a more homogeneous coating 
of  matrix, automated spraying of the matrix solution 
onto the surface of the sample is performed. In these 
instances, the spraying devices produce very small 
droplets that, after drying, produce a very homogene
ous and thin layer of solid matrix crystals, which are 
less than 20 µm in diameter. A homogeneous layer of 
small matrix crystals offers the possibility for higher 
spatial resolution MALDI‐MS images (<100 µm) com
pared to automated spotting. Additionally, spraying of 
the matrix is faster than automated spotting, thus 
reducing the sample preparation time and increasing 
sample throughput. In contrast to spotting, matrix 
spraying forms a layer of liquid on the tissue. Thus, the 
method must be optimized in order to avoid analyte 
diffusion. Automated spraying devices are commonly 
based upon vibrational, pneumatic, or electrospray 
mechanisms, providing depositions in a highly con
trolled and reproducible manner. More recently, Gou 
et  al. introduced the concept of electric field‐assisted 
matrix coating, which employs the use of a uniform 
static electric field that can enhance the detection of 
positively or negatively charged small molecule metab
olites in the MALDI matrix layer [19]. Manual spraying 
of matrix can also be accomplished using a thin‐layer 
chromatography (TLC) sprayer, airbrush, or pneumatic 
sprayer. However, these approaches are certainly less 
reproducible, with the crystallization being dependent 
upon the surrounding environment (i.e., temperature 
and humidity) [3].

A sublimation‐based approach can also be employed 
in order to generate the smallest matrix crystal size pos
sible and ultimately acquire higher spatial resolution 
images when using the appropriate instrumentation. 
Generally, this approach involves two steps: (i) the subli
mation of matrix onto the surface of the sample and (ii) a 
rehydration/recrystallization step [20].

Depending upon the properties of the particular 
matrix used, the slide is heated under vacuum (~145°C 
at 25 mTorr for SA), which promotes sublimation onto 
the surface of the tissue. Then, the slide containing the 
tissue is placed on a petri dish containing a piece of 

filter paper soaked in aqueous TFA (commonly a 5% 
TFA solution) and the petri dish is sealed in order to 
create a hydration chamber. In order to achieve tissue 
rehydration the petri dish is placed in an oven at 85°C 
for 3.5 min. However, in the case of sublimation, pro
tein extraction is not as efficient compared with other 
matrix deposition techniques. An additional rehydra
tion phase can increase analyte extraction. It is chal
lenging to optimize sublimation protocols in order to 
obtain a good balance between matrix crystal size and 
analyte extraction.

Finally, the same automated devices that are used for 
matrix deposition can also be used for the deposition of 
other solutions and derivatizing agents employed for 
some specific MALDI‐MSI experiments [21]. Most 
importantly, they can also be used for the application of 
enzymes for on‐tissue digestion in a highly homogene
ous manner, and, in some instances, the enzyme applica
tion and sample incubation can also be performed using 
the same device (Figure 9.3).

Following MALDI‐MSI analysis, the matrix can be 
removed from the tissue by washing sequentially in 
increasing concentrations of EtOH (70, 95, and 100%) for 
short periods of time. Once the washes have been per
formed, the tissue can be observed under a microscope 
in order to ascertain if the matrix has been entirely 
removed. Following this step, the tissue sections can be 
subjected to histological staining if desired.

9.2.3 Spectral Processing

A MALDI‐MSI dataset can be visualized as a data cube 
in which the three dimensions are represented by 
m/z values, signal intensity, and spatial coordinates 
(Figure  9.4). Since a single MALDI‐MSI analysis is 
composed of thousands of spectra topologically posi
tioned in a 2D array, the output file of an MSI analysis 
can range from several gigabytes in size to up to more 
than one terabyte. This high dimensionality of the data 
is a challenge since it makes data management and 
elaboration time‐consuming. Data processing requires 
significant computer resources.

Preprocessing steps, applied to raw data, are employed 
in order to remove sources of variation or noise that 
could lead to artifacts in the data elaboration phase and 
to enhance the biologically relevant information in the 
MALDI spectra. Preprocessing steps include baseline 
correction, smoothing (Figure 9.5), normalization, align
ment and calibration, and peak detection.

9.2.3.1 Baseline Removal
The baseline of a spectrum is the connecting line 
between the data points with the lowest intensity val
ues, on which the entire spectrum lays. Shin proposed 
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that MALDI analyses may contain three discrete sources 
of noise [22]:

Electrical noise from the MS components
Shot noise due to the discrete nature of ion detection
Chemical background generated by impurities (matrix 

clusters, fragments)

Since the baseline originates from fluctuations in 
the background signal of the instrument, it has no 
biological meaning and needs to be removed. Many 
algorithms are employed in order to remove this contri
bution; the most widely used being iterative convolution 
and TopHat.

9.2.3.1.1 Iterative Convolution
Baseline removal through iterative convolution applies 
a Gaussian filter multiple times, removing spectral 
 features (i.e., the peaks). The algorithm requires the 
sigma parameter, σ, in order to control the width of this 
Gaussian filter. The filtering iteration yields a spectrum 
without peaks, that is, just the baseline. The next step is 
to take the pointwise minimum of the trend as an esti
mation of the baseline, subtracting it to the spectrum. 
The method converges very quickly, meaning that after 
15–30 iterations the output does not change.

9.2.3.1.2 TopHat Operation
The TopHat operator was derived from the theory of 
mathematical morphology and allows the “extraction” of 
peaks from an image. It is based on the principle that 
features of interest should stand out in a complex envi
ronment (i.e., the noise). This algorithm computes the 
so‐called morphological opening, which in this instance 
is the background signals, of the spectrum and then 
subtracts the result from the original spectrum.

9.2.3.2 Smoothing
Signal smoothing aims to alleviate the spectral noise. 
It aids interpretation and the visualization of the single 
spectrum and can be performed using two common 
algorithms: Savitzky–Golay and Gaussian smoothing.

9.2.3.2.1 Savitzky–Golay
Savitzky–Golay is a digital filter that can be applied to a 
set of data points. It is known to be an almost universal 
method to improve the signal‐to‐noise (S/N) ratio. It 
achieves smoothing by fitting adjacent data points with a 
low‐degree polynomial, taking the central point of the 
fitted polynomial curve as output. Since it does not 
 distort the essential features in the spectrum, this filter 
tends to preserve the peak waveform and does not shift 
the peak positions.

Savitzky–Golay filter is very slow, but intensity loss is 
much lower and should be preferentially used to smooth 
low mass spectra where peaks are sharp.

9.2.3.2.2 Gaussian Smoothing
The degree of smoothing is again determined by the 
standard deviation, σ, of the spread parameter, with a 
larger σ implying a wider Gaussian filter and thus a 
greater degree of smoothing. It is a fast method, but it 
may cause significant intensity loss for sharp peaks. Due 
to these characteristics, it is usually employed to smooth 
high mass spectra where peaks are broader.

9.2.3.3 Spectral Normalization
A MALDI imaging dataset can be considered as a 
 collection of independently measured spectra; for this 
reason, a normalization step is a crucial task in the 
 preprocessing phase in order to compensate for the 
chemical and analytical differences, facilitating a fair 
comparison between spectra. It is an indispensable 
step if several sets of spectra have to be compared with 
each other, not only intra‐analysis but also, and more 
importantly, inter‐analysis.

Normalization is the process of multiplying a mass 
spectrum with an intensity‐scaling factor, f, in order to 
expand or reduce the range of the intensity axis. It is able 
to project spectra of varying intensity onto a common 
intensity scale, removing variations in pixel‐to‐pixel 
intensity due to uneven matrix deposition, ion suppres
sion, or other factors that can alter the intensity of peaks 
not strictly due to the actual analyte composition present 
at a specific spot.

Each normalization method is based on certain 
assumptions regarding the data, and it is necessary to 
carefully choose the most appropriate algorithm for a 
particular dataset in order to avoid generation of arti
facts that do not correspond to significant biological 
information. There are many algorithms employed for 
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Figure 9.4 The MALDI‐MSI data cube represented by m/z values 
(x‐axis), signal intensity (y‐axis), and spatial coordinates (z‐axis).
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Figure 9.5 The MALDI‐MS spectra preprocessing steps. Left panel, in the 3 000–18 000 m/z range: Raw (a), following baseline correction (b) and following smoothing (c). 
Right panel, in the 10 000–10 500 m/z range: Raw spectrum (d), following baseline correction (e) and following smoothing (f ).
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spectra normalization, such as total ion current (TIC), 
root mean square (RMS), and median.

9.2.3.3.1 Total Ion Current (TIC)
TIC normalization method divides all spectra by their 
total ion current (i.e., the sum of the intensities of all the 
peaks), yielding spectra with a common area under the 
curve. The assumption on which this normalization is 
based on is that all spectra have a similar area, defined 
largely by the chemical noise and only to a small extent 
by the peak intensities. This normalization is the most 
widely used and can be applied to the majority of 
MALDI‐MSI datasets.

It is important to stress that artifacts may be created 
in spectra containing a single high intensity ion (e.g., 
insulin or hemoglobin). This peak would significantly 
suppress the intensity of every other peak in the spec
trum after normalization. It is possible, however, to 
exclude such peaks from the normalization calculation, 
potentially solving this problem.

9.2.3.3.2 Root Mean Square (RMS)
The RMS normalization method divides all spectra by 
the RMS of all data points. This method is most appro
priate for use with datasets containing spectra that are 
expected to have small variations in the peak intensities. 
The RMS normalization method usually leads to a very 
uniform distribution of intense signals.

9.2.3.3.3 Median
This normalization method divides all spectra in the 
dataset by the median of all data points. Median nor
malization is not significantly affected by the intensity 
or area of signals in the spectra and can therefore be 
used if the RMS or TIC normalization methods lead to 
artifacts.

Median normalization results depend on the type of 
noise in the spectra. If spectra do not contain a fully 
symmetrical noise profile, this method will generate 
significant artifacts.

9.2.3.4 Spectral Realignment
Spectral alignment is an optional step during the pre
processing phase of mass spectra. It is used to account 
for the slight shifts in the output m/z of peaks as a result 
of chemical noise and instrument accuracy. Spectral 
realignment ensures that all of these peaks are realigned 
to a common mass and thus enable correct spectral 
comparisons. Most commonly, spectra are realigned by 
considering the peaks of the mean spectrum as a refer
ence, covering the entire mass range of the analysis, and 
by then adjusting the spectra by linear or nonlinear 
interpolation.

9.2.3.5 Generating an Overview Spectrum
It is useful to evaluate peaks obtained in the entire 
section or in specific areas. The generation of a single 
spectrum that efficiently represents the molecular 
composition of the ROI helps in achieving this goal. 
There are two main approaches to obtain these types 
of spectra: average and skyline (Figure 9.6).

9.2.3.5.1 Average Spectrum
The average spectrum is obtained simply by averaging all 
the intensities for each data point. This is the most used 
approach in the data mining performed after MALDI‐
MSI analyses, but it can potentially yield artifacts since it 
can reduce the contribution of ions that are present only 
in small and specific regions of the tissue.

9.2.3.5.2 Skyline Spectrum
The skyline spectrum is obtained by picking the highest 
value of intensity for each data point; regiospecific 
peaks are well represented in the total spectrum and are 
not eliminated as in the case of the average spectrum 
approach.

This method should be applied only to well‐calibrated, 
aligned, low‐noise spectra in order to avoid peak broad
ening and loss of accuracy.

9.2.3.6 Peak Picking
This process detects a representative set of m/z values in 
a group of mass spectra that significantly rise above the 
noise level (i.e., above a certain S/N threshold). The aim 
of the peak picking is to reduce the number of m/z val
ues by discarding those values corresponding to noise 
 signals or to nonspecific baseline. Various peak picking 
methods for MALDI mass spectra are available and are 
implemented in MS software packages: the most used 
algorithms are orthogonal matching pursuit (OMP) and 
local maximum.

Applying this process in MSI spectra containing large 
amounts of data takes a lot of time and uses significant 
computing resources. The simplest approach would be 
to apply the algorithm on the single mean spectrum. 
However, this approach results in elimination of peaks 
with high intensity in very discrete areas of tissue.

9.2.3.6.1 Orthogonal Matching Pursuit
OMP is a signal processing application that models each 
spectrum as a sum of Gaussian‐shaped functions (peaks). 
The parameter, sigma, determines the width of the 
Gaussian peaks (can also be estimated automatically 
based on the mean spectrum). For each single spectrum, 
OMP selects m/z peaks that fit the Gaussian shape. This 
algorithm allows the user to manually set a maximum 
number of possible peaks.
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9.2.3.6.2 Local Maxima
This approach identifies all the local maxima in the 
spectra and marks them as peak positions (it assumes 
that a peak should differentiate itself from the back
ground noise). It is the simplest approach, but the most 
prone to yield false positive peaks positions that are in 
fact correlated with the background noise.

9.2.4 Data Elaboration

On order to analyze MALDI‐MSI data, conventional 
statistical tests can be applied (such as ANOVA, t‐test, 
and z‐test). For example, ANOVA is commonly used 
to  detect differences between groups (i.e., peaks and 
therefore proteins), a typical task in research and clinical 
diagnosis. However, the inherent variability in MALDI 
spectra due to anatomically and biologically distinct 
regions may hinder significant conclusions. In order to 
improve the reliability of the statistical analysis, ROIs in 
spectra, which correlate with histopathological features, 
can be defined. Following this, both unsupervised and 
supervised data mining approaches can be undertaken 
as a means of finding biologically significant information 
within the dataset.

9.2.4.1 Unsupervised Data Mining
Unsupervised methods aim at revealing hidden structures 
in unlabelled data and can be applied without any prior 
knowledge of the data structure [23].

Examples of unsupervised analysis are hierarchical 
clustering, principal component analysis (PCA), and 
bisecting K‐mean.

9.2.4.1.1 Hierarchical Clustering
Hierarchical clustering is a data mining method that 
consists in grouping several data subsets into clusters 
based on their similarity and then building a hierarchy, 
exploiting intra‐cluster differences. The algorithm is able 
to evaluate dissimilarities by calculating the actual dis
tance between two spectra according to different metrics 
(Euclidian distance, Manhattan distance).

The output is a dendrogram representing a hierarchical 
tree in which similar spectra are clustered under a single 
node. In a MALDI‐MSI dataset, it is possible to plot 
the spatial distribution of the clusters identified by this 
analysis, which can then be correlated with the histological 
image.

It can be performed in a bottom‐up (each observation 
starts in its own cluster) or top‐down (all observations 
start in one cluster) approach. The only downside is that 
this approach may use significant computer resources 
since it requires the creation of a distance matrix of size 
n2 (where n is the number of spectra).

9.2.4.1.2 Bisecting K‐Means
Bisecting K‐means is a divisive clustering algorithm 
that combines K‐means and hierarchical clustering: it 
iteratively splits the data into two maximally different 
clusters (bisectioning) that are then further separated 
into subclusters according to similarities in their data 
points (K‐mean). The subclustering is achieved by select
ing K points as the initial centroids, assigning spectra to 
the closest centroid and then computing the centroid of 
each cluster again until a convergence is reached.

9.2.4.1.3 Principal Component Analysis (PCA)
PCA is the most commonly used component analysis 
method for MALDI imaging data representation. Due to 
the complexity of the information (i.e., the number of 
variables) enclosed in a single mass spectrum, it is impos
sible to visualize the entire dataset in an N‐dimensional 
space.

PCA is capable of reducing the dimensionality of a 
dataset while retaining the majority of the information 
contained in the data. Since many variables often contain 
redundant information, it is possible to replace a group 
of variables with a single, more informative variable 
(component) by a linear combination of the single variables. 
PCA differs from the other variable transformations 
employed in statistics since the data itself determines the 
transformation vectors.

From a technical standpoint this analysis employs an 
orthogonal transformation to convert a set of observa
tions into a set of values of linearly uncorrelated variables 
(principal component). Orthogonal means that every 
component is uncorrelated with the preceding compo
nents and these new variables are used to plot the data 
distribution. The variables are ordered by their variance 
(with the first component accounting for the highest 
possible variance).

Using PCA, one can represent the full dataset with a 
few score images corresponding to first principal com
ponents. These score images reveal spatial structures 
hidden in the dataset by showing prominent spatial 
patterns (high intensity regions) [24].

9.2.4.2 Supervised Data Mining
9.2.4.2.1 Receiver Operating Characteristic (ROC)
A receiver operating characteristic (ROC) curve illus
trates the performance of a binary classifier system as its 
discrimination threshold is varied. The curve is created 
by plotting the true positive rate (sensitivity) against the 
false positive rate (1 specificity) at various threshold 
settings.

It is a univariate measurement used to assess the ability 
of a single peak or of a classifier based on several peaks to 
differentiate between two populations.
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The area under the ROC curve (AUC) measures the 
discrimination quality in the interval between 0.5 and 
1.0. A perfect discrimination would yield an AUC equal 
to 1 or 0. The closer the AUC to 0.5, the less useful the 
m/z value, and the closer it is to 1.0, the more suitable the 
m/z value is to be used as a univariate criterion [25].

9.2.5 Correlating MALDI‐MS Images with Pathology

Particular pathological ROIs present within the tissue 
can be well defined using traditional histopathology 
stains, with the most widely used being hematoxylin and 
eosin (H&E), cresyl violet, methylene blue, toluidine 
blue, DAPI, and/or immunohistochemistry, directing the 
analysis toward obtaining region‐specific molecular 
signatures. There are two different staining approaches 
that can be currently used: staining on the same section 
of tissue used for MALDI‐MSI analysis, both pre‐ and 
post‐analyses, or staining on consecutive tissue sections. 
While performing staining on the same tissue used for 
MALDI‐MSI analysis enables unambiguous correlation 
of MALDI‐MS images with histological images, it can be 
potentially hampered by a loss in integrity of the tissue 
following analysis and/or removal of the MALDI matrix. 
Conversely, correlating with consecutive tissue sections 
can avoid the aforementioned issue; however, it is not 
always certain that the adjacent tissue sections will be 
identical. If histological staining is to be performed prior 
to MALDI‐MSI analysis, dyes such as cresyl violet or 
methylene blue are preferable since HE dyes interfere 
with the analysis and affect spectral quality [26]. The 
resulting histological images can then later be scanned 
with an optical scanner and stored in a database. Optimal 
results can be achieved in microscopic resolution with 
an MSI compatible MIRAX SCAN instrument (Carl 
Zeiss); however, other scanners that achieve image reso
lutions greater than 10 000 dpi can also be used. It is 
also important to note that using the appropriate digital 
platforms, such as Aperio Spectrum, which are now 
becoming commonplace in clinical centers in order to 
facilitate the sharing of digital slides, a pathologist can 
annotate these scanned images electronically in order to 
highlight ROIs [27]. This can enable the correct interpre
tation of the slides by individuals who are not experts in 
the field of histopathology and, ultimately, increase the 
throughput of the analysis.

Various software packages are currently available and 
can be used to exploit the unique capability to correlate 
molecular and histological images. SCiLs Lab 2014 soft
ware enables the importation of histological images and 
can automatically search for particular m/z markers that 
are co‐localized with the histopathological annotations. 
Furthermore, recent developments in instrumentation 

have further facilitated the correlation of MALDI‐MS 
images with histology. For example, Shimadzu 
Corporation has recently introduced a novel imaging 
mass microscope (iMScope) that combines an optical 
microscope for the visualization of high‐resolution 
images with a hybrid ion trap TOF mass spectrometer 
with a MALDI source. This novel instrument visualizes 
the distribution of molecules in a scanned tissue sample 
at atmospheric pressure.

9.3  Applications in Clinical Research

MALDI‐MSI is a highly flexible platform and has been 
successfully employed in numerous studies, ranging all 
the way from the study of human diseases to forensic sci
ence. Furthermore, there has been an emerging trend 
toward combining MALDI‐MSI with clinical imaging 
techniques, such as magnetic resonance imaging (MRI) 
[28], in a multimodal manner, highlighting the rapidly 
evolving nature of this approach. However, perhaps of 
greatest clinical relevance is the role of MALDI‐MSI in 
the study of cancer biology, with studies targeting breast 
[29], colon [30], lung, ovarian [31], prostate [32], and 
thyroid cancers [33] being widely published. Furthermore, 
MALDI‐MSI approaches in cancer biology have also 
been applied to novel sample types, such as cytological 
smears taken from thyroid via fine‐needle aspiration 
biopsy (FNAB) [33, 34], further highlighting the flexibil
ity of this technique. In all of these studies, the primary 
objective has been to discriminate cancer tissue from the 
normal and/or tumor margin regions and to classify dif
ferent grades of cancer at a molecular level. Of particular 
note, Balluff and colleagues studied tissue taken from 
gastric and breast carcinoma patients [29]. They were 
able to study phenotypic intratumor heterogeneity, 
identifying different regions within tumor tissue that 
appeared homogeneous using traditional histological 
techniques. Using elegant spatial segmentation and mul
tivariate analysis methods, they were able to identify 
tumor subpopulations, within histologically homogene
ous regions, that were associated with changes in the lev
els of DEFA‐1 and histone H2A. Moreover, by combining 
this information with clinical data obtained from the 
patients studied, they were able to predict the survival 
rate of patients based upon the number of observed 
phenotypic tumor subpopulations. This is a powerful 
example of how MALDI‐MSI can not only support tradi
tional histological analyses but also potentially provide 
additional, and clinically significant, information that 
was previously not possible.

The combination of MSI and histology is now extensively 
used for pharmacological research due to the capability 
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of this technique to simultaneously monitor the distri
bution of a drug and its metabolites [35]. In addition, 
with suitable calibration curves, it is possible to obtain 
semiquantitative measurements of drug compound 
concentrations [36]. Such studies can be used in the 
 preclinical phase, filtering out lead compounds that are 
shown to accumulate in nonspecific regions of tissue 
and/or generate toxic metabolites [37]. Furthermore, 
MALDI‐MSI techniques are now being applied in 
order to image the spatial localization of drugs and 
their metabolites within 3D cell cultures, enabling more 
detailed information related to the site of action [38].

As with proteomic applications, studies are increas
ingly correlating MALDI‐MSI with traditional histology, 
focusing on the accumulation of cancer drugs in heter
ogeneous tumor tissue environments. One example of 
this approach was the study of microvascularization 
effects of numerous anticancer drugs in tumor tissue 
[39]. In another example, MALDI‐MSI was used to 
monitor the distribution of a targeted medicine, vemu
rafenib, for malignant melanoma to metastatic lymph 
nodes tumors [40]. The study provided evidence that 
the drug specifically targeted proto‐oncogene BRAF, a 
gene that promotes an expression of the serine/threo
nine‐protein kinase B‐Raf, that is ultimately responsi
ble for sending signals that are related to cell growth, 
and mutations of this gene have been shown to be 
implicated in cancer. The ability to monitor the distri
bution of a drug to histologically specific regions pro
vides a greater understanding of the mode of action of 
drugs within particular disease environments while 
highlighting whether or not a drug targets the intended 
site. This can provide an insight into the potential suc
cess, or failure, of a developing drug and help drive the 
pharmaceutical industry toward the development of 
personalized drug therapies.

MALDI‐MSI has also become an important tool in 
the investigation of renal diseases, studying proteins/
peptides, lipids, and drugs in both animals and humans. 
One approach involved the isolation of glomeruli from 
rats with focal segmental glomerulosclerosis (FSGS) 
via laser capture microdissection (LCM) and analyzed 
using MALDI‐MSP [41]. The authors demonstrated 
that they were able to generate proteomic patterns of 
sclerotic and nonsclerotic glomeruli within FSGS. 
However, they also noted that the proteomic patterns 
of nonsclerotic glomeruli were more similar with those 
of sclerotic glomeruli than with those of completely 
healthy glomeruli, postulating that that there is an 
early activation of sclerotic processes occurring at the 
molecular level.

Furthermore, the pathogenesis of IgA nephropathy 
(IgAN) was investigated in a mouse model that sponta
neously develops mesangioproliferative lesions with 

IgA deposition, comparable to the human disease [42]. 
The molecular distribution of a number of lipids 
was mapped in the hyper‐IgA (HIGA) murine kidneys 
using MALDI‐MSI. Interestingly, a number of lipids 
were found to be over‐expressed in the cortical region 
of the HIGA kidney, with respect to controls, for exam
ple, O‐phosphatidylcholine, PC(O‐16 : 0/22 : 6) and 
PC(O‐18 : 1/22 : 6).

MALDI‐MSI was applied recently to the study of pri
mary glomerulonephritis (GN) in humans. Mainini et al. 
subjected to MALDI‐MSI analysis renal tissue obtained 
by biopsy. Interestingly, it was determined that the glo
meruli and tubules of healthy tissue presented similar 
proteomic profiles. However, in the case of primary GN, 
glomeruli and tubules presented different protein pro
files. Furthermore, altered protein expression compared 
to controls was evident between different types of 
 primary GN, such as membranous glomerulonephritis 
(MGN) and minimal change disease (MCD). Finally, GN 
tubules even without morphological evidence of the 
disease showed a different protein profile compared with 
controls. Thus, it is possible to detect early molecular 
alterations of the disease that are not accessible by tra
ditional histological methods. This feasibility study 
highlighted the potential role that MALDI‐MSI could 
play in the detection of diagnostic biomarkers associated 
with primary GN [24].

This body of work was further expanded upon by 
Smith et al. in 2016, applying MALDI‐MSI to bioptic 
renal tissue taken from patients with the most frequent 
glomerular kidney diseases (GKDs): FSGS, IgAN, and 
MGN [43]. Firstly, this technique was able to generate 
molecular signatures capable of distinguishing between 
normal kidney and pathological GN, with specific 
 signals representing potential biomarkers of CKD 
 progression. Furthermore, specific disease‐related 
 signatures for FSGS and IgAN were detected. Among 
the specific FSGS‐related signatures, one protein was 
identified as α‐1‐antitrypsin and, upon validation with 
the antibody, was shown to be localized to the podo
cytes within sclerotic glomeruli. This work showed a 
promising application of MALDI‐MSI in the study of 
GN, highlighting a number of potential biomarkers of 
CKD progression.

In order to bring such MALDI‐MSI information into 
a clinical setting, these findings should be correlated 
with information obtained from the urinary proteome 
or peptidome in order to highlight whether tissue‐
derived proteins of glomerular diseases can also be 
detected in urine, a biological fluid that can be easily 
collected. If successful, such biomarkers could be 
translated into less‐invasive diagnostic or prognostic 
tools, which is the ultimate goal of many clinical prot
eomics applications.
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10.1  Introduction to Metabolomics

Metabolomics is the investigation of the metabolite 
composition of a cell, tissue section, or biological 
[1]. Metabolites are defined as small molecules (typi
cally <1000 Da), which are transformed during cellular 
metabolism [2]. Over the past 100 years, intensive 
research efforts were dedicated in understanding bio
chemical pathways. This knowledge was extensive, but 
fragmented due to the nature of biochemical experi
ments of the past, which often focused on specific fea
tures of a specific enzymatic reaction [3]. These types of 
experiments could not reflect the changes taking 
place in metabolism as a whole. An example is diabetes, 
with blood glucose being the trademark metabolite. 
Technologies and computational instruments are now 
in place for a broader look into the complete ensemble 
of metabolites that are affected by disease.

While single metabolite markers may change, little 
can be deduced about why these single alterations have 
happened; therefore it is important to move away from 
the single marker practice and move toward global 
metabolic approaches for individual and population 
health management [3]. This way a fingerprint of many 
different metabolites can be used to provide a deeper 
perspective of a patient’s health. A paradigm shift of 
such as this will likely open the way to global metabo
lite profiling.

Today, metabolomics as a screening tool is clearly the 
missing link in current healthcare practices [3] and 
could be greatly utilized to avoid trial‐and‐error 
 therapies. As well, it could be used to monitor the side 
effects from such therapies. In more wealthy and 
 developed countries, the incidence of diseases resulting 
from perturbations (e.g., diet/blood pressure) in metab
olism is steadily increasing [4]. In addition, the causes 
of many common diseases or conditions, such as 

 hypertension, diabetes, and chronic kidney disease 
(CKD), are metabolic imbalances [3].

The terms metabonomics and metabolomics are 
often used interchangeably. Metabonomics refers to the 
measurement of the global metabolomic response of a 
living organism to some kind of stimuli (e.g., genetic or 
environmental) [5]. Metabolomics refers to the analytical 
description of the samples taken from such organisms 
(e.g., urine metabolome, tissue metabolome) [5]. In con
trast to other ‐omics fields, such as genomics and prot
eomics that are directly subject to epigenetic regulation 
and posttranslational modifications, metabolites gener
ally serves as direct markers of biochemical activity [2]. 
Therefore, within the ‐omics cascade, metabolomics is 
in direct relation to phenotype (Figure 10.1 ‐omics cas-
cade), meaning metabolites can act as direct markers of 
metabolic health and are easier to correlate to a respective 
phenotype [2, 6] as they are the endpoints of metabo
lism. However one should not consider the metabo
lome completely immune to regulatory changes. 
Additionally, metabolomics can offer a real‐time assess
ment of an organism’s phenotype [6].

This can be done through targeted or nontargeted 
approaches. Targeted metabolomics is generally driven 
by a particular hypothesis. In this case a researcher will 
attempt to measure specific metabolites related to one or 
maybe more biological pathways. This approach could 
then be most suited for pharmacokinetic‐type studies, 
where specific drug metabolism is of interest [2]. Alter
natively, nontargeted metabolomics is global in nature 
and is designed to be as unbiased as possible in 
 metabolites measured. Ideally, researchers would seek to 
measure the entire metabolome of an organism to pro
duce data that comprehensively represents the whole 
metabolome [2]. Both approaches have their respective 
limitations and challenges, but one can argue that non
targeted metabolomics is best suited to drive modern 
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medicine away from the single‐biomarker philosophy. 
Advancement in personalized medicine and drug discovery 
could most likely come through metabolomics [7, 8].

10.2  Analytical Techniques

As mentioned earlier, metabolomics studies can follow 
two main approaches: targeted and nontargeted [6]. The 
nature of the study, sample type selected, and analytes of 
interest should determine the type of instrumentation 
selected. High throughput and robustness are necessary 
if metabolomics is to be clinically practical, and with 
regard to kidney disease diagnostics and therapy, sample 
types should focus on noninvasive biofluids. Biopsy 
tissue would also be extremely useful in metabolomics, 
especially for human CKD etiology.

For general sample handling of biobanks, an extensive 
review has been written by Bernini et al. [9]. However it 
is necessary for one when describing metabolomics in 
a clinical setting to briefly discuss sample selection, 
handling, and storage with particular attention to the 
specialized needs for quality metabolomics studies.

For general subject selection, most metabolomics 
studies will take into consideration factors such as age, 
gender, and diet. Beyond the aforementioned, other fac
tors such as ethnicity, body mass index (BMI), geographi
cal location, and lifestyle (e.g., level of exercise) should also 
be considered [10]. Perhaps a factor not normally consid
ered is the levels at which healthy controls consume 
over‐the‐counter pharmaceuticals (e.g., paracetamol) 
and other products such as herbal and dietary supple

ments [10]. These could have profound effects on the 
metabolome and introduce substantial bias to the data 
[4].

The identification and quantification of metabolites 
cannot be determined from genetic or biochemical 
assays alone. It is for this reason that metabolomics 
relies on sophisticated instrumentation. The two main 
analytical instruments used in general metabolomics are 
nuclear magnetic resonance (NMR) and mass spectrom
etry (MS). Both have their advantages and disadvantages 
and will be further discussed in detail. A diagram of the 
general workflow for metabolomics studies is illustrated 
in Figure 10.2 (metabolomics workflow).

10.2.1 NMR

NMR is a reliable and robust technique for the analysis 
of  the human metabolome that can currently measure 
metabolites down to micromolar ranges [11]. Here, only 
a brief and simple description of the instrumentation can 
be given. The NMR phenomenon can be described as the 
absorption of electromagnetic radiation by a given 
atomic nuclei in a magnetic field. The spin state of a 
nucleus can be altered by a specific radiofrequency (RF), 
and this alteration produces a measurable signal. The 
frequency needed for absorption is based on three 
parameters: the type of nucleus, the chemical environ
ment of the nucleus, and the strength of the magnetic 
field applied. Therefore, for a given magnetic field, each 
nucleus will absorb a slightly different RF. These factors 
are expressed as chemical shift (δ) in ppm, which is a hori
zontal scale that describes the difference in RF required 
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from one nucleus to a standard compound. Therefore, 
the chemical shift of a nucleus describes the character of 
a respective nucleus. For example, if a proton is attached 
to a methyl group or a carboxyl group, it will have a 
different chemical shift [12].

NMR can allow for the acquisition of thousand distinct 
peaks in biofluids and has potential to detect and quantify 
hundreds of metabolite compounds [10, 13]. Fundamen
tally, it offers a top‐down approach metabolomics analysis, 
as all metabolites are present and measured by NMR‐
active atoms, mainly 1H and 13C [3]. It is also nonde
structive, allowing the same samples to be reanalyzed in 
different ways if needed. Conveniently, NMR sample 
preparations do not require extensive analyte extraction 
protocols [10, 11]; however such approaches could be 
utilized if desired.

NMR spectral information is therefore well suited for 
further chemometric analysis in a nontargeted approach, 
as sample preparations for NMR generally do not need to 
remove metabolites from the originally sample matrix [11]. 
Nevertheless, specific NMR pulse sequences can be 

used to investigate subsets of metabolites if needed [11]. 
As a result NMR may be considered as the best analytical 
techniques for metabolic profiling and screening of 
human urine in a nontargeted fashion. Unfortunately, 
it is initially expensive and requires skilled personnel 
to both operate and interpret data. A sample 1H NMR 
spectrum can be seen in Figure  10.3, with metabolite 
peaks annotated.

10.2.1.1 Sample Preparation for Urine
NMR analysis of urine is well established in metabolomics, 
but variations in a urine metabolomics profile exist due to 
diet, drugs, overall health, and urine sample handling [11]. 
Therefore it is advisable to collect many samples over an 
extended time, which can give a more comprehensive 
metabolomics profile of a patient’s urine. A single urine 
sample will unlikely be a complete picture of an individual’s 
metabolic profile [10, 14, 15].

Even though human urine is typically sterile, pre‐
analytical variation in the urine metabolome can arise 
from contaminating human or bacterial cells, which if 
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Figure 10.2 Metabolomics workflow.
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lysis and/or add secretions will contaminate the metab
olome of the pure urine [10]. It can therefore be recom
mended that sodium azide be added before storage at 
3 mM and also to have the clinician take the sample 
midstream [10, 16]. Additionally it could be suggested to 
use a 0.20 µm filter to remove contamination [9, 10]. 
However, it has been shown by Lauridsen et al. that when 
samples are stored at −25°C or below, there is minimal 
change in NMR urine metabolome with or without addi
tion of preserving agents [17]. This group also reported 
that freeze‐drying urine and reconstituting in D2O 
(pH 7.4) results in the disappearance of creatinine CH2 
signals at δ 4.06 due to deuteration [17]. Another group 
has shown that with rat urine, the metabolome remains 
stable when stored at < −20°C for up to 2 years or 14 days 
when kept at 4°C [18]. Additionally, freeze–thawing 
appears to not have significant effects on structural 
integrity of a number of metabolites such as urea, citrate, 
and creatinine, with up to five freeze–thaw cycles [18]. 
However, one should always be cautious when consider
ing freeze–thawing effects on the entire metabolome.

There are two main factors that can have a profound 
effect on the spectral analysis of the urine metabolome in 
NMR. These factors are pH and divalent cation concen
trations, specifically Ca2+ and Mg2+ [10, 19, 20]. Both of 
these can have profound effects on metabolite signals, 
especially metabolites with a pKa close to physiological 
conditions or with multiple ionizable groups [10, 19, 20]. 
These factors will contribute to what is known as “posi
tional noise,” [21] meaning that the chemical shift of 
metabolites can vary due to the aforementioned variations 

in the urine matrix composition. Positional noise will 
therefore bring problems in computational analysis of 
data, especially in the search for biomarkers.

Significant work has been done to buffer urine for NMR 
analysis and to create a consensus within the community, 
but variations do exist in practice. Urine samples are 
generally now mixed with a phosphate buffering system 
(pH 7.4) [19, 20, 22]. Phosphate buffer has now become 
standard practice, but there is not complete consensus on 
the appropriate phosphate concentration. Xiao et al. [19] 
systematically tested various phosphate buffer concentra
tions and found that a working stock of 150 mM K2HPO4/
NaH2PO4 at a urine–buffer ratio of 10 : 1 was best for 
healthy urine samples [19]. This differed from conven
tional buffer protocols that ask for a urine–buffer ratio of 
2 : 1 (0.2 M NaH2PO4/Na2HPO4 (pH 7.4)) [23]. The differ
ences of the two buffer systems appear subtle, but potas
sium ions have higher water solubility relative to sodium, 
allowing for a more concentrated buffer and therefore 
less dilution of samples. One should also be aware that 
increasing salt concentration into the sample can affect 
the signal‐to‐noise (S/N) ratio [19] of NMR analysis.

The second important variable in urine is the variable 
inter‐sample concentrations of Ca2+ and Mg2+. This has 
been an acknowledged nuance with urine NMR studies, 
and only some  research has been done to systematically 
address the problem and come to a general consensus. 
These divalent cations can form complexes with some 
metabolites, such as citrate and histidine, which create 
changes in the electrochemical environment of neigh
boring protons [17, 20]. Various techniques have been 
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proposed to neutralize these effects [20, 24], but thus far 
it appears to be an unresolved issue of measuring the 
urine metabolome via 1H NMR.

EDTA has been proposed as a chelator of these metal 
ions [24]; however, the introduction of EDTA will add 
significant peaks for EDTA itself and its various com
plexes, distorting the spectra and overpowering the 
signals of interesting metabolites. Perhaps the most 
promising is a proposal of Jiang et al., [20] which sug
gests that an additional buffering step using potassium 
fluoride (KF), prior to phosphate buffering, can remove 
metal ions from the urine matrix [20]. In this technique, 
Ca2+ and Mg2+ bind fluoride with greater affinity than 
the metabolites of interest. Additionally, the KF solution 
does not introduce additional signals to the spectra. 
Overall, this method improves metabolite signal posi
tioning on the chemical shift axis, especially with regard 
to citrate, limiting the inter‐sample “positional noise” of 
metabolite signals.

10.2.1.2 Sample Preparation for Blood
For the preparation of blood serum, blood is collected 
into tubes with no additives. Blood plasma requires the 
addition of Li‐heparin or EDTA (BD vacutainers) and is 
generally collected in 8 ml aliquots containing these 
anticoagulants [11]. Therefore it should be considered 
that when doing plasma NMR analysis with EDTA, a high‐
intensity NMR peak from EDTA and its complexes with 
Mg2+ and Ca2+ ions will appear. This EDTA signal will 
overlap the smaller signals of real metabolites, compli
cating the evaluation of NMR spectra [11]. Additionally, 
the separation of blood cells from the plasma should ideally 
be within 30 min of sample collection, and care should be 
taken in the centrifugation process. Do not exceed 1600 g 
and spin for only 15 min at 4 °C. Long‐term storage of 
supernatant should be at −40°C [22]. Plasma or serum 
can then be mixed with 0.9% NaCl (w/v) in D2O at a ratio 
of 1 : 2 (sample/saline) [22] and transferred into glass 
NMR tubes for analysis. TSP should not be used as a 
reference standard in samples with high protein content 
(plasma, serum) as this compound will bind to proteins 
and only a broadened chemical shift will be visible in the 
NMR spectrum. Furthermore, calibration of the plasma 
or serum spectra is generally done relative to beta‐
glucose (δ 4.64). Formic acid can also be used as an 
alternative internal reference (δ 8.45) [22].

10.2.1.3 Sample Preparation for Tissue
Tissue extracts such as kidney biopsies should be homog
enized in organic and aqueous solvents (1 : 1) and then 
centrifuged to remove cellular debris. The supernatant 
must then be lyophilized as the solvents will disrupt 
the NMR analysis [22]. At this point there are options 
in  extraction/homogenization methods depending on 

whether polar or nonpolar metabolites are of interest. 
For polar metabolites one can choose to use perchloric 
acid. Following homogenization the solution must be 
neutralized to pH 7.4 and then lyophilized [22]. Alterna
tively, one can use a liquid–liquid extraction (LLE) with 
methanol and chloroform to extract nonpolar metabo
lites. A detailed stepwise procedure is well described by 
Beckonert et  al. [22] and can be further referenced if 
needed. No matter which extraction method was cho
sen, lyophilized samples should be reconstituted in NMR 
buffer with an internal reference standard [22].

10.2.1.4 Instrumental Setup
Several aspects should be considered when doing a global, 
nontargeted, and high‐throughput NMR metabolomics 
study. Of utmost importance is the development of a 
standard operation procedure for sample preparation 
and assurance that instrumental parameters of the NMR 
are kept constant throughout the study analysis.

Plasma consists of 90% water, and urine has even higher. 
To allow a sensitive measurement of many metabolites 
in  these biofluids and reduce interference and signal 
overload from water signals, H2O proton signals must 
be suppressed via specific suppression methods in the 
NMR  acquisition [22].

Internal reference compounds must also be used such 
as 3‐trimethylsilypropionic acid (TSP), which gives a 
 reference point for the chemical shift, from which other 
signals can be referenced to [10]. Other reference stand
ards are 2,2‐dimethyl‐2‐silapentane‐5‐sulfonate (DSS) 
or tetramethylsilane (TMS) for use with organic solvents 
[10, 11, 22].

The temperature setting of the instrument is an 
important consideration. Urine is generally measured 
at 300–303 K and plasma/serum at 310 K. Temperature 
is particularly important for plasma/serum as large pro
teins, lipids, and lipoprotein form molecular aggregates 
to small molecules depending on temperature. Therefore 
the temperature should be kept around physiological 
levels [11]. Also, moieties containing amide groups can 
form hydrogen bonds when temperatures vary, which 
will cause variations in chemical shift [10].

Locking of the NMR via the introduction of the so‐
called field‐frequency lock and the locking substance 
D2O (for aqueous samples or MeOD as an organic solvent) 
compensates for slight drifts of the magnetic field. 
Furthermore, the magnetic field is slightly inhomogene
ous along the whole magnet. These variations especially 
around the sample can be adjusted by shimming. This 
procedure is automated in modern NMR consoles, but 
manual shimming is recommended to maximize spectral 
quality [10, 11]. Shimming is assessed by reviewing the 
width of the reference peak (e.g., TSP/DSS) at half 
height and should not exceed 1.0 Hz [10]. This variable 
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is especially important in large sample sets and should 
be routinely monitored for quality control.

Depending on the biochemical question at hand, 
various pulse sequences have evolved. While one‐pulse 
sequences (zgpr) and one‐dimensional (1D) nuclear 
Overhauser enhancement spectroscopy (NOESY) presat 
(noesypr1d) give an overview of both small and large 
molecules in a given sample, CPMG presat (cpmgpr) 
focuses only on small molecules, and a diffusion‐edited 
experiment (ledbpgppr2s1d) allows the measurement of 
only large molecules such as proteins and lipids without 
the need of preceding sample extraction. More details on 
the pulsing methods can be found in the review by 
Beckonert et al. [22].

2D experiments can also be set up with NMR and are 
mainly used to aid structural elucidation. J‐resolved 
experiments (jresgpprqf) show the multiplicity of each 
peak and reduce peak overlap. Correlation spectroscopy 
(COSY) and total correlation spectroscopy (TOCSY) 
experiments can reveal connections between signals that 
are connected via spin couplings. Heteronuclear experi
ments such as the heteronuclear single quantum coher
ence (HSQC) experiment gives the 1H and neighboring 
13C chemical shift. The latter experiment is also used in 
recent 2D NMR metabolomics approaches, with the 
advantage of substantial reduction in peak overlap and 
therefore a great potential for the detection of more 
metabolites and increased quantitative accuracy [25].

10.2.2 MS

MS offers relatively high sensitivity, combined with good 
selectivity. It also offers information on chemical struc
ture via accurate mass, isotope distribution patterns, 
and characteristic fragment ions [26]. Today there are a 
variety of MS technologies that all have their respective 
advantages and disadvantages. These 3 main technolo
gies of MS include ionization techniques, mass analyz
ers, and coupling techniques. Therefore, depending on 
the nature of the study and metabolites of interest, one 
will select a specific platform. However, a compromise 
between sensitivity, selectivity, cost, and speed is usually 
made [26].

10.2.2.1 Ionization
Electrospray ionization (ESI) is a soft ionization tech
nique that has become a key ionization method of bio
logical material over the past several decades. In a clinical 
setting, femtomole quantities of analytes in microliter 
sample volumes can be studied via this technique with 
excellent sensitivity and robustness [27]. This method 
uses electrical energy to assist in the transition of ions 
from the liquid phase to gaseous phase prior to spectral 
analysis. First, a fine spray of sample droplets is charged 

via capillary voltage. A nebulizing gas (e.g., nitrogen) 
assists in the formation of droplets and enhances sample 
flow rate. The charged droplets then exit the electrospray 
tip and across a pressure potential gradient [27]. Then, 
the solvent is gradually evaporated via heating tempera
ture and nitrogen gas. The droplets are reduced in size 
till the Rayleigh stability limit is reached, at which a critical 
point is reached and the droplets of ions undergo 
Coulomb fission, releasing the ions into the gaseous 
phase [27]. Ions are then taken up into the sampling cone 
and accelerated into the mass analyzer. Bruins [28] can 
offer a detailed review of the technique. ESI can be per
formed in both negative and positive modes, generating 
negative and positive ion metabolites, respectively.

Similar to ESI, atmospheric pressure chemical ionization 
(APCI) is a soft technique that preserves the structural 
integrity of the analytes while achieving efficient levels of 
ionization [29]. APCI was first reported by Horning et al. 
over 30 year ago and has been well integrated into tech
niques such as liquid chromatography (LC)MS [29]. 
With this technique a buffer gas is ionized by a beam of 
electrons accelerated in a high electron field. Then in 
series of reactions, which depends on the buffer gas 
composition, reagent ions are formed. The efficiency in 
the formation of reagent ions is a direct measure of 
the analyte ionization efficiency. However, limited effi
ciency in reagent ionization formation is one of the main 
drawbacks of this method [29]. Therefore in recent years 
atmospheric pressure photoionization (APPI) has been 
also developed to improve the technique [30]. This 
method is designed to directly photoionize organic com
pounds with high energy photons, bypassing the need 
for reagent ion formation.

Matrix‐assisted laser desorption/ionization (MALDI) 
is also a widely used soft ionization technique in practice. 
However it is not normally used in conventional metab
olomics, but rather in tissue imaging techniques [31], 
which has been discussed in a previous chapter.

The main ionization methods used in metabolomics 
are ESI and APCI. In general, ESI is suitable for semipo
lar and polar compounds, while APCI is recommended 
for neutral or less polar compounds [26]. Fairly recently 
Nordström et al. compared ESI, APCI, and a technique 
described as multimode (MM) ionization [32]. What 
can be determined from this study is that there is not a 
clear‐cut, one‐size‐fits‐all approach with ionization and 
metabolomics. When looking at total ion count pro
duced by the two methods, APCI and ESI are compara
ble; however it appears that when measuring in negative 
mode, ESI may be more efficient [32]. One aspect that 
should be considered when trying to measure in positive 
mode is the formation of strong Na2+ adducts, which 
is not typically seen in APCI+ mode [32, 33]. There is 
difference as well in selectivity in positive mode between 
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the two methods [32]; therefore it is reasonable to select 
a method that fits to specific interests or use a combina
tion of the two, if high throughput is not a concern.

10.2.2.2 Mass Analyzers
Metabolomic samples can be loaded into mass analyzers 
either by direct injection (DI) or coupled to a separation 
technique. Direct injection MS (DI‐MS) methods of 
crude sample mixtures without coupled chromatographic 
separations are well suited for large clinical screening 
studies [26], but measurements can be heavily influenced 
by the matrix of the samples. However, the matrix of 
samples can be cleaned with improved sample extraction 
methods. Under these circumstances DI‐MS can provide 
a global nontargeted metabolomic “fingerprinting” of sam
ple sets [26, 34].

Fourier transform ion cyclotron resonance mass 
spectrometry (FT‐ICR‐MS) is an important and relia
ble ultra‐high‐resolution instrument for DI analysis. 
With resolution of (>1 000 000) and mass accuracy 
(<1 ppm), it offers a great way to efficiently and effectively 
examine the metabolic fingerprint of the sample [26]. 
The main functional part of FT‐ICR‐MS is the measuring 
cell (Penning trap). More than 106 ions can be trapped in 
the magnetic field, and then by applying an RF electric 
field, rotating ions induce image charges in detection 
electrodes, which are then amplified. The high resolution 
and mass accuracy is only possible with a complex under
standing of ion motion dynamics and taking into account 
ion–ion interactions [35]. A detail description of the 
theory behind the instrumentation can be found in recent 
reviews (Nikolaev et al. [35] or Marshall et al. [36]).

As an example of the utility of FT‐ICR‐MS, Han et al. 
were able to detect 570 distinct metabolite features in 
mouse serum by monoisotopic mass within a range of 
m/z 90–570 [37]. In addition, they observed numerous 
metabolites that clustered around a single nominal mass, 
indicating that chromatography prior to mass analysis 
may not be even necessary with the given instrumental 
setup [37]. Furthermore, with proper internal calibra
tion, FT‐ICR‐MS has shown to have mass accuracies 
within 0.2 ppm for most metabolites and 0.65 ppm for 
all metabolites. At this level of accuracy, when com
bining with metabolite databases and computational 
molecular formula techniques, most measured metabo
lites could be identified by mass alone without fragmen
tation [37]. The FT‐ICR‐MS has great potential for being 
used routinely in urine metabolomics studies.

The Orbitrap is a recent mass analyzer that, similar to 
FT‐ICR, uses an electrostatic field to trap ions [26]. 
A more detailed explanation of orbital trapping can be 
found in the manuscript of Makarov [38]. Typical resolv
ing power of Orbitrap mass spectrometers is about 
150 000 and mass accuracy of 1–5 ppm [26], and they 

have been used in various studies of metabolism. The 
lower resolution compared with FT‐ICR is compensated 
for by a more compact and simple design [38].

As part of the ion trapping family, multiple‐pass time‐
of‐flight (TOF) MS instruments have been used as 3D 
and linear ion traps for DI‐MS analysis [26]. In linear 
trapping, ions are introduced and trapped between two 
ion mirrors coaxially located to the ion beam. In order to 
load the ions, one mirror is switched off and switched 
on before the ion can exit the trap [38]. Resolving power 
is typically around 6 000–17 000 and mass accuracy can 
be (<5 ppm) [34]. However, relative to the previously 
mentioned ion traps, TOF instruments have limited 
resolving power and mass accuracy, which has limited 
their role in DI‐MS studies [26] and their ability to 
distinguish isobaric ions [34]. This instrument is mainly 
utilized with a coupled chromatography technique.

DI‐MS has been applied in a variety of metabolomics 
studies. These instrumental methods are particularly 
useful in global metabolic fingerprinting techniques 
where case versus control can be distinguished by review 
of the total measurable metabolome rather than by a 
single metabolic biomarker. The main challenge for 
this type of instrumentation is its susceptibility to ion 
suppression/enhancement due to the lack of sample 
pretreatment. With the case of urine or blood plasma for 
CKD studies, high salt concentration will result in salt 
adduct formation. Furthermore, the formation of ion 
products and the differentiation of isomers can be a real 
challenge in post‐analysis data evaluation [26, 34].

It should also be mentioned that DI of samples 
with high protein content can also rapidly deteriorate 
mechanical components of the instrument [34]. This can 
obviously have deleterious effects on the hardware and 
data quality for any large sample set analysis. However 
such problems can be reduced with sample preparation/
metabolite extraction methods. Again, one must always 
compromise between sensitivity, selectivity, cost, and 
speed.

10.2.2.3 Coupled Separation Methods
Coupling chromatography separation to MS has been 
widely used in metabolomics both online and offline. 
Chromatographic separation can provide advantages 
such as reduction of matrix effects, ionization suppres
sion and separation of isomers; while adding additional 
orthogonal data (i.e., retention time). Also important is 
the added ability to more accurately quantify individual 
metabolites [26]. Three main separation technologies 
are used with MS: gas chromatography (GC), LC, and 
capillary electrophoresis (CE).

GC has often been coupled to single quadruple MS 
detectors, with low cost, high sensitivity, and wide 
dynamic range. However, this method suffers from slower 
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scan rates and run times (40–60 min/sample) as well 
as  reduced mass accuracy relative to TOF analyzers 
(<10 min/sample) [26, 34]. On the other hand, reliability, 
robustness, and affordability have reserved a place for 
GC/quadrupole‐MS in many analytical laboratories.

GC‐MS has one prerequisite, which is the need for 
volatile, thermally stable analytes [26, 34]. This means 
that highly polar metabolites usually require a derivati
zation step to replace a functional group with a  more 
stable moiety. Finding the right method for a specific 
sample can be complicated and often artifacts can be 
formed that complicates data interpretation [34]. With 
reference to CKD studies, biofluid sample preparation 
for GC often includes a lyophilization step, resulting in 
concentrated sample matrix components that can cause 
column and detector overload [34, 39]. Other complica
tions such as incomplete compound identification are 
common in global nontargeted metabolomics of urine. 
Other factors like spectral overlapping, incomplete sepa
ration, poor S/N, and spectral artifacts distort results 
[13]. However, 179 compounds (89 unique) have been 
reported using GC‐MS [13].

LC is a good complement to GC as it can handle polar, 
nonvolatile compounds and has been integrated into 
 targeted and nontargeted metabolomics approaches. 
In addition to compound separation, LC can reduce ion 
suppression and decrease background noise. Two main 
methods are widely used for metabolomics: normal phase 
(NP) and reverse phase (RP) [26, 34, 40]. Most commonly 
found are C18 and C8 RP columns [26]. Con ventional C18 
columns use a particle size of 3–5 µm, which can have 
insufficient separation and relatively poor resolution 
with complex mixtures such as biofluids [34]. Newer 
technology has given way to ultra‐performance liquid 
chromatography (UPLC), which utilizes <2 µm particles. 
Analysis of rat urine using this method increased resolu
tion and detection limits [41].

RP is a standard separation tool for moderately polar 
to nonpolar analytes; unfortunately highly polar com
pounds are not retained and are eluted within the initial 
void volume [34]. NP columns provide just the opposite 
kind of interactions with analytes. With NP, highly polar 
metabolites are retained; therefore this method is well 
suited for biofluids such as urine [26]. Hydrophilic inter
action liquid chromatography (HILIC); a form of NP, 
is  now becoming a widely used technique for urine 
 metabolomics. A key characteristic of HILIC is that 
the  mobile phase is a water‐miscible solvent such as 
methanol [42]. This method relies on a stationary phase 
of sulfoalkylbetaine with zwitterionic properties and 
is  capable of binding water so that the interface with 
metabolites separates compounds based on polarity and 
charge. The nature of the mobile phase also makes it 
suitable for coupling to ESI‐MS [42].

CE is another separation technique utilized in biofluid 
metabolomics. This technique offers the separation of 
metabolites based on charge and size. One major advan
tage is the short analysis time and small sample volume 
requirement, at just 1–20 nl [40]. CE‐MS has been used 
for both targeted and nontargeted analysis, detecting a 
wide range of metabolites [40]. Hybrid techniques had 
also been created from CE‐based separations, such as 
capillary electrochromatography (CEC), which uses 
capillary columns that are packed with LC stationary 
phase materials [34]. This technique has been reported 
to have been coupled with MS to analyze compounds 
such as proteins and peptides, as well as amino acids and 
carbohydrates [43].

One general concern with metabolomics is the lack of 
complete consensus on a standardized method, and cur
rently researchers typically customize a method for their 
particular needs. However, some work has been done to 
optimize analytical methods specifically for metabo
lomics [44]. In 2009, Büscher et al. designed a systematic 
study to review the three main coupled MS platforms 
with a quantitative metabolic focus [44]. They used a 
reference mixture of 75 metabolite compound groups 
with distinct molecular weights (MW), coming from a 
wide range of biochemical pathways. The three plat
forms were LC, GC, and CE, all of which were coupled 
to TOF‐MS detectors [44]. Within each platform, two 
variations of separation where used. For GC evaluation, 
both trimethylsilyl (TMS) and tert‐butyldimethylsilyl 
(TBDMS) derivatization methods were used. For LC, ion 
pairing and HILIC were used, and with CE, cationic and 
anionic separations were performed. They found that of 
the 75 compound groups, 72 could be measured on at least 
one platform, while 33 could be measured by all 3 [44].

In general terms, sensitivity, time, and reproducibility 
were evaluated, and of the three platforms, it was deter
mined that LC‐TOF‐MS was the best option for cover
age and robustness. If a second platform could be 
integrated, it was shown that GC‐TOF‐MS would com
plement the performance of LC best. CE‐TOF‐MS was 
found to have comparable sensitivity and separation but 
lacked robustness, as retention times of CE vary as much 
as 3% from sample to sample [44]. Matrix effects were 
observed in the three platforms; thus the use of radiola
beled internal standards (i.e., 13C biomass) is recom
mended for proper quantification [44]. It should be 
noted that no DI‐MS techniques were evaluated here. 
See Table  10.1 for an overall comparison of analytical 
techniques.

10.2.2.4 MS Sample Pretreatment Techniques
Sample collection for a metabolomics analysis is challeng
ing due to the rapid dynamic changes that characterize 
the human metabolome. Therefore, care should be given 
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and steps taken to ensure that any kind of potential 
biochemical activity is halted upon sample collection. 
This is known as quenching [45], which relies on rapid 
inactivation of enzymatic activity. Methods for this can 
vary depending on the sample type, but aside from the 
host organism itself, microbial quenching should also be 
considered. A more detailed outline of quenching tech
niques is described in a publication by Mushtaq et al. [45].

A sample pretreatment step is essential in clinical 
metabolomics, as biological samples such as plasma, 
serum, cell cultures, and tissue are protein and salt 
rich [46]. Both protein and salts will interfere with 
metabolite detection and lead to poor data quality, 
especially for larger automated studies. Healthy urine 
generally contains low protein amounts, so it can sim
ply be centrifuged and diluted before DI. In contrast, 
urine from CKD patients usually has a higher protein 
concentration, can contain blood cells, and has vari
able osmolarity; therefore a more intensive sample 
preparation step is needed [47].

Here we will discuss deproteinization and extraction 
methods that will efficiently remove proteins and salts, 
but preserve the metabolites of interest. It should be 
noted that any kind of sample preparation will result in 
some analyte loss [46]. Sample preparation methods are 
much like what has been discussed thus far, in that a 
compromise must always be considered depending on 
the nature of the study and analytes of interest.

10.2.3 Protein Removal (PPT)

The simplest way for protein removal in biofluids would 
be to dilute the sample in an organic solvent, centrifuge, 
and then remove the supernatant for analysis. However, 
organic solvents will not remove phospholipids and 
salts that will cause ion suppression [46]. This is also 
the case with ultrafiltration methods [48]; therefore, 
one should consider a more robust technique to remove 
proteins and salts together, especially with blood‐derived 
samples.

Table 10.1 A general comparison of analytical techniques in metabolomics.

Platform Strengths Weaknesses

Nuclear magnetic resonance 
(NMR) spectroscopy

 ● Highly robust
 ● Nondestruction of sample
 ● Relatively simple sample preparations
 ● Compatible with automation
 ● Short sample run time potential
 ● Quantitative and qualitative
 ● Variety of pulse sequences can be utilized 

for focused analyses
 ● 2D NMR for structural elucidation

 ● Relatively insensitive when compared with MS
 ● High initial cost
 ● Peak overlap reduces metabolite resolution

Direct injection mass 
spectrometry (DI‐MS)

 ● Low sample volume needed
 ● High sensitivity
 ● Ion fragmentation
 ● Compatible with automation
 ● Robust quantification
 ● Limited carryover or cross‐contamination
 ● Sample run time

 ● Issues with specificity
 ● Unable to separate isomers and isobars alone 

(this can be mitigated with super high‐
resolution instruments) (i.e., FT‐ICR‐MS)

 ● Stable isotope‐labeled standards needed for 
absolute quantification

 ● Can require time‐consuming sample preparation

Liquid chromatography–mass 
spectrometry (LC‐MS)

 ● High sensitivity
 ● Good reproducibility
 ● Good for nonvolatile compounds
 ● Can be optimized for polar or nonpolar 

separation

 ● Larger sample analysis times
 ● Lower resolution
 ● Large quantities of solvents needed
 ● Can be susceptible to batch effects

Gas chromatography  
mass–spectrometry (GC‐MS)

 ● Comparable sensitivity
 ● Good reproducibility
 ● Good resolution
 ● Faster analysis run times well suited for 

volatile compounds, as well as amino 
acids, organic acid, and lipids

 ● Low initial cost

 ● Derivatization steps needed, which is costly and 
time consuming

 ● Relatively good resolving power
 ● Not well suited for high throughput
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10.2.4 LLE

LLE enables the separation of polar and nonpolar 
metabolites into aqueous and organic phases. Each phase 
can then be analyzed separately and this can be a great 
method for nontargeted studies. As this method is time 
consuming and requires standardized handling practice 
[46], new LLE technologies have been developed to make 
this method considerably faster than conventional tech
niques. The introduction of supported liquid extraction 
(SLE) plates (96‐well) has dramatically decreased the 
time needed for LLE and can potentially have similar 
extraction capabilities as traditional methods. However, 
these plates have primarily been used in the analysis of 
pharmaceutical compounds in drug development studies 
[49, 50]. Despite the limited uses thus far, the SLE plates 
do appear to have recovery rates up to around 93% [50] 
and removal rate of 99% of phospholipids [49].

What is important to remember about these plates is 
the choice of solvent. Solvents must be water immiscible, 
such as methyl tert‐butyl ether, chloroform, or ethyl 
acetate. These solvents are low on the polarity index 
scale [51], meaning that extractions with these methods 
will be focused on moderate to nonpolar metabolites. 
Application for these plates may be best for plasma/
serum or perhaps urine from end‐stage renal failure 
(ESRD) patients with high protein concentration. A more 
detailed review of applications for SLE plates can be 
found in the manuscript by Raterink et al. [46] as well as 
from manufactures.

10.2.5 Solid‐Phase Extraction (SPE)

Solid‐phase extraction (SPE) is a well‐established 
extraction method for the enrichment of analytes and 
removal of interfering compounds. Like with LC, there 
are varieties in solid‐phase material that have varying 
types of chemical interactions with analytes. These 
interactions can include weak/strong cation/anion, 
reverse phase (C18 or C8), and HILIC. However, due to 
the selectivity of the various sorbents, obtaining a wide 
range of metabolite coverage is challenging. Therefore 
these methods may not be optimal for global untargeted 
studies [46].

HILIC‐SPE may be the most interesting approach for 
analyzing urine samples, as it allows enrichment of polar 
metabolites that are abundant in urine. A drawback of 
HILIC‐SPE, and SPE in general, is that this method can 
be laboratory intensive and requires a considerable 
amount of time for sample preparation [52]. There are 
now SPE 96‐well plates available [46] that can add speed 
and automation, but currently HILIC‐SPE is available 
only in single cartridge form. Therefore, HILIC‐SPE may 
be suitable for lower‐throughput studies.

Questions have been posed about the reliability of 
metabolomic data across different analytical platforms 
and laboratories. A recent study by Martin et al. in 2014 
addressed just this issue [44]. In this large interlaboratory 
study, 5 NMR instruments and 11 LC‐MS instruments 
(Orbitrap, TOF, QTOF) where used to investigate the 
robustness of nontargeted methods [53]. In test 1, urine 
samples from adult volunteers, spiked and nonspiked 
with 32 metabolite standards, were analyzed. In test 2, 
plasma of rats with normal diet and a supplemented diet 
were analyzed. All samples were measured across all plat
forms [53]. Researchers concluded that there is high con
vergence in the spectral information produced, regardless 
of instrument, standardization, and deconvolution meth
ods used. Methods to identify and match individual 
meta bolites are being explored more intensively [53]. 
What studies like this reveal is that nontargeted metabo
lomic techniques can be used to generate hypotheses rel
evant to CKD research. These methods will only increase 
in  robustness, as instrumentation and computational 
methods are perfected and tailored for the tasks.

10.3  Statistical Tools and Systems 
Integration

Methods for handling and interpretation of metabo
lomics data can be as diverse as the instrumentation that 
generates the data. This depends on the nature of the 
study, which can be broken down into two major 
approaches.

Targeted metabolomics is the quantitative analysis of a 
defined group of metabolites that are involved in one or 
a few related metabolic pathways. Examples are the anal
ysis of all biogenic amino acids or metabolites from the 
tricarboxylic acid (TCA) cycle. This method in particular 
is best suited for robust quantification of specific known 
metabolites of interest, and protocols need to be adopted 
or newly developed for each set of metabolite targets 
[34, 54]. Quantification in metabolomics is critical for 
understanding biological processes; however this can be 
challenging. A major obstacle is that a metabolite signal is 
dependent not only on its concentration but also on its 
structure and the nature of the sample matrix [26]. For this 
reason, it can be said that the absolute quantification of 
metabolites is a “slow‐lane” [6, 55] approach. This method 
could also be described as hypothesis driven [54], such as 
the use of creatinine in the determination of eGFR.

The alternative method would be nontargeted acqui
sition of metabolomics data from biological samples to 
classify changes between sample groups and to look 
for  sample clustering [34]. This will utilize NMR and 
high‐resolution MS instrumentation [34]. This method 
is unbiased, global, nontargeted, and well suited for 
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hypothesis generation. This approach has also been 
coined as “fast lane” [6, 55]. It gives the unique opportu
nity to discover novel and previously unexpected metab
olites; while in parallel covering a large set of common 
metabolites.

10.3.1 Post‐Measurement Spectral Processing

Prior to any statistical analysis, spectral processing must 
be performed, whether the data is generated from NMR 
or MS. Data processing can include techniques like 
spectral alignment and normalization [1]. This guarantees 
that the data obtained from a particular feature are the 
same throughout the sample set and are generally arranged 
in a feature quantification matrix (FQM) [1]. Further
more, metabolomics data is asymmetrical; therefore 
spectral processing techniques like mean centering and 
scaling are needed [54].

10.3.2 Spectral Alignment

Spectral alignment is a key process in metabolomics stud
ies that involves multiple samples. Peaks or features of the 
same metabolite may differ in position on the x‐axis due 
to nonlinear shifts and matrix affects [19]. In NMR, this is 
due to ionic conditions, pH, or protein content of the bio
logical sample. In coupled MS techniques, it can be due to 
changes in retention time associated with variation in the 
solid phases of chromatography [56].

Spectral alignment methods can be classified in two 
ways. The first technique known as warping is a nonlinear 
transformation of the x‐axis in NMR and MS data in order 
to maximize the correlation between spectra. Alignments 
are done by either stretching or shrinking segments of 
the spectra in order to maximize correlation [1]. The two 
most common techniques of warping are correlation 
optimized warping (COW) and dynamic time warping 
(DTW) [1], and a more detailed description of these 
methods can be found in Tomasi et al. [57].

Segmental alignments, on the other hand, apply a uni
fied shift to all spectral points [1]. One of the most used 
algorithms is the icoshift algorithm [58], which is based 
on the convergence of a reference signal using fast 
Fourier transform (FFT) and automatic segmentation 
methods [21]. Computational bias can be introduced 
during this process [59], and therefore care should be 
taken when using a reference based alignment, but nev
ertheless, segment alignment has been proven to be 
more effective than warping techniques, regardless of 
instrumentation used [58–60].

Other methods such as recursive segment‐wise peak 
alignment (RSPA) [21] have also been developed to 
increase interpretability and robustness of spectral data, 
primarily for NMR data. This method reduces peak 

positional noise in spectra by refining a segment of 
 reference and testing spectra in a top‐down fashion, 
 further subdividing as needed to maximize alignment. 
Then aligned spectral segments can be rejoined [21], as 
shown in Figure 10.4 (alignment methods diagram).
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Figure 10.4 RSPA alignment scheme. Source: Reprinted (adapted) 
with permission for Veselkov et al. [21]. Copyright 2009 American 
Chemical Society.
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10.3.3 Normalization and Scaling

In order to accurately quantify features in metabolomics 
data, a normalization step is required. The goal of nor
malization is to remove variation in overall metabolite 
concentration between samples introduced by various 
physiological factors [1]. For example, in urine this could 
be the patient hydration status or perhaps fasting/feed
ing states with regard to plasma samples. Many methods 
exist for normalization [61]. Two of the most common 
are (i) normalization to single endogenous stable metab
olites (i.e., creatinine) and (ii) total spectral area under 
the curve (AUC) normalization [1]. It should be men
tioned here that even though creatinine normalization is 
frequently used in routine clinical chemistry, it is not 
recommended for CKD studies, as creatinine excretion 
levels vary with disease progression.

A review by Kohl et  al., in which normalization 
methods were compared on samples from autosomal 
dominant polycystic kidney disease (ADPKD) patients, 
revealed that probabilistic quotient normalization (PQN) 
to be the most robust of the methods under review [61]. 
This method is based on the calculation of the most 
probable dilution factor by examining the distribution 
of the quotients of the amplitudes of a test spectrum 
with those of a reference spectrum [62]. The reference 
spectrum can be defined as single spectrum of the study, 
a “golden” reference spectrum from a database, or a 
calculated median or mean spectrum [62].

Each metabolite has a different mean value and dif
ferent margin of variation. To ensure that low‐abundant 
and high‐abundant metabolite contribute equally to 
metabolomics data, the matrix needs to be mean centered 
and scaled or transformed. The most commonly applied 
scaling methods in metabolomics are autoscaling, Pareto 
scaling, range scaling, and vast scaling [63]. An extensive 
review of different methods was done by van der Berg 
et al. [63].

10.3.4 Peak Versus Feature Detection

Deconvolution strategies can reduce the complexity of 
data by removing spectral noise, multiply charged 
 species, cluster, and adducts [34]. Deconvolution can 
also make quantification of metabolomics data easier 
and can be useful when metabolite signals overlap. 
However one must have some prior knowledge of the 
compounds present in a sample [1].

The purpose of feature detection is to identify and 
quantify features present on a spectrum. However this 
approach has drawbacks such as when features overlap, 
especially in NMR data [1]. Also, due to poor spectral 
alignments, these methods simply do not perform 
efficiently as peak‐based methods [1].

Peak‐based detection methods use algorithms to 
 analyze each sample spectrum independently [1, 64]. 
In the first step, the spectra are smoothed, a process that 
requires significant computer resources. In the second 
step, metabolite peaks are identified using one or more 
detection thresholds. These thresholds can be parame
ters such as S/N ratios, peak intensity, or a frequency 
filter in which the peak must show on a certain percentage 
of spectra to be significant [1, 65].

10.3.5 Data Analysis

Once the dataset is properly preprocessed by methods 
just previously discussed, univariate and multivariate 
statistical tools can be applied. What tools used will be 
influenced by the nature of the study and its design, 
whether it is targeted or nontargeted in nature.

Generally speaking, univariate statistical methods 
analyze metabolomic features independently [1] and are 
used for targeted biomarker discovery when the chemi
cal class of the compound of interest is known [34, 54]. 
This slow ‐lane approach works toward a single metab
olite marker detection and absolute quantification. 
Such quantitative data can offer information to answer 
clinical questions such as the determination of eGFR 
based on creatinine measurements [6, 55]. Univariate 
methods for this include ANOVA, Mann–Whitney U 
test, Student’s t‐test, Wilcoxon signed‐rank test, and 
logistic regression [1, 34, 54].

In contrast to univariate methods, multivariate methods 
take into account all metabolite features simultaneously 
[1] and attempt to identify patters and clusters in metab
olite classes related to pathological features. This can 
be particularly important, because a single biomarker 
may not be specific to a single disease [54]. This can be 
considered a fast‐lane approach, because metabolite 
identification may not even be necessary to distinguish 
case and control. Here one can simply determine the 
health status of a patient, relying only on spectral informa
tion [6, 55]. Furthermore, these approaches can be great 
tools for hypothesis generation. Multivariate pattern 
recognition tools can follow two approaches: supervised 
and unsupervised analyses [1, 34].

10.3.6 Unsupervised

Unsupervised tools like principal component analysis 
(PCA) and hierarchical clustering analysis (HCA) are 
good ways in which one can summarize complex metab
olomics data and create an overview of the data struc
ture. These methods provide effective ways to reduce 
high‐dimensional data into fewer dimensions and allow 
a first look at patterns and sample cluster characteristics 
of the whole dataset [1].
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PCA is perhaps the most popular of unsupervised 
tools. It is based on the linear transformation of meta
bolic features into groups of orthogonal variables called 
principal components. After principal components have 
been assigned, loading and score vectors are obtained. 
Loading vectors represent the principal components that 
correspond to the individual contribution of each varia
ble to the principal component. Score vectors represent 
the projection of each sample into the new orthogonal 
matrix and represent each sample to the principal com
ponent [1, 66]. When this is plotted, variable compo
nents in multidimensional data can be easily visualized 
in either 2D or 3D plots [34]. This can also be a great tool 
for the detection of outliners or for assessing the impact 
of technical issues on datasets.

HCA can complement PCA, in that this tool can detect 
nonlinear trends in data that would otherwise be missed 
by PCA [1]. HCA provides a powerful tool to visualize 
clustering features in metabolomics data based on simi
larity/dissimilarity of features in a distance plot [67]. 
Self‐organizing maps (SOM) [68] are also applied to 
metabolomics datasets as a great way to visualize pheno
types as well as prioritize metabolites of interest based 
on similarities [1].

10.3.7 Supervised

Supervised methods, which can build from knowledge 
provided by unsupervised tools, are used in CKD metab
olomics to correlate known phenotypic variables of 
choice with metabolic data. This allows the elucidation 
of potential discriminating features in the dataset.

Partial least squares (PLS) analysis is a commonly used 
tool for supervised statistical analysis of metabolomics 
data. As PCA seeks to find the maximal variation in 
datasets for separation, PLS seeks to extract variation in 
the data that is related to a specified sample class or a 
variable of discrimination [69]. In other words, a feature 
coefficient (loadings) of PLS components represents a 
measure of the contribution of that feature to discrimi
nation of sample groups [1]. PLS can be used as a regres
sion analysis [1], for example, to relate metabolites to 
CKD stage or age associations, or as PLS‐DA (discrimi
nate analysis) as mentioned previously, to discriminate 
between sample groups (e.g., healthy and CKD) or even 
as a predictor of groups [69]. Figure 10.5 show a com
parison of PCA and PLS.

An extension to the classical PLS method, O‐PLS splits 
up the data variation into the variance of interest and the 
orthogonal part of the data that is unrelated to the 
parameter of interest [70]. This simplifies data interpre
tation [69]. In such supervised approaches, the validity of 
the model needs to be assessed to avoid overfitting of the 
model. This can be done by carrying out a sevenfold 

cross‐validation, which retains the explained variance in 
relation to the group descriptor (R2Y, which should be 
close to 1) and the predictive ability of the model (Q2Y, 
which should be >0). Visualization of both PLS and 
O‐PLS analysis can be done via plotting the scores plot, 
similar to the previously described PCA scores plot. In 
the case of NMR data, a straightforward technique has 
been developed by Cloarec et al. where the loading plots 
are visualized as pseudo‐NMR spectra and the R2 values 
represented by a color coding system that highlights all 
correlating features represented by the variable weights 
and their direction of correlation shown as a covariance 
plot [71]. Figure  10.5 illustrates such plots from an O‐
PLS‐DA approach in CKD.

In addition, an NMR data analysis technique known as 
statistical total correlation spectroscopy (STOSCY) [71] 
aids metabolite identification via highlighting metabo
lites that have correlating features in the NMR spectrum, 
and therefore have structural similarities, or are gener
ated from the same biological pathway. Then if combined 
with O‐PLS‐DA, one can highlight peaks with strong 
correlation to a determined parameter or sample class 
(i.e., CKD stage) (see Figure 10.5). This can show nega
tive and positive correlations simultaneously of all peaks 
in the pseudo‐spectra.

This is not a comprehensive review of statistical 
methods in metabolomics and only some selected methods 
that are popularly used were presented. A detailed review 
of the topic was written by Bartel et al. [69].

10.3.8 Spectral Databases and Metabolite 
Identification

Currently the most common method for peak assign
ment in metabolomics is to query the feature against a 
known database; whether NMR or MS data is being 
analyzed. Perhaps the most extensive metabolomics 
database is the Human Metabolome Database (HMDB), 
which stores more than 40 000 metabolites with chemi
cal descriptions, metadata, and MS/NMR spectra [1]. 
In MS‐based studies certain peaks of interest can be 
search based on the m/z and whether it was measured 
in positive or negative mode. Also ionized adducts (H, 
Na, K, Cl, etc.) can also be considered with a certain 
ppm range of error [1]. Regarding high‐resolution 
instruments such as FT‐ICR‐MS, certain filtering pro
grams such as NetCalc have been developed by Tziotis 
et al. This algorithm can make preliminary annotations 
of between 40 and 60% of datasets [72], which can dra
matically speed up the peak annotation process. In 
NMR data, similar database queries are used. Software 
programs do exist such as MetaboHunter [73] and 
FOCUS [59] that can aid metabolite identification in an 
automated manner.
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10.3.9 Pathway Analysis

It is only very recently that metabolite relationships and 
pathway analysis could be done in a single measurement. 
Groups of metabolites deriving from the sample biochem
ical pathway can now be analyzed due to the vast 
amounts of data being generated from metabolomics 
studies. Databases for pathway analysis are now routinely 
used for the incorporation of metabolomics data into the 
context of systems biology. Some of the main databases 
are Kyoto Encyclopedia of Genes and Genomes (KEGG), 
the Small Molecule Pathway Database (SMPDB), and 
MetaCyc, just to name a few [1]. This topic cannot be 
fully covered in this chapter, but methods for pathway 
analysis known as metabolite set enrichment analysis 

(MSEA) and gene set enrichment analysis (GSEA) are 
some of the main approaches to pathway analysis [1, 74]. 
Further information on MSEA can be found in the 
review from Khatri et al. [74].

10.3.10 Validation and Performance Assessment

Statistical methods for validation of findings are critical 
to  biomarker discovery [54] and for therapeutic target 
 detection in toxicometabolomics [75]. Sensitivity and 
specificity of the prediction model must be cross‐ validated 
(e.g., sevenfold cross‐validation on PLS models) to ensure 
the model is not overfitted by use of independent valida
tion sets with healthy control and the disease group. 
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If  also needed, an additional related disease control 
group with similar phenotype and disease can be 
used [54]. The most used performance method for model 
testing is receiver operating characteristic (ROC), which 
is a nonparametric procedure comparing specificity 
against sensitivity according to a specific boundary [1, 76].

Common pitfalls such as poor data filtering and 
normalization techniques should be considered prior to 
performance assessment [76], and it should also be noted 
that statistical analysis of data can never compensate for 
poor study design. Care should be given to randomization, 
specimen collection, handling, and storage. Additionally, 
adequate sample size is required in order to make statis
tical inferences and validate biomarkers [54].

10.3.11 Application into Systems Biology

Integrating metabolomics data with other ‐omics data for 
drug discovery is a challenge of the future. This topic can
not be discussed here in detail, but it is recognized that in 
health and disease, metabolomics must find a place within 
systems biology. Metabolomics data can be utilized in a 
“systems pharmacology” approach [77], where multiple 
therapeutic targets can be analyzed and reviewed for 
effectiveness. The workflow for this approach  incorporates 
full ‐omics modeling, with emphasis on maximum cor
relation between gene expression [77] and metabolic flux 
[78]. This analysis results in generation of predictive 
models that can lead to therapeutic approaches within 
the context of personalized medicine. Personalized medi
cine, albeit a term now more frequently used, is still 
loosely defined. Different definitions of personalized 
medicine are currently being used [79], probably in part 
due to the different specialized fields of molecular  biology. 
The various ‐omics fields rightfully have some claim, but 
can a single ‐omics technique be considered a global 
 personalized medical approach as a stand‐alone field of 
research?

In the context of metabolomics, a personalized meta
bolic assessment of a patient cannot be based on a single 
biomarker [3], such as creatinine clearance. Standing 
alone this fails to answer questions about why kidneys 
are failing in the first place. Currently in clinical health
care management, as well as research, single biomarker 
endpoint compounds are being used for a variety of 
applications [3]. This approach may be sufficient for 
bacterial infections or toxicity, but is it effective in assess
ing complex diseases, like CKD?

The current model for disease diagnosis and prognosis 
should be reconsidered as global nontargeted methods 
yield viable alternatives. This should also be the case 
with metabolomics and CKD. One can then foresee a 
future when a person in a healthy state has their metabo
lome assessed (e.g., NMR/MS) and then periodically 

monitored or when disease is suspected. If abnormalities 
are noticed by a nontargeted metabolic analysis, a tar
geted analysis could then be implemented to verify 
changes in metabolite biomarkers. Combined with met
abolic flux approaches [80–82] and other ‐omics data (e.g., 
genomics, proteomics), total body metabolic assessment 
could be available for clinicians in order to help them 
implement targeted therapies.

10.4  Metabolomics in CKD

Mankind has been using metabolites for diagnostic 
purposes since ancient times by tasting urine for glucose, 
an example of targeted metabolomics [5]. Characterized 
by a persistently low GFR [83], CKD is diagnosed if GFR 
is less than 60 ml/min/1.73 m2 for 3 months or more [84]. 
GFR is estimated from serum creatinine and MDRD or 
Cockcroft–Gault formula [84]. CKD can also be diag
nosed via albumin‐to‐creatinine ratio >30 mg/g in two of 
three spot urine specimens [84], as well as through serum 
cystatin C measurements. Perhaps a panel of metabolites 
could offer a better and more personalized diagnosis of 
CKD. Recent studies [85–88] have revealed potential 
biomarkers of CKD and related diseases and have added 
valuable data to metabolomics databases. Perhaps most 
important is the search for early‐stage biomarkers [87] 
that will give clinicians a head start on treatments in 
order to halt CKD progression. Also important are 
biomarkers indicative of other CKD‐related diseases 
such as type 2 diabetes [85] and stage‐related progres
sion biomarkers [86, 88]. In this section the focus is on 
several interesting topics in relation to specific metabolic 
pathways that are impaired in CKD.

10.4.1 Uremic Toxins and New Biomarkers 
of eGFR and CKD Stage

Uremic syndrome is the progressive retention of com
pounds that normally are excreted by healthy kidneys. 
These compounds are known as uremic toxins (UTs) 
which they negatively interact with physiological func
tions of the body [89, 90]. Vanholder et al. [89] in a com
prehensive review of past studies, created an in‐depth, 
systematic overview of 55 publications. This is impor
tant especially when concerning ESRD and the need to 
have improved dialysis technology to remove UTs [89]. 
In their publication [89], a database of 857 publications 
between 1966 and 2002, was considered, with all data 
being taken from plasma/serum concentrations. The 
intent was to create a database of median/mean uremic 
concentrations (CU) reported and compare those values 
with a normal uremic concentration (CN). In addition, 



Integration of Omics Approaches and Systems Biology for Clinical Applications188

care was taken to subdivide UTs into three major classes: 
(i) small solutes (MW < 500 Da) with no known protein 
binding, (ii) solutes with known or likely protein binding, 
and (iii) medium MW molecules (≥500 Da) [89]. This 
work offers a useful database for future metabolomics 
studies.

In recent years analytical techniques, mainly NMR and 
MS, have been key in detecting and quantifying UTs and 
their relation to CKD and its progression. Toyohara et al. 
[91] were able to detect 64 UTs via CE‐MS in plasma 
and had significantly altered concentration as eGFR 
decreased. These results identify a number of uremic 
compounds that may predict deteriorating renal func
tion and provide diagnostic information for therapies [91].

Previously, the same group demonstrated the accumu
lation of UTs during ESRD due to inactivation of the 
SLCO4C1 organic anion transporter. This transporter 
has been shown to excrete UTs, and its inactivation leads 
to the accumulation of UTs as CKD progresses [92]. In 
this study 41 CKD patents were assessed for eGFR by 
MDRD, and Spearman’s rank correlation was calculated 
for UT detected via CE‐MS [91]. Among their finding are 
some UTs that may be used for early detection of CKD 
and correlated well with conventional eGFR measure
ments. Some of these UTs include 1‐methyladenosine, 
N‐acetylglucosamine, gamma‐butyrobetaine, sebacic 
acid, cis‐aconitate, and homovanillate [91]. However an 
admitted drawback of this study was that metabolomics 
data were not adjusted and correlated with age, gender, 
BMI, and lifestyle factors [91]. 

10.4.2 Dimethylarginine

One UT that deserves special attention is asymmetric 
dimethylarginine (ADMA). This amino acid inhibits 
nitric oxide (NO) synthase and in high concentrations 
can cause a signification decrease in NO production. 
Kidney damage and endothelial dysfunction are associ
ated with decreased NO production [93, 94]. Ravani 
et al. [94] in a cohort of 131 patients showed the potential 
for ADMA to be a predictor of morbidity and CKD pro
gression to ESRD. Their findings showed plasma ADMA 
to be inversely related to GFR. A follow‐up study showed 
ADMA to predict morbidity independent of hemo
globin, GFR, and proteinuria [94]. However limitations 
of this study were that it was a single‐center study, with 
limited number of participants and high average age 
(71 years) [94]. Despite these limitations, the study indi
cates the potential of metabolites for predicting CKD 
progression.

Another study including 227 patients aged between 
18 and 65 years old, with nondiabetic CKD showed 
 significant correlations of ADMA with serum creati
nine (r = 0.595), GFR (r = −0.591), parathyroid hormone 

(r = 0.586), hemoglobin (r = 0.336), age (r = 0.281), 
 proteinuria (r = 0.184), and uric acid (r = 0.177; all P 
0.01) [95].

ADMA was also shown to be a useful biomarker in 
diabetic‐related CKD. In two independent studies with 
diverse cohorts (n > 200), results indicate that plasma 
and/or serum levels of AMDA could accurately predict 
CKD progression in patients with either type 1 or 2 
diabetes [96, 97].

10.4.3 p‐Cresol Sulfate (PCS)

p‐Cresol (4‐methylphenol) is a protein‐bound solute 
retained in the body as renal failure ensues [89, 98]. This 
UT derives from bacterial tyrosine fermentation in the 
large intestine and has been shown in vitro and clinically 
to have toxic effects [90, 98]. Additionally, pcresol 
undergoes a detoxification step in the colonic mucosa 
and liver via conjugation with sulfur or glucuronic acid 
derivatives [99, 100].

Most attention at first was given to pcresol alone, as 
most studies used strong acid for sample deproteiniza
tion. However, when deproteinization was done by 
methanol, virtually no p‐cresol was detected in serum of 
dialysis patients. Instead, high concentration of PCS was 
measured [99, 101]. This specific derivative, PCS, is far 
more abundant in the body than p‐cresol glucuronide, or 
even p‐cresol, and is known to be associated with 
increases in microparticle release, an indicator of 
endothelial damage [99, 100]. A previous study also 
showed PCS to increase free radical production in 
leukocytes [102], so when combined with endothelial 
damage [99, 100], it is easy to see the role of PCS in the 
cardiovascular morbidity of ESRD patients.

10.4.4 Indoxyl Sulfate (IS)

Similar to PCS, indoxyl sulfate (IS) also originates from 
protein fermentation in the large intestine. Microbiota 
from the colon metabolizes tryptophan into indole, 
which is then hydroxylated into 3‐hydroxyindole. Further 
sulfonation of the product in the liver yields IS, which is 
similar to PCS in that the majority of the compound is 
bound to albumin [100].

Wu et al. [103] have shown a correlation of both UTs 
with CKD progression and morbidity. In an observa
tional study of 268 patients with different stages of CKD 
and follow‐up of 21 ± 3 months, both IS and PCS were 
shown to correlate with eGFR (r −0.72, P < 0.001) and 
(r  −0.64, P < 0.001), respectively [103]. Of the 268 
patients, 35 (13.1%) had CKD progression (defined as a 
decrease in eGFR > 50%), and 14 (5.2%) died. Univariate 
Cox regression analysis showed that high serum PCS 
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levels were associated with CKD progression and mor
tality; independent of variables such as age, gender, and 
various other health parameters such as serum  creatinine 
and even serum IS levels [103].

It may be challenging for individual metabolites to 
predict CKD progression, but metabolomics could offer 
a set of correlating metabolites that has better predic
tive power than single metabolites alone. The studies on 
PCS and IS indicate the importance of global nontar
geted metabolomics approaches as there are metabolic 
exchanges between the intestine and the kidney, which 
need further investigation.

10.4.5 Gut Microbiota

Evidence of the intestine–kidney relationship has only 
recently materialized. Previous views of the intestine as a 
largely trivial, uninfluential organ limited to its function 
as a digestion and absorption organ are now contested, 
since intestinal microbiota have been linked to numerous 
diseases such as metabolic syndrome, CVD, and CKD. 
It  is possible that the gut microbiota is the common 
denominator for many of these chronic illnesses [104]. 
The intestine is involved in uremia primarily through the 
production of protein‐bound UTs such as IS and PCS. 
Other phenols, indoles, hippurate, and trimethylamine‐
N‐oxide (TMAO) are all generated metabolically from 
precursors through microbial fermentation [104]. 
Hippurate is a metabolite derived from polyphenol 
 fermentation [105], while TMAO is an end product of 
choline metabolism linked to CVD risk [106].

Evidence suggests that the intestinal microbiota– uremia 
relationship is bidirectional. In one direction, dietary food 
intake influences the contribution of substrate to the gut 
microbial metabolism, which can promote the growth of 
bacteria that are specific to the production of UTs [104, 
107]. This can result in a global shift in the gut microbiome 
over time, leading to abnormal UT production. Lastly, this 
can contribute to abnormal bowel motility and ultimately 
absorption impairment. Prolonged colon transit deprives 
microbial species in downstream colonic regions of nutri
ents, causing spatial relocation of microbial species that 
otherwise would not be there or even overgrowth in cer
tain regions [104, 108]. In total, gut microbial health is a 
leading factor in UT accumulation in the body; therefore 
gut microbial metabolomics can give valuable insight to 
early‐stage detection of CKD.

In the other direction, uremia itself can cause spatial 
and metabolic modifications to gut microbiota, with 
pathophysiological ramifications. Firstly, bacterial species 
with metabolism in favor of UT fermentation will begin 
to outnumber others [104, 109]. Secondly, in uremia 
there is a translocation of bacteria in the intestinal tract, 
which can even include migration of certain species into 

the jejunum, as mentioned earlier [104, 108]. Lastly, 
there is evidence of the loss of the intestinal protective 
barrier in cases of uremia. These could lead to a perpetu
ated “leakage” of toxins into the bloodstream and further 
contribute to uremic syndrome [104, 109].

In total, uremia causes a series of intestinal changes—
physically and biochemically—which leads to increased 
inflammation. It is commonly known that inflammation 
is one of the main factors in all types of chronic illness, 
including CKD. In light of this, only few studies have 
been performed on the composition of gut microbiota 
specifically in CKD [110, 111]. Given that inflammation 
in CKD is a multifactorial phenotype [111], global non
targeted metabolomics can offer much insight into the 
condition, as it is affected by the changing gut microbi
ota and its relationship with the CKD patient.

Wikoff et al. [112] showed the importance of the gut 
microbiome in a study of plasma and urine metabo
lomics. Looking at the serum of a germ‐free (GF) mouse 
model with normal kidney function, they were able to 
show differences in hundreds of features using ESI‐
TOF‐MS. Additionally, about 10% of detectable features 
in both wild‐type (WT) and GF mice varied in concen
tration by at least 50% [112]. This study also showed the 
effects of the microbiome on indole‐containing com
pounds, sulfonated metabolites, and other conjugated 
metabolites such as hippurate [112]. There were also 
several glycine conjugates exclusively identified in the 
serum of WT mice, which included cinnamoylglycine, 
a  metabolite that at the time was not listed in any 
database. Also detected was phenylpropionylglycine, a 
metabolite that is most likely a product of the conjuga
tion of glycine and phenylpropionic acid, which is a 
known metabolic product of anaerobic bacteria [112]. 
Building on this principle using metabolomics, Wikoff 
et al. [113] demonstrated through Oat1/SLc22a6 knock
out mice that disruption of this key organic anion trans
porter resulted in the accumulation of many previously 
mentioned UTs that are known to be associated with 
CKD [113].

The gut metabolome in the analysis of CKD plays an 
integral role. A complete systems approach to this topic will 
generate a better understanding of total health of CKD 
patients. As shown in a systems approach study of renal 
failure, Mishima et  al. [114] demonstrated the effects 
that renal failure can have on the gut bacterial popula
tions. An adenine‐induced renal failure (ReF) mouse 
model was used to demonstrate the interactions of the 
intestine, intestinal microbiota, and the kidneys. As kid
neys failed, significant changes were seen in the physical 
and histological properties of fecal weight/number and 
overall intestinal transit in the small intestine and colon 
[114]. Kidney molecular changes also accrued, measured 
via immunohistochemistry and qPCR. As one would 
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expect, increases in fibrosis and inflammation‐related 
gene markers were also observed [114].

Furthermore, changes were observed in gut microbiota 
measured with 454 pyrosequencing techniques of 16S 
rRNA genes. Alterations of gut bacterial populations 
were observed in RT mice, most interestingly in the 
family Lactobacillaceae and genus Prevotella [114]. 
The microbiota genomics data was then interpreted in 
parallel with plasma metabolomics data generated by 
CE‐TOF‐MS. Increases in notable gut UTs were seen, 
including IS, PCS, and hippurate. Also observed were 
increased concentrations of ADMA and cholate [114]. 
Plasma increase of TCA metabolites, namely, citrate, cis‐
aconitate, fumarate, and malate [114], was also detected.

To summarize, the previous three studies mentioned 
demonstrate the utility of metabolomics and illustrate its 
role in a systems approach for understanding chronic 
diseases such as CKD. Although these studies were 
performed in mouse models, they demonstrate the proof 
of concept. This concept is that CKD can be described 
in a multi‐omics systems biology approach and that 
the intestine and gut microbiome may lead to deeper 
understanding of the origins of CKD.

10.4.6 Osmolytes

Among many factors that may contribute to CKD, 
hypertension and hyperosmolarity could reveal new and 
novel metabolomics biomarkers, with treatment options. 
Regular dehydration can cause plasma osmolarity to rise, 
requiring the body to retain water by producing urine 
that is increased in both specific gravity and osmolarity. 
The physiological response to elevated plasma osmo-
larity is the activation of two pathways: vasopressin 
synthesis and the fructokinase pathway [115]. The 
 latter is interesting from a metabolomics perspective. 
Hyperosmolarity increases the activation of aldose reduc-
tase and induces conversion of glucose into sorbitol, 
which is an important osmolyte for protecting kidney 
tissue while in hyperosmotic environments [115]. The 
isomer of the enzyme fructokinase C (KHK‐C) metabo-
lizes fructose rapidly and results in transient depletion of 
intracellular phosphate and ATP. This process leads to 
oxidative stress, inflammation, and uric acid generation. 
KHK‐C is mainly located in the liver and small intestine 
but is also expressed in the proximal tubules, mostly 
concentrated in the S3 segment [115].

What makes sorbitol metabolism even more interesting 
is its properties as a protective osmolyte. The impor-
tance of sorbitol for mammalian renal medullary cells 
has been known for some time now. It was shown using 
a PAP‐HT25 cell line that sorbitol was used primarily as 
an osmolyte when cells were put under osmotic stress. 
When the metabolic production of sorbitol was disrupted, 

cell growth was also inhibited [116]. Sorbitol is one 
of  several organic osmolytes that are produced to 
 protect cells from hyperosmotic conditions. These 
include another carbohydrate (myo‐inositol), amino 
acids  (glycine, taurine), the methylamine, betaine, and 
glycero phosphorylcholine (GPC) [117].

Osmolytes are important in the health of kidneys 
for  several reasons. First, during acute short‐term 
water  loss, cells utilize inorganic ions as metabolically 
“cheap” osmolytes. However, if water stress is long term, 
the cell will turn to organic osmolytes to protect the 
integrity of its proteins and enzymes [117, 118]. These 
osmolytes and their respective pathways could also pro-
vide other avenues to diagnose CKD and determine its 
progression.

The physiological topics discussed previously were 
meant to offer a brief overview of metabolic conditions 
that could relate to CKD while also being measureable by 
metabolomic techniques. It goes without saying that 
other metabolic alternations to the human physiology 
could also contribute to CKD and related renal diseases 
and metabolomics could be a very useful tool in generat-
ing data for their investigation.

10.5  Conclusions

In this chapter we have presented the utility of metab-
olomics studies in relation to CKD. There is great 
potential for biomarker discovery, as well as the devel-
opment of personalized medicine and clinical screen-
ings. There are some drawbacks to metabolomics, 
especially in nontargeted approaches. Firstly, there is 
not one single method for measuring the human metab-
olome in its totality. The development of such a method 
when considering extraction, separation, and the needed 
high‐tech instrumentation to measure all metabolites is 
still a great challenge. Measurement of the total metabo-
lome will probably only be possible via a multi‐sample 
preparation and multi‐platform analysis with post‐analysis 
data fusion into a single comprehensive metabolite 
overview matrix. This requires the development of 
efficient methods for data integration. Various aspects of 
these two drawbacks have already been addressed in 
this review. It should be reiterated that metabolomics is 
the most distal measure of biochemical reactivity in an 
organism. Therefore, diet, lifestyle, and other environ-
mental factors can have profound effect on the metabo-
lome [4, 119], so researchers must always consider this 
issue when designing studies and reviewing data.

There is great utility in an optimized nontargeted 
metabolomics study. A total metabolomics master map 
and its alterations in CKD progression are of obvious use. 
Unlike the previous generation of metabolic research, 
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modern‐day metabolomics has the advantage to measure 
vast numbers of different metabolites simultaneously. 
When integrated to a high‐throughput system, an 
extremely insightful and practical tool will be at the 
disposal of clinicians. In addition to finding therapeutic 
targets and biomarkers, global metabolomics has the 

ability to measure the metabolic response of patients to a 
certain drug or treatment. Thus the new field of pharma
cometabolomics will offer exciting novel perspectives 
in clinical research [54, 75]. As instrumentation and 
techniques improve, metabolomics will have an impor
tant role in diseases such as CKD.
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11.1  Introduction

In the last two decades, advanced laboratory instruments 
were developed to decipher the structure and function of 
genes, proteins, and other constituents of the cellular 
molecular networks and their alterations in diseases. 
All these high‐throughput technologies typically gener
ate high‐dimensional omics datasets with thousands of 
molecular signals by analyzing few samples. The data 
structure requires hence the development of appropriate 
algorithms for efficient analysis. The complexity of 
biomedical problems represents a natural obstacle to the 
generation of new knowledge for diagnosis, prediction, 
and monitoring of the disease from the measured data
sets. To accomplish that goal, the noisy raw data generated 
by different instruments must be filtered and normalized 
across samples to remove batch effects and technical 
variability. This low‐level processing usually generates a 
set of n × m (n ≪ m) data matrices with n being the 
number of samples and m the number of the measured 
biological entities (genes, proteins, metabolites, etc.) 
that can be used for downstream statistical/bioinformat
ical data mining [1, 2]. Usually the data matrix contains 
many features that are irrelevant to the problem under 
study. Thus, it is important to perform feature selection 
and ranking that eventually leads to the construction of 
classification rules. The stability of the selected feature is 
also of great importance in order to allow for unique bio
logical function assignment to the selected features. The 
correlation of the feature set to clinical outcome should 
be assessed as it determines the added value of such a set 
for clinical decision making. For fixed number of samples 
n, using different technologies (next‐generation sequenc
ing (NGS), proteomics, metabolomics), different feature 
sets are generated (e.g., mg genes leading to the n × mg 
gene expression matrix and mp proteins leading to n × mp 
protein expression matrix). The main issue that statistics 

has to solve is to combine the different data matrices in 
order to facilitate knowledge extraction.

We present an overview of general data processing 
steps such as feature selection, sample classification, 
and data integration that may be necessary due to the 
complexity of human diseases. Omics data may be also 
analyzed in the context of molecular networks to detect 
meaningful biological targets and understand disease 
processes or to infer the sequence or the molecular 
structure of biologically relevant molecular entities. 
These important issues are however out of the scope of 
the present chapter.

11.2  From Raw Data to Expression 
Matrices

Genomics data are related mainly to the collection of 
DNA sequences and their transcripts. The information 
about the sequence may be used to derive position‐
specific person‐to‐person variations that are known as 
single nucleotide polymorphism (SNP). This information 
is useful as a genetic biomarker for predicting suscepti
bility to different diseases. More frequently, for diagnosis 
and prognosis of diseases, the relative abundance of 
transcripts representing the level of gene expression in 
cells is compared between healthy and diseased patients. 
Microarray technology was the major tool used to 
monitor genomic and transcriptomic expression levels 
of genes in a given organism. With the development of 
NGS technology, researchers have started to take advan
tage of this new method for gene expression experiments 
as it provides a more detailed analysis of the transcrip
tome. Genomics and trascriptomics data are usually 
signal outputs from electronic and/or optical devices. 
System noise caused by operational variability and probe 
performance variability complicates the interpretation of 
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these data. But usually the manufacturers of the devices 
provide tools and steps to remove the systematic noise 
and enhance the confidence in the instrument output. 
Nevertheless it is advisable to check for batch effects and 
other sources for systematic noise in the data [2–4].

Proteomics and metabolomics data consist of measuring 
absolute or relative abundances of proteins and metab
olites in biological fluids or tissues. The abundances of 
these molecules are measured by mass spectrometry 
(MS) sometimes coupled to chromatographic separation 
to lower the high complexity level of analytes in the 
sample under study. Mass spectrometers record peak 
intensity (abundance) for ionized molecules character
ized by their mass‐to‐charge ratio (m/z). Compared with 
proteins, metabolites are smaller molecules in size and 
mass, and for their analysis nuclear magnetic resonance 
(NMR) spectroscopy is also used. The MS and NMR 
spectra are usually very noisy. To obtain the final features 
and to significantly reduce the feature space, the recali
brated and baseline corrected spectra are further pro
cessed using a peak picking procedure [5, 6]. Therefore a 
peak in a spectrum indicates a local maximum in the 
signal with a specific width related to the local position. 
In addition, criteria such as a signal‐to‐noise (SNR) ratio 
are used to separate small artifacts from a real peak. Peak 
picking, in general, is a complex processing task. Aspects 
such as the resolution of the device and appropriate 
noise estimation are taken into account [5, 7].

Genomics, proteomics, and metabolomics data of 
similar samples are not always similarly quantified. 
An  important issue is data normalization to avoid 
 systematic bias or batch effects on the samples that 
may jeopardize downstream statistical analysis of the 
data. There are actually a plethora of reported false 
 discoveries that may be traced back to incorrect handling 
of raw data and misuse of statistical methods. In Ref. [8], 
for example, an overview about this topic can be found. 
The goal of the normalization step is indeed to adjust for 

the effects that are due to variations in the technologies 
rather than the biology. We refer to the literature for 
further details on this topic [9–16].

11.3  Brief Introduction 
R and Bioconductor

The R framework for statistical computing [17] has 
been well established in the field of bioinformatics and 
features a variety of tools to perform omics data analysis 
[18]. The main online repositories for R packages are 
the Comprehensive R Archive Network (CRAN) and 
Bioconductor [19], which currently contain 7983 and 
1104 packages, respectively. Bioconductor organizes its 
packages in software, annotation, and experimental 
data, whereas CRAN provides a task list that groups the 
packages according to their relevance to a given task 
(e.g., Bayesian inference or meta‐analysis). Both reposi
tories provide a search functionality that allows the 
user to browse these repositories easily. However, it is 
hard to judge which package is the right one for a given 
task just by the package name and short description. 
Table 11.1 summarizes some of the R packages used in 
this chapter.

11.4  Feature Selection

As already mentioned, a typical characteristic of omics 
data is the very high number of simultaneously meas
ured variables. This usually exceeds by many orders of 
magnitude the number of the available samples. The 
difficulty in analyzing high‐dimensional data is due to 
two effects that make it difficult to detect the depend
ence between the response variable and the collection 
of the covariates. Firstly, high‐dimensional spaces have 

Table 11.1 R packages dedicated to different omics tasks such as feature selection, sample 
classification, and data integration.

Name Description Repository

GeneSelector Variable selection Bioconductor
iCluster+ Integrative Clustering Bioconductor
mixOmics Data integration (CCA,PLS,PCA) CRAN
omicade4 MCIA and CIA Bioconductor
PMA Sparse CCA CRAN
pwOmics Pathway‐based data integration of omics data Bioconductor
RGCCA Regularized CCA with variable selection CRAN
Caret Classification and regression training CRAN
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geometrical properties that are counterintuitive “known 
as curse of dimensionality” and significantly different 
from the properties that can be observed in two‐ or 
three‐dimensional spaces. Secondly, traditional statistical 
data analysis tools are most often designed having in 
mind intuitive properties and examples in low‐dimen
sional spaces. To reduce the number of covariates, mainly 
two prominent approaches exist in the data mining lit
erature. One is variable selection, where one guesses that 
among all the available covariates, only a few are truly 
related to the response and all others are redundant and 
have no real explanatory effect. The second approach to 
reduce the number of covariates is the so‐called projec
tive dimension reduction [20]. Here one assumes that 
the response variable relates to only a few linear combi
nations of the many covariates. Thus, it is possible that 
all the covariates contain information, but the informa
tion can be represented by a few linear combinations. 
Prominent examples of this approach are principal com
ponent analysis (PCA) [21] and partial least squares 
(PLS) [22]. PLS, like PCA, search for linear combinations 
of input features that optimize the variance of the data. 
Unlike PCA, PLS achieves this optimization and maxi
mizes the correlation of the transformed features and the 
class variable [23]. In this chapter we limit our discussion 
to variable selection (see Ref. [24] for a review). The 
advantage of this approach is that the feature may well be 
assigned to biological function, whereas in the projective 
approach the derived combination of feature lacks direct 
interpretation. In a typical omics study, a key challenge is 
to detect potentially significant features.

Differentially expressed features across control and case 
groups are distributed among a large set of variables. 
This type of analysis is referred to as multiple hypothesis 
testing. To give an example, let us suppose that we 
perform independent tests using α = 0.05 as the critical 
significance level. The probability for a single test to 
come to a nonsignificant (that is a correct conclusion) 
result is hence 1 − 0.05 = 0.95 (95%). Since n tests are 
independent, the probability that all these n tests to 
correctly reject the n null hypothesis is simply given by 
the product of the single results, that is, 0.95 ⋯ 0.95 = 0.95n. 
The probability of wrongly rejecting at least one of the 
n null hypothesis is given by 1 − 0.95n. Thus, if our experi
ment performs 100 tests on 100 biomarkers, the error 
probability is given by 1 − 0.95100 = 0.99408. In other 
words, we are almost sure that by performing 100 tests 
on 100 features, at least one of the declared significant 
findings will be a false positive. Thus, corrections or 
adjustments have to be made to these values to reduce 
the possibility of spurious results. The multiple hypoth
esis testing problem can be addressed through the 
estimation of the family‐wise error rate (FWER) and 
the false discovery rate (FDR) [25].

Similar to differential expression, the correlation 
between a feature and a clinical outcome reflects the 
level of association between the two variables that might 
be of interest. As in statistical hypothesis testing, such 
an association can be computed using parametric and 
nonparametric techniques. The former assumes that 
the variables can be jointly modeled with a normal distri
bution. The latter does not make this assumption and is 
based on the idea of comparing the value ranks of the 
variables. The correlation with outcome is of particular 
interest for clinical diagnostics as the question there is 
always how the omics signatures add to potentially exist
ing and routinely measured classical clinical parameters 
specific to a disease [26–29].

Another important property of a feature selection 
method is stability that refers to robustness of the 
selected features to perturbations in the data. Stability 
might be more important for knowledge discovery as 
in biomarker discovery than in constructing accurate 
classifiers as several feature subsets may lead to optimal 
classifier. Due to its importance for the biological inter
pretation of the identified features, stability has been the 
focus of extensive research [30, 31].

As an example we used the Bioconductor package 
GeneSelector to analyze urinary peptidomics and 
metabolomics data that were collected from patients 
with early and late chronic kidney disease (CKD) (the 
clinical and demographic data are presented in detail in 
Section 11.6). This package implements several variable 
selection and ranking resampling methods for assessing 
the stability of the features that can discriminate the two 
patient groups. For power issues we use here the full 
dataset (training plus test sets). Peptidomic dataset and 
six different ranking statistics (fold change to Wilcoxon) 
results are shown in Table 11.2.

From the previous table we see that the peptide num
ber 1078 (collagen‐alpha‐1(III) chain) is ranked among 
the top 10 peptides in all selection methods. However its 
position in the top 10 list varies from 1 under the shrink
age method to 6 under the fold change method, similarly 
for the metabolome dataset we have (Table 11.3).

It is obvious that the metabolite number 226 (symmetric 
dimethylarginine) is ranked among the top 10 peptides 
in all selection methods. However its position in the 
top 10 list varies from 1 under the Wilcoxon method to 10 
under the fold change method. The package GeneSelector 
provides several methods for assessing the stability for 
the chosen feature by perturbing the original dataset. 
Bootstrap sampling, jackknife, and label swap are by far 
the mostly used methods. Using 50 bootstrap resamples 
from the original proteomic dataset yielded the following 
results for peptide number 1220. It was ranked on the 
first position in 18 replicates and ranked on the second 
position in 11 (out of 50). The same approach for the 
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metabolomics data determined that metabolite number 
226 was ranked on the first position in 20 replicates and 
ranked on the second position in 6 (out of 50). The stability 
of these features may be a strong indication that they play 
important roles in the development of kidney disease.

11.5  Sample Classification

A major goal of every omics experiment and subsequent 
data analysis pipelines is predicting patient medical 
status or disease evolution. The gathered information 
is formulated as a classifier for supporting medical 
decision making. There are two main types of classifica
tion. In unsupervised classification, the measured omics 
profiles are used for patient categorization without any 
additional information. In contrast to that, in supervised 

classification, sample information such as class member
ship is used to train the classifier for deducing a predic
tion rule. For sample classification using omics data, the 
three frequently occurring tasks have been centered on 
how such data may contribute to class comparison, class 
membership prediction, and class discovery [32, 33].

Classification may be generally formulated as seeking 
for relations between the xij entries of the aforemen
tioned n × m data matrix (this element denotes the 
expression level of the jth analyte (feature) in the ith 
sample) and an outcome yi to deduce the pattern under
lying the data and generalize the obtained information to 
non‐analyzed samples. Often classification implies that 
the outcome is a two‐level factor, that is, yi = 1 for disease 
and yi = 0 for healthy samples. However most of the devel
oped methods can be extended to situations where the 
outcome is a continuous variable (in this context one 

Table 11.2 Top 10 ranking of the 1828 peptides in the proteomic dataset under different feature selection methods.

Rank Fold change ordinaryT Limma FoxDimmicT ShrinkageT Wilcoxon

1 1067 1220 1220 1033 1078 1220
2 1033 1078 1078 1067 1219 1078
3 1217 1221 1221 1218 1031 1221
4 1218 41 41 1217 597 1217
5 1005 1219 1219 1078 1217 1222
6 1078 1067 1067 1005 1067 1827
7 1117 1031 1031 907 1073 1031
8 522 1217 1217 1190 1220 503
9 947 597 597 1117 503 1603

10 360 1003 1003 1149 1190 1602

Each number corresponds to a peptide.

Table 11.3 Top 10 ranking of the 227 metabolites in the metabolites dataset under different feature selection methods.

Rank Fold change ordinaryT Limma FoxDimmicT ShrinkageT Wilcoxon

1 6 2 1 6 85 226
2 7 1 2 7 6 2
3 58 7 7 58 7 1
4 18 85 85 18 226 85
5 34 226 226 34 18 109
6 13 14 14 226 84 84
7 24 6 6 13 58 24
8 193 181 181 193 13 225
9 209 222 222 209 181 219

10 226 183 183 57 165 14

Each number corresponds to a metabolite.
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refers to the relation as regression, e.g., a survival time 
analysis) or a multiclass problem (e.g., disease with k 
stages). Many statistical/machine learning algorithms 
are available for classification, and it is well known that 
a single method cannot be applied universally. Among 
the most prominent algorithms used for omics data 
classification are k‐nearest neighbors (kNN) [34], logis
tic regression [35], nearest shrunken centroid method 
(NSC) [36], k‐top‐scoring pair (kTSP) [37], the linear and 
quadratic discriminant analysis [38] (LDA and QDA) 
(if the classes have diagonal covariance matrices, these 
methods reduce to DLDA and DQDA), classification 
trees, support vector machines (SVM) [39], and neural 
networks (NN) [40]. It has been a common practice to 
apply some of these machine learning methods com
bined with several feature selection algorithms to pub
licly available omics datasets and compare the resulting 
classification performance [25, 41]. Recently, the combi
nation of many simple classifiers using ensemble methods 
is increasingly used in omics and may lead to better 
classification rules [42]. Prominent examples for such 
approaches are the bagging [43], random forests [44], 
and boosting [45–47].

After a classifier has been adopted, the next step is to 
decide which validation strategy will be used to assess 
the classifier’s performance. A straightforward strategy, 
for instance, is to randomly split the samples into two 
disjoint sets called training and validation sets. The 
training data will be used to deduce the association 
between expression levels and the outcome, while the 
validation data will be used to assess the classifier’s gen
eralization ability. If the sample size is not large enough 
to put aside a validation dataset, it is usual to evaluate 
the performance of classifiers based on cross‐validation 
(CV) including leave‐one‐out (LOO) CV as a special 
case, repeated splitting into training and test datasets, or 
bootstrap sampling. Details of CV are well elaborated in 
Refs. [48–50]. When the sample size is too small, using 
CV may however be overoptimistic in assessing classifier 
performance [51–54].

To give an example here we use the proteomics dataset 
and require that a peptide must be present in a least 50% 
of either cases or controls. This results in a reduction of 
the number of peptides from 1828 to 607. We then use 
caret package (short for classification and regression 
training) that contains several functions to streamline 
the variable selection and model training process for 
complex regression and classification problems. There 
are many modeling functions in R with a plethora of 
syntaxes. The caret package however provides a uniform 
interface for the functions of other packages, as well as a 
way to standardize common tasks (such parameter tun
ing and variable importance). For the proteomic dataset 
we used as classifier a recursive feature elimination 

support vector machine (RFFSVM) with a basis radial 
function kernel (RBF‐kernel). As error estimation we use 
a 10‐fold CV with five repeats. The data was split in a test 
set of fixed size (N = 16) and a training set of variable size 
(N = 18, 25, 30). Table 11.4 summarizes the classification 
performance as measured by the area under the curve.

From the table we see that for small sizes of the training 
data (N = 18), the CV estimates are overoptimistic. 
But for training sample size of 33, the CV and test set 
estimates are comparable.

11.6  Real Data Example

To give an example of the statistical analysis of omics 
data, we refer to a recently published proteomics and 
metabolomics study on CKD [55]. The dataset is com
prised of 49 urine samples with metabolites and peptides 
quantified by MS. Using different thresholds for esti
mated glomerular filtration rate (eGFR), the data was 
divided into the “early CKD” group containing patients 
with high eGFRs (59.9 ± 16.5 ml/min/1.73 m2), whereas 
the “advanced CKD” group contained patients with low 
eGFRs (8.9 ± 4.5 ml/min/1.73 m2). Follow‐up information 
about the patient outcome was available. For testing 
different hypothesis about the data such as whether the 
combination of the proteomic and metabolic profile pro
vide better correlation with the kidney function,  different 
CKD classifier scores were generated and  correlated with 
eGFR at baseline and follow‐up eGFR to assess the pre
diction of the progression of the renal function. Table 11.5 
summarizes the study design and patient characteristics.

11.7  Multi‐Platform Data Integration

Data integration plays a crucial role in deciphering 
the function of biological systems. The analysis of high‐
throughput data can yield more information when per
formed on a global rather than on an individual scale. 
Several reviews on statistical methods in data integration 
of omics data are available [55–60]. The aforementioned 
list is far from being exhaustive, since this is an active 
field of research. For reviews on data integration in plant 
biology and CKD, the reader should refer to Refs. [56] 

Table 11.4 Classifier performance as a function of training set size.

N = size of train data AUC_cross‐validation AUC_test_set

18 0.903 0.768
25 0.875 0.817
33 0.836 0.828
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and [57], respectively. Recently applications of genomic 
and proteomic data fusion strategies have been reported 
in Ref. [58]. In Ref. [59] the fusion of proteomic and 
metabolomics profiles was investigated.

According to Ritchie et al. [60], data integration methods 
can be divided into multistage and meta‐dimensional 
analysis. In the case of the former, analysis is performed 
on a stepwise manner. However, in the case of the latter, 
inference is conducted across all omics data simultane
ously. In this chapter, we will focus on meta‐dimensional 
analysis methods. However, we will also provide a sum
mary of the multistage methods.

Multistage analysis can be divided into two subcatego
ries: the genomic variation and the domain knowledge‐
guided approaches. A characteristic example of the first 
is the triangle principle [61]. SNP data whose correlation 
is statistically significant with respect to the phenotype 
are used as the basis of the analysis. In turn, the correla
tion of the SNPS as defined in the previous step with 
other omics data is tested. Finally, the association of a 
subset of the omics data (only the statistically significant 
are used) with the phenotype was tested. Methods 
belonging to this category are eQTL and mQTL methods 
(QTL stands for quantitative trait locus).

Domain knowledge‐guided approaches refer to path
way and biological network‐based integration. To this 
end, different methods use information provided by 
databases like KEGG, Reactome, and BioCarta. Examples 
that fall in this category are Ingenuity Pathway Analysis, 
Cytoscape [62], IMPaLA [63], pwOmics [64], PaintOmics 
[65], and ENViz [66].

Meta‐dimensional integration can be performed at an 
early (concatenation based), intermediate, and late stage 
(model based). A schematic representation of this distinc
tion can be seen in Figure 11.1. Details on these methods 
will be given in the following subsections.

11.7.1 Early‐Stage Integration

Early‐stage integration, using concatenation‐based methods, 
is performed by merging the different omics data into a 
single matrix. Since high‐throughput data are measured 
on different scales, a major challenge posed is data trans
formation. As one would expect, this could lead to loss of 
information. Hence, the resulting model would not fully 
capture the dynamics of the data. Methods belonging 
in this class are SVM and regularization methods like 
LASSO. Examples of these methods provide specific 
information [67, 68].

11.7.2 Late‐Stage Integration

In late‐stage integration, or model‐based integration, 
each omics dataset is modeled individually. Inference is 
conducted by weighting the fitted values from each 
model. Naïve Bayes, random forests, and in general 
ensemble classifiers are popular methods used for this 

Different omics data
(transcriptomics, CNV,

proteomics, metabolomics, etc.)

Early-stage
integration

Intermediate-stage
integration

Late-stage
integration

Figure 11.1 Different methods for data integration.

Table 11.5 Demographic and clinical data.

Training set

“Early CKD” “Advanced CKD” p‐values Test set

n 10 10 29
Age (years) 65.9 ± 10.9 70.7 ± 9.8 0.2767 73.3 ± 9.0
Gender (M/F) 7/3 7/3 17/12
Baseline eGFR (ml/min/1.73 m2) 59.9 ± 16.5 8.9 ± 4.5 <0.0001 29.5 ± 15.6
Follow‐up eGFR (ml/min/1.73 m2) 61.2 ± 26.2 8.7 ± 3.1 0.0025 28.1 ± 14.5
BMI (kg/m2) 31.5 ± 5.9 29 ± 4.7 0.3085 29.7 ± 6.7
Serum creatinine (µmol/l) 110.7 ± 27.1 473.7 ± 162.2 <0.0001 232.4 ± 136.7
Serum albumin (g/l) 41.6 ± 2.4 35.5 ± 3.7 0.0004 38.5 ± 3.1
CRP (mg/l) 3.4 ± 3.0 4.9 ± 4.4 0.3848 4.4 ± 3.9
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integration method. Moreover, PLS where the response 
variables are dummy variables offer an alternative and 
belong to model‐based integration methods [69]. A para
graph dedicated on PLS will be given later on this section 
[60]. However it is recommended that this class of methods 
should be used only in the occasion that early‐ and inter
mediate‐stage integration is not possible.

11.7.3 Intermediate‐Stage Integration

In intermediate‐stage integration, a joint model is con
structed in order to account for all the different omics 
data. In this category, a rough distinction could be made 
in matrix factorization/kernel transformation (transfor
mation‐based integration), unsupervised methods, and 
network‐based integration. In this review, we will be 
covering the first two categories. Readers interested in 
network‐based integration are referred to Refs. [70, 71] 
and references therein.

11.7.4 Intermediate‐Stage Integration: 
Matrix Factorization

Matrix factorization is defined as the decomposition of a 
matrix to a product of lower rank matrices. This is done 
for computational purposes in order to identify struc
tural data features that were not initially apparent. A way 
of solving this problem is via factor models. Probably, the 
most popular methods in this framework are iCluster 
[72] and iCluster+ [73]. iCluster is a clustering algorithm 
that combines the idea of dimension reduction via PCA 
and latent factor models. The purpose of this method is 
to perform integrative clustering of omics data measured 
on the same samples and on a continuous scale while 
at the same time performing dimension reduction. 
An extension of the method is iCluster+ [73], which per
forms integrative clustering of mixed data type datasets 
(continuous and discrete).

Zhao et  al. [74] reviewed different regularization 
techniques used in the integrative genomics framework. 
Data integration techniques require the use of penalties 
to deal with “the large number of variables, small sample 
size” problem. Without the use of such penalties, matrix 
manipulation would be an impossible task.

Canonical correlation analysis (CCA) is an explora
tory statistical method that allows the analysis of the 
correlations that exist between two or more sets of 
variables. In the case of two datasets, let X be n × p 
matrix and Y be a n × q matrix where n << p and n << q. 
Due to the high dimensionality of the problem, matrix 
inversion is not feasible. Tenenhaus et  al. extend the 
idea of the regularized generalized canonical correla
tion analysis (RRCCA) [75, 76] to account for variable 
selection when there are more than three omics datasets 

measured on the same samples. RGCCA is the respec
tive R package for this method.

Another method with a scope similar to CCA is  
co‐inertia analysis (CIA). CIA aims in identifying trends 
and co‐relationships in two different datasets. Initially, it 
was developed for the analysis of ecological data. In the 
genomics setting, it was introduced by Culhane et al. [77] 
and extended by Meng et al. [78] to account for multiple 
datasets (MCIA). While in CCA one needs to apply 
some sort of regularization when dealing with high‐
dimensional data, this is not the case for CIA and MCIA. 
omicade4 is the dedicated R package.

A widely used method in the field of data integration is 
PLS. As in the case of the two previous methods, PLS is 
an explorative method that aims to maximize the covari
ance between two or more datasets measured on the 
same samples. One of the drawbacks of PLS is that it fails 
to capture the relationships between different datasets 
under the presence of systematic variation. To tackle this 
problem, a two‐way orthogonal PLS model was intro
duced by Trygg et al. [79].

11.7.5 Intermediate‐Stage Integration: 
Unsupervised Methods

In the previous paragraphs, transformation‐based integra
tion methods were presented. Some of the methods also 
belong to the family of unsupervised methods. iCluster 
[72] and iCluster+ [73] are some examples. However, 
these models employ dimension reduction techniques. 
For instance, iCluster [72] combines the idea of PCA and 
latent variable models.

11.8  Discussion and Further Challenges

Extracting useful information from the nowadays 
available biological data is a challenging task that aims 
as deciphering the biological functions of a system at the 
molecular level and should open the perspective for 
applying high‐throughput bioanalytical methods for 
diagnostic and prognostic tasks in the so‐called person
alized medicine approach. Machine learning and data 
mining extends traditional statistical techniques to handle 
problems with much higher dimensionality.

Feature selection is a key step in data mining. Choosing 
the important features (genes, proteins, metabolites) is 
essential for the discovery of important disease‐related 
biomarkers. Although feature selection methods can 
help in choosing from large numbers of features the ones 
related to the condition studied, the results generated 
tend to be unstable and thus cannot be reproduced in 
other experiments. This has triggered the search for 
methods that measure the stability of feature ranking 
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aiming at enhancing the reproducibility of the findings. 
Despite being interesting for its own, for example, for 
biological function discovery, feature selection methods 
are usually combined or are part of classification pro
cures that should enable to characterize a subject based 
on a personalized signature aiming to increase our 
understanding of disease genesis and progression and, in 
final consequence, to improve diagnosis and treatment 
options. Different classification procedures have been 
designed, and several CV methods have been developed 
for accessing their performance. In the clinical setup 
however, an external validation independent dataset 
might be mandatory.

Until recent times, different omics profiling technolo
gies were used as single sources for knowledge discovery. 
There is however increasing need in the emerging field 
of joint analysis of omics data from genomics, transcrip
tomics, proteomics, and metabolomics in order to better 
explain biological interactions at the systems level to 
extract associations and causalities between different 
omics levels, for example, how gene modulation and 
activity is related to protein expression.

For clinical applications of omics datasets, the tradi
tional approaches to medical statistics must be adopted 
and expanded to accommodate the high‐dimensional 
data. New questions arise about study designs with 

surrogate biomarkers, such as the required sample sizes 
[80], the additional predictive power of the omics 
 signatures [26, 28, 29, 81], and the prediction of patient 
survival and time to event using high‐dimensional omics 
data [82, 83].

As a prospective it is now well accepted that the 
challenges posed by analysis of the high‐dimensional 
omics data will continue to catalyze the development and 
modification of algorithms from statistics, machine learn
ing, and information theory to improve, for example, the 
fundamental bioinformatics problems such as sequence 
alignment [84–86]. Another important issue is the emerg
ing network biology [87] that attempts to use the different 
omics datasets from several sources into a biologically 
meaningful framework suitable for joint analysis using 
established methods network analysis methods [88–90].

An open problem that many omics dataset suffers 
from is the high percentage of missing values that may 
originate due to technical or biological conditions [91, 92]. 
This issue must be always taken into account as  statistical 
methods such as CCA, PLS, PCA, PLS‐DA, and PCA‐
DA are very sensitive to missing data to the extent that 
may render the downstream analysis results unreliable. 
Machine learning algorithms such as the SVM tend to 
learn the pattern of missing entries in the data and are 
somehow more robust to this issue [93].
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12.1  Overview: Importance 
of Study Design and Methodology

One of the strategic objectives of ‐omics research is to 
identify biomarkers relating to the diagnosis of diseases, 
risk of health conditions, and/or prediction of adverse 
health outcomes. Such biomarkers may be pivotal in 
identifying the risk for manifesting disease (diagnostic 
biomarkers), predicting disease progression (prognostic 
biomarkers), and/or predicting response to clinical 
management and therapy (predictive biomarkers) [1]. 
As a result, it is envisioned that biomarkers may poten
tially be applied routinely both in primary and secondary 
disease prevention strategies and in clinical practice.

During the recent decade disproportionate efforts 
have been devoted to developing ‐omics analytical tools 
as opposed to clinically oriented biomarker discovery or, 
even more so, clinical applications [2]. Albeit limited, 
assessments of several biomarkers, particularly in rela
tion to noncommunicable chronic diseases, have been 
undertaken in population‐based studies [3]. However, 
several initial promising findings arising from analytical 
‐omics research have been subsequently deemed unreli
able, not reproducible, and/or biased [4–6]. This has 
rendered considerable skepticism, among both investi
gators and clinicians alike, as to whether the “‐omics” 
revolution is able to achieve its true potential [7]. 
Recently, basic and clinical researchers agree that for 
‐omics investigations to achieve its aspired potential, 
including the implementation of personalized medicine 
in routine clinical practice, fundamental aspects relating 
to the study design and statistical analyses in clinical 
‐omics investigations must be dully addressed [1, 8, 9].

Issues regarding the epidemiological and statistical 
methods in the design and analysis of clinical ‐omics 
studies should be detailed for biomarkers evaluated for 

either identifying the presence or predicting the progression 
of chronic noncommunicable diseases. Moreover, the 
evaluation methods of biomarkers, as assessment indica
tors, for identifying health conditions will be addressed. 
It is aspired that by identifying the key issues that remain 
to be elucidated in this field, the interdisciplinary commu
nication between basic researchers, clinical epidemiologists, 
and clinicians will be facilitated. Thus, future directions, 
including the development of new methodologies, may be 
implemented to further enhance the efficiency and find
ings of clinical ‐omics research [6].

12.2  Principles of Hypothesis Testing

12.2.1 Definition of Research Hypotheses 
and Clinical Questions

A primary issue that must be addressed prior to the 
initiation of clinical ‐omics investigations is the elucidation 
of clearly defined research hypotheses and clinical queries 
to be evaluated [10, 11]. Clinical queries may relate to 
screening healthy individuals or patients for the primary 
or secondary prevention of disease, respectively [2]. In 
particular, a clear description of the clinical query to be 
addressed, including definitions of the patient groups, 
comparison groups, exposures, and clinical outcomes of 
interest, as well as their clinical pertinence, must be stated 
[1]. It is advocated that once all aforementioned compo
nents of a comprehensive research hypothesis have been 
defined, the selection of the appropriate study design is 
simplified. Specifically, research hypotheses relating to 
the prognostic value of biomarkers require the adoption 
of longitudinal cohort studies [12], while those relating to 
the diagnostic value of markers may be additionally 
assessed through case–control or cross‐sectional studies, 
albeit with notable methodological challenges [6].
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However, particularly in analytical ‐omics research, 
broad unspecific hypotheses are often expressed so as 
to allow for flexibility in assessing serial biomarkers 
of  specific protein pathways [10]. Moreover, high‐
throughput analyses usually follow a mode of serial 
hypothesis generation [6]. The implications of deriving 
multiple models, overfitting of data, and consequent 
implications on findings are detailed in following sec
tions. In order to avoid such pitfalls and their effects 
on reproducibility and reliability of findings, it is 
 recommended that a single hypothesis is predefined 
and accordingly evaluated in clinical ‐omics research. 
Based on the research question to be addressed, the 
hypothesis should be clearly defined based on the 
PECO (patient group–exposure (biomarker) under 
assessment–comparison group–outcome) or PICO 
(patient group–intervention–comparison group–out
come) principles. To this effect, the hypothesis tested 
is most proximally correlated to the type of biomarker 
which will be assessed.

12.2.2 Hypothesis Testing in Relation 
to Types of Biomarkers Under Assessment

The three most common types of biomarkers evaluated 
include (i) diagnostic biomarkers, (ii) prognostic bio
markers, and (iii) predictive biomarkers. In particular, 
diagnostic biomarkers aim to identify patients with 
disease, regardless of health outcomes [13]. For example, 
Metzger et al. [14] utilized CE‐MS platforms to validate 
a biomarker pattern, consisting of 20 urinary polypep
tides, which detected acute kidney injury up to 5 days 
earlier than serum creatinine. Particularly in noncom
municable chronic diseases, detection of disease may be 
targeted either among incident (i.e., newly diagnosed) or 
recurrent disease (i.e., prevalent cases). For example, 
Jahn et  al. [15] utilized CE‐MS platforms to identify a 
biomarker signature (consisting of proSAAS, apolipo
protein J, neurosecretory protein VGF, phospholemman, 
and chromogranin A) in cerebrospinal fluid for detecting 
incident Alzheimer’s disease.

Prognostic biomarkers aim to identify patients with 
differing risks of a specific health outcome, such as dis
ease recurrence, progression, and/or death. Hence, prog
nostic biomarkers constitute a baseline patient 
characteristic, independent of therapy or treatment, 
which can be applied to categorize patients according to 
their risk of a predefined health outcome. For example, 
Liu et  al. [16] utilized 2D‐MS technology to identify a 
novel biomarker, annexin A3, which predicts lymph 
node metastasis in lung cancer adenocarcinoma patients. 
Similarly, Ottervald et  al. [17] identified a biomarker 
panel, consisting of 10 proteins, in cerebrospinal fluid 
that predicted relapse/remission in 70% of multiple 

sclerosis patients. Hence, prognostic biomarkers can be 
applied to estimate the likelihood of a health outcome, 
but cannot guide clinicians’ choice of a particular treat
ment scheme [13].

Finally, predictive biomarkers aim to predict the 
 differential outcome of a particular therapy or treat
ment. Hence, predictive biomarkers constitute a baseline 
patient characteristic that categorizes patients by their 
degree of response to a particular treatment. For exam
ple, Melmer et al. [18] employed proteomics approaches 
to identify the plasma protein afamin, which was asso
ciated with therapeutic response and survival following 
platinum‐based chemotherapy in advanced ovarian can
cer patients. Thus, predictive biomarkers are used to 
guide the optimal choice of treatment in patient popula
tions [19].

12.3  Selection of Appropriate 
Epidemiological Study Design 
for Hypothesis Testing

The selection of an appropriate epidemiological study 
design to evaluate a research hypothesis is of quintes
sential importance [10]. Several long‐standing clinical 
epidemiological study designs for the optimal assess
ment of putative biomarkers of chronic noncommuni
cable diseases have been documented (see Figure 12.1), 
while further specifications and guidance notes for 
clinical ‐omics applications have been proposed in 
recent years [20]. Appropriate applications of study 
design can render the evidence necessary to address a 
research hypothesis while concomitantly diminishing 
systematic bias and consequently augmenting the qual
ity of research findings [10]. It is noteworthy that the 
selection of unsuitable study designs may potentially 
introduce sources of bias, which seldom can be cor
rected post hoc by statistical approaches [21]. Hence, 
the methodological study design (including the strategy 
for comparison, selection of subjects and outcomes of 
interest, and foresight for potential sources of con
founding and bias) [22] is pivotal in securing the quality 
and reliability of study findings [6].

As aforementioned, a well‐defined research hypoth
esis will for all practical purposes delineate the appro
priate study design to be adopted. Epidemiological 
studies follow a hierarchy of design based on the level of 
evidence to be accumulated (see Figure 12.2). However, 
it is of note that, particularly in relation to biomarker 
research, the sequential application of study designs 
(i.e., hierarchical establishment of the level of evidence) 
is not necessarily linear [23], but rather in accordance 
with the clinical query to be addressed.
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12.4  Types of Epidemiological 
Study Designs

12.4.1 Observational Studies

12.4.1.1 Cross‐Sectional Studies
Cross‐sectional studies are most often preferred for 
evaluating diagnostic biomarkers in discovery and test 
sets. Cross‐sectional studies evaluate the applicability of 
biomarkers in either a single or sequential time frame. 
The presence of disease according to clinical and/or 
laboratory criteria, the presence of diagnostic biomarker 
in patient samples, and the mediating effects of confound
ing factors are assessed concomitantly (see Figure 12.3). 
As a result, though, the temporal association between 
factors under investigation cannot be confirmed. 
Therefore, initial findings arising from cross‐sectional 

studies often require to be validated in robust longitudi
nal study designs, such as prospective cohort studies. 
Even so, cross‐sectional studies may render insights 
regarding the occurrence of putative diagnostic bio
markers in a patient population while circumventing 
potential confounding effects of disease progression 
upon biomarker values [24]. In particular, cross‐ 
sectional studies are typically conducted in the general 
population and/or outpatient settings, particularly for 
prevalent diseases.

The attributes of cross‐sectional studies include that 
they can be readily performed in the general population 
or outpatient settings, as well as that they are rapid, 
easy to implement, and financially sound. This method
ology also enables the assessment of multiple biomark
ers and/or various disease stages concomitantly. Hence, 
cross‐sectional studies are particularly preferred in the 
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Figure 12.1 Types of epidemiological studies utilized in ‐omics research. The types of analytical epidemiological studies most frequently 
applied in ‐omics research are presented. Observational studies are most commonly used for the discovery and validation of diagnostic 
and prognostic biomarkers, while experimental studies are most frequently employed for evaluating the utility of predictive biomarkers.
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Figure 12.2 Hierarchy of research design. The hierarchy of observational and interventional epidemiological study designs, in relation to 
the type of biomarker (BM) under evaluation, is displayed. Optimal study designs for the evaluation of diagnostic, prognostic, and 
predictive biomarkers (BM) are annotated.
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discovery phase of diagnostic biomarkers. However, 
the utility of cross‐sectional studies is limited, due to 
statistical power, when assessing rare diseases. More
over, cross‐sectional studies are particularly susceptible 
to confounding effects, potentially inadvertently lead
ing to erroneous conclusions, also known as ecological 
fallacies. Therefore, initial findings regarding the utility 
of diagnostic biomarkers should be further validated in 
longitudinal investigations.

12.4.1.2 Case‐Control Studies
Previous reviews have made suggestions on improving 
epidemiological design and translational potential of 
clinical ‐omics investigations [2, 25]. However, several 
ongoing studies still adopt cross‐sectional designs, 
although they have inherent methodological challenges 
in establishing biomarker–disease associations [26], as 
previously detailed. Consequently, (nested) case–control 
studies are increasingly applied instead.

Case–control studies are often applied for the discov-
ery and/or test set of prognostic biomarkers. These 
are characterized by the retrospective assessment of 
biomarkers, which predict the likelihood of health 
outcomes. Hence, they require the prior collection of 
prediagnostic samples. Within this context, biobank 
samples are most often used.

Case–control study populations are selected based on 
the presence or absence of the disease of interest, accord
ing to international disease classification systems (see 
Figure 12.3). The requirements for a proper study design 
including targeted context of use, selection of well‐char
acterized cohorts, appropriate statistical analysis, and 
application of standardized protocols for sample collec
tions have been highlighted [27]. Appropriate controls 
are most often selected based on the intended clinical 
context of use, following frequency or individual match
ing for potential confounding factors. It is noteworthy 

that particularly for the assessment of potential markers 
for secondary prevention of diseases, healthy controls do 
not constitute an appropriate comparison group [1]. 
Even so, hospital‐based participants may be subjected to 
other extraneous factors (i.e., concomitant therapies, 
adjuvant tests and treatments, etc.), which may affect 
blood protein composition, and consequently biomarker 
assay values [6]. In every event, though, random selec
tion of both cases and controls is preferable. Standardized 
clinical conditions and outcomes should be evaluated 
with documented criteria, and potential misclassifica
tions should be avoided. For the analysis, matched cases 
and control patient groups are compared based on predi
agnostic biomarker positivity.

The strengths of case–control studies include that they 
are efficient and cost‐effective for evaluating prognostic 
biomarkers in discovery and/or test phases, particularly 
when examining rare diseases. Since study sample 
recruitment is conducted based on patient accrual, case–
control studies are an excellent option for assessing 
 prognostic biomarkers for outcomes of rare diseases, 
 particularly in tertiary healthcare settings. Finally, the 
design of case–control studies allows for the concomitant 
testing of multiple biomarkers and thus is efficient for 
biomarker discovery. However, appropriate controls are 
often difficult to define, as they are based on the intended 
clinical context of biomarker use [28]. For  example, in 
evaluating the diagnostic performance of a biomarker for 
detecting recurrent urinary bladder  cancer, it is more 
appropriate to utilize urinary  bladder   cancer patients 
without recurrence, as opposed to healthy controls [29]. 
Additionally, case–control studies rely on previously 
 collected biological samples, most often being either 
 prediagnostic or biobank samples, which, though, often 
have not been systematically collected for the purposes 
of  ‐omics studies. In practice, several limitations arise 
from  the necessary use of such samples. First, use of 
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Figure 12.3 Temporal association between collecting sample and clinical information in relation to assessing the presence of disease 
and/or patient outcomes of interest, according to type of epidemiological study design applied.
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 prediagnostic samples often predicates the induction of a 
population bias, limiting the generalizability and external 
validity of study findings. Second, the potential utility 
of  prediagnostic samples depends on the quality of 
 medical and/or hospital records for assessing potential 
confounding and/or mediating treatment effects. Finally, 
biobank samples are often not readily available to the 
 scientific community. Moreover, the potential utility of 
such samples is often impeded by insufficient clinical 
information for assessing confounding effects. In 
light  of  these limitations of utilizing biobank samples, 
suggestions for improvement have been documented, 
including the development of suitable multidisciplinary 
panels for evaluating promising evidence arising from 
initial biomarker discovery and validation investiga
tions, as well as consequent recommended procedures 
for  requesting samples from biobanks to be utilized in 
further investigations [24, 30].

12.4.1.3 Cohort Studies
The predictive value of putative prognostic biomarkers 
is most appropriately assessed in prospective cohort 
studies. The assessment of robust randomly selected 
population samples is preferable to that of convenience 
samples, all other factors being held as equal [6, 24]. 
Hard endpoints of disease (i.e., patient‐oriented out
comes, including disease recurrence, progression, or 
death), rather than surrogate outcomes, should be 
adopted [1, 2, 24]. Sufficient information regarding 
demographic and clinical characteristics of study par
ticipants should be documented [1]. Particular attention 
must be devoted to the evaluation of potential con
founding effects of factors, which may influence either 
the associations assessed or determination of protein 
signaling per se, since such effects may introduce nota
ble bias and render erroneous interpretations of find
ings [21]. However, cohort studies require a notable 
magnitude of human and financial resources, as well as 
time allotment. The necessity for the allocation of such 
resources may be minimized through the utilization of 
retrospective cohort studies, that is, facilitation through 
the proteome analyses of already collected biobank 
samples [25]. However, this option is often deferred 
due to practical limitations in the retrieval of ade
quately numbered and appropriately stored samples, as 
well as suboptimal documentation of clinical character
istics and potential confounding factors [11]. Particularly 
in the case of prognostic biomarkers for bladder cancer, 
while proteomic studies have revealed multiple candi
date biomarkers, extensive validation of findings in large 
cohorts is generally missing [31].

The implementation of a prospective cohort study 
requires the assimilation of either (i) a healthy cohort, 
wherein biomarker sampling is conducted prior to the 

occurrence of disease and follow‐up is conducted to 
detect the occurrence of adverse health outcomes 
(i.e., disease recurrence, progression, or death), or (ii) a 
patient (inception) cohort, wherein biomarker sam
pling is conducted either at diagnosis or early disease 
stages and follow‐up is conducted to detect the disease 
outcomes of interest. As aforementioned, cohort studies 
may also be retrospective in nature, utilizing previously 
collected samples (i.e., biobank samples) in inception 
cohorts (see Figure 12.3).

Whether prospective or retrospective in nature, cohort 
studies hold several attributes, justifying their high rank
ing in the hierarchy of epidemiological study designs. 
First, they are highly appropriate for the validation of 
prognostic biomarkers. Moreover, particularly prospec
tive cohort studies allow for study investigators to define 
the methods of assessment of confounding factors. 
Finally, multiple disease and patient‐oriented outcomes 
can be assessed in a single study population. However, 
cohort studies require extensive time as well as financial 
and human resources to be implemented. This limitation 
is particularly evident when assessing biomarkers in 
relation to rare diseases and/or chronic diseases with 
lengthy disease latency periods. In addition, suboptimal 
patient follow‐up (i.e., <80% complete follow‐up) severely 
hinders the quality of the cohort study and validity of 
findings.

12.4.1.4 Health Economics Assessment
Particularly in settings inflicted by financial crises and 
related healthcare‐associated austerity measures [32], 
long‐term adoption of biomarkers in clinical practice 
requires the prior evaluation of their cost‐effective
ness in healthcare settings [24, 33]. Such analyses 
should account not only for diverse sources of costs 
associated with hospitalizations but also for patient 
outcomes and adverse events [2, 11]. While certain 
‐omics platforms have progressed remarkably through 
this pipeline, and consequently achieved widespread 
adoption in clinical practice (i.e., next‐generation 
sequencing utilized for prenatal screening), such eval
uations are limited in more recently developed ‐omics 
platforms, namely, that of proteomics, primarily as a 
result of not having yet accomplished such research 
progress to date [34].

12.5  Selection of Appropriate Statistical 
Analyses for Hypothesis Testing

Appropriate statistical analyses serve as an integral com
ponent of quality assurance of clinical ‐omics studies 
[10]. During recent years, a multitude of approaches 
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have been used in developing appropriate bioinformat
ics tools and data analysis procedures for analyzing 
basic proteomics research data [35, 36]. The appropriate 
use of statistical tests diminishes the possibility of the 
inadvertently false interpretations of the processes 
investigated [35].

The primary adversity to be addressed in clinical 
‐omics research is limited sample size and consequent 
non‐normally distributed variables. To this effect, test
ing the normality of distribution of variables is recom
mended by means of either the Shapiro–Wilk test or 
the Kolmogorov–Smirnov test [35]. Alternatively, log 
transformation of variable values may be applied prior 
to testing the normality of distribution [37]. For nor
mally distributed variables, Student’s t‐test or two‐way 
ANOVA (or repeated measures ANOVA, depending 
on the study design) may be adopted to compare 
 continuous variables between two groups. In the 
event of non‐normal distributions, the nonparametric 
Wilcoxon–Mann–Whitney test provides a robust 
method for comparing two population groups instead 
[10, 35]. In pending subgroup sample sizes, categorical 
variables may be compared with either the chi‐squared 
or Fisher exact tests.

A second adversity is that multiple hypothesis testing 
is often employed in ‐omics research [37]. Consequently, 
multiple testing correction methods, including 
Bonferroni correction and false discovery rate (FDR), 
should be dully applied to diminish the overall type I 
error rate and false positive findings [10]. In the former 
correction method, the unadjusted p‐values are multi
plied (i.e., corrected) by the total number of tests 
 performed. Alternatively, the FDR, which is a less con
servative correction method, can be used instead.

It is of paramount importance to clarify that the 
probability of both false negative findings is most likely 
to occur among underpowered studies [1]. Hence, power 
calculations must be conducted to determine the 
required study population size, wherein the significance 
level is adjusted accordingly to the number of proteins 
tested [37]. The selection of sample size should be justi
fied on the basis of recommended calculations of statis
tical power [1, 10]. It is of note that due to the importance 
of information related to outliers and variability, pooling 
of samples so as to enhance statistical power is not 
recommended [1].

Finally, clinical ‐omics applications are high‐dimensional 
marker assays, thus challenging traditional methods of 
statistical analyses [25]. They are commonly identified 
as “high p, small n” studies (i.e., high number of varia
bles in relation to the number of clinical samples) [8]. 
As a result, appropriate statistical methods are neces
sary [37]. Univariate and multivariate approaches are 

often adopted, as they may be proximally applied in 
classical epidemiological designs. Depending on both 
the study design and nature of the variables of interest, 
linear or logistic regression models may be applied for 
assessing the association with continuous or binary 
outcome variables of interest, respectively. Specifically, 
quantitative biomarkers are assessed with linear regres
sion models, while qualitative biomarkers are evaluated 
using logistic regression models. Time‐dependent out
comes may be assessed with Cox regression models and 
Kaplan–Meier curves [8]. The aforementioned meth
ods allow for the adjustment of potential covariates, 
which is essential for interpreting plausible associa
tions [28].

Alternatively, the high dimensionality of ‐omics data 
may be reduced by principal component analysis (PCA). 
PCA renders several benefits since it can accommodate 
for continuous and categorical variables and can be 
applied in settings where the number of variables may 
exceed the number of observations (i.e., “high p, small n” 
settings). However, the primary limitation of PCA is that 
it assumes that the relevant models are representative of 
the diversity inherent in the dataset. Even so, it is increas
ingly adopted as the mean for analyzing clinical ‐omics 
data [8].

Finally, the added value of biomarkers must be estab
lished in order to facilitate their uptake in clinical prac
tice [2]. Hence, predictive scores, including demographic 
characteristics, clinical variables, and the biomarker of 
interest, could be applied in order to evaluate the net 
sensitivity and specificity of such models. Thus, such an 
approach would provide the evidence of at least incre
mental superiority of biomarkers under assessment in 
comparison with current medical practices [24].

12.6  Summary

For ‐omics investigations to achieve their aspired poten
tial, fundamental aspects relating to the study design 
and statistical analyses in clinical ‐omics investigations 
must be dully addressed. The most appropriate epide
miological study designs for assessing diagnostic and 
prognostic biomarkers include cross‐sectional, case–
control, and cohort studies. Modes of their optimal 
implementation, as well as potential pitfalls, have been 
detailed. Statistical approaches for evaluating biomarker 
utility depend primarily on the research hypothesis 
tested, type of study design applied, and quantitative 
and/or qualitative nature of the biomarker under assess
ment. It is foreseen that application of the aforemen
tioned principles will enhance the clinical utility of 
‐omics research investigations.



Epidemiological Applications in ‐Omics Approaches 213

 References

 1 Mischak, H., Allmaier, G., Apweiler, R., Attwood, T., 
Baumann, M., Benigni, A., Bennett, S. E., Bischoff, R., 
Bongcam‐Rudloff, E., Capasso, G., Coon, J. J., D’Haese, P., 
Dominiczak, A. F., Dakna, M., Dihazi, H., Ehrich, J. H., 
Fernandez‐Llama, P., Fliser, D., Frokiaer, J., Garin, J., 
Girolami, M., Hancock, W. S., Haubitz, M., Hochstrasser, 
D., Holman, R. R., Ioannidis, J. P., Jankowski, J., Julian, B. 
A., Klein, J. B., Kolch, W., Luider, T., Massy, Z., Mattes, W. 
B., Molina, F., Monsarrat, B., Novak, J., Peter, K., Rossing, 
P., Sanchez‐Carbayo, M., Schanstra, J. P., Semmes, O. J., 
Spasovski, G., Theodorescu, D., Thongboonkerd, V., 
Vanholder, R., Veenstra, T. D., Weissinger, E., Yamamoto, 
T. & Vlahou, A. 2010. Recommendations for biomarker 
identification and qualification in clinical proteomics. Sci 
Transl Med, 2, 46 ps42.

 2 Ioannidis, J. P. 2011. A roadmap for successful 
applications of clinical proteomics. Proteomics Clin 
Appl, 5, 241–247.

 3 Rossing, K., Mischak, H., Dakna, M., Zurbig, P., Novak, 
J., Julian, B. A., Good, D. M., Coon, J. J., Tarnow, L. & 
Rossing, P. 2008. Urinary proteomics in diabetes and 
CKD. J Am Soc Nephrol, 19, 1283–1290.

 4 Petricoin, E. F., 3rd, Ornstein, D. K., Paweletz, C. P., 
Ardekani, A., Hackett, P. S., Hitt, B. A., Velassco, A., 
Trucco, C., Wiegand, L., Wood, K., Simone, C. B., 
Levine, P. J., Linehan, W. M., Emmert‐Buck, M. R., 
Steinberg, S. M., Kohn, E. C. & Liotta, L. A. 2002. Serum 
proteomic patterns for detection of prostate cancer. J 
Natl Cancer Inst, 94, 1576–1578.

 5 Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., 
Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., 
Fishman, D. A., Kohn, E. C. & Liotta, L. A. 2002. Use of 
proteomic patterns in serum to identify ovarian cancer. 
Lancet, 359, 572–577.

 6 Ransohoff, D. F. 2007. How to improve reliability and 
efficiency of research about molecular markers: roles of 
phases, guidelines, and study design. J Clin Epidemiol, 
60, 1205–1219.

 7 Di Meo, A., Diamandis, E. P., Rodriguez, H., Hoofnagle, 
A. N., Ioannidis, J. & Lopez, M. 2014. What is wrong 
with clinical proteomics? Clin Chem, 60, 1258–1266.

 8 Chadeau‐Hyam, M., Campanella, G., Jombart, T., Bottolo, L., 
Portengen, L., Vineis, P., Liquet, B. & Vermeulen, R. C. 
2013. Deciphering the complex: methodological overview 
of statistical models to derive OMICS‐based biomarkers. 
Environ Mol Mutagen, 54, 542–557.

 9 Hu, J., Coombes, K. R., Morris, J. S. & Baggerly, K. A. 
2005. The importance of experimental design in 
proteomic mass spectrometry experiments: some 
cautionary tales. Brief Funct Genomic Proteomic, 3, 
322–331.

 10 Cairns, D. A. 2011. Statistical issues in quality control 
of proteomic analyses: good experimental design and 
planning. Proteomics, 11, 1037–1048.

 11 Ioannidis, J. P. & Khoury, M. J. 2011. Improving 
validation practices in “omics” research. Science, 334, 
1230–1232.

 12 Concato, J. 2001. Challenges in prognostic analysis. 
Cancer, 91, 1607–1614.

 13 Coresh, J., Selvin, E., Stevens, L. A., Manzi, J., Kusek, J. 
W., Eggers, P., Van Lente, F. & Levey, A. S. 2007. 
Prevalence of chronic kidney disease in the United 
States. JAMA, 298, 2038–2047.

 14 Metzger, J., Kirsch, T., Schiffer, E., Ulger, P., Mentes, E., 
Brand, K., Weissinger, E. M., Haubitz, M., Mischak, H. & 
Herget‐Rosenthal, S. 2010. Urinary excretion of twenty 
peptides forms an early and accurate diagnostic pattern 
of acute kidney injury. Kidney Int, 78, 1252–1262.

 15 Jahn, H., Wittke, S., Zurbig, P., Raedler, T. J., Arlt, S., 
Kellmann, M., Mullen, W., Eichenlaub, M., Mischak, H. 
& Wiedemann, K. 2011. Peptide fingerprinting of 
Alzheimer’s disease in cerebrospinal fluid: 
identification and prospective evaluation of new 
synaptic biomarkers. PLoS One, 6, e26540.

 16 Liu, Y. F., Xiao, Z. Q., Li, M. X., Li, M. Y., Zhang, P. F., 
Li, C., Li, F., Chen, Y. H., Yi, H., Yao, H. X. & Chen, Z. 
C. 2009. Quantitative proteome analysis reveals 
annexin A3 as a novel biomarker in lung 
adenocarcinoma. J Pathol, 217, 54–64.

 17 Ottervald, J., Franzen, B., Nilsson, K., Andersson, L. I., 
Khademi, M., Eriksson, B., Kjellstrom, S., Marko‐Varga, 
G., Vegvari, A., Harris, R. A., Laurell, T., Miliotis, T., 
Matusevicius, D., Salter, H., Ferm, M. & Olsson, T. 
2010. Multiple sclerosis: identification and clinical 
evaluation of novel CSF biomarkers. J Proteomics, 73, 
1117–1132.

 18 Melmer, A., Fineder, L., Lamina, C., Kollerits, B., 
Dieplinger, B., Braicu, I., Sehouli, J., Cadron, I., Vergote, 
I., Mahner, S., Zeimet, A. G., Castillo‐Tong, D. C., 
Ebenbichler, C. F., Zeillinger, R. & Dieplinger, H. 2013. 
Plasma concentrations of the vitamin E‐binding protein 
afamin are associated with overall and progression‐free 
survival and platinum sensitivity in serous ovarian 
cancer—a study by the OVCAD consortium. Gynecol 
Oncol, 128, 38–43.

 19 Buyse, M., Michiels, S., Sargent, D. J., Grothey, A., 
Matheson, A. & De Gramont, A. 2011. Integrating 
biomarkers in clinical trials. Expert Rev Mol Diagn, 11, 
171–182.

 20 Oberg, A. L. & Vitek, O. 2009. Statistical design of 
quantitative mass spectrometry‐based proteomic 
experiments. J Proteome Res, 8, 2144–2156.



Integration of Omics Approaches and Systems Biology for Clinical Applications214

 21 Ransohoff, D. F. 2005. Bias as a threat to the validity of 
cancer molecular‐marker research. Nat Rev Cancer, 5, 
142–149.

 22 Pepe, M. S. 2003. The Statistical Evaluation of Medical 
Tests for Classification and Prediction, New York, 
Oxford University Press, p. 168–173.

 23 Pepe, M. S., Etzioni, R., Feng, Z., Potter, J. D., 
Thompson, M. L., Thornquist, M., Winget, M. & Yasui, 
Y. 2001. Phases of biomarker development for early 
detection of cancer. JNCI, 93, 1054–6101.

 24 Mischak, H., Ioannidis, J. P., Argiles, A., Attwood, T. K., 
Bongcam‐Rudloff, E., Broenstrup, M., Charonis, A., 
Chrousos, G. P., Delles, C., Dominiczak, A., Dylag, T., 
Ehrich, J., Egido, J., Findeisen, P., Jankowski, J., Johnson, R. 
W., Julien, B. A., Lankisch, T., Leung, H. Y., Maahs, D., 
Magni, F., Manns, M. P., Manolis, E., Mayer, G., Navis, G., 
Novak, J., Ortiz, A., Persson, F., Peter, K., Riese, H. H., 
Rossing, P., Sattar, N., Spasovski, G., Thongboonkerd, V., 
Vanholder, R., Schanstra, J. P. & Vlahou, A. 2012. 
Implementation of proteomic biomarkers: making it 
work. Eur J Clin Invest, 42, 1027–1036.

 25 Bonassi, S., Taioli, E. & Vermeulen, R. 2013. Omics in 
population studies: a molecular epidemiology 
perspective. Environ Mol Mutagen, 54, 455–460.

 26 Ransohoff, D. F. 2002. Challenges and opportunities in 
evaluating diagnostic tests. J Clin Epidemiol, 55, 
1178–1182.

 27 Vlahou, A. 2013. Network views for personalized 
medicine. Proteomics Clin Appl, 7, 384–387.

 28 Mischak, H., Critselis, E., Hanash, S., Gallagher, W. M., 
Vlahou, A. & Ioannidis, J. P. 2015. Epidemiologic design 
and analysis for proteomic studies: a primer on ‐omic 
technologies. Am J Epidemiol, 181, 635–647.

 29 Frantzi, M., Van Kessel, K. E., Zwarthoff, E. C., 
Marquez, M., Rava, M., Malats, N., Merseburger, A. S., 
Katafigiotis, I., Stravodimos, K., Mullen, W., Zoidakis, 
J., Makridakis, M., Pejchinovski, M., Critselis, E., 
Lichtinghagen, R., Brand, K., Dakna, M., Roubelakis, 
M. G., Theodorescu, D., Vlahou, A., Mischak, H. & 
Anagnou, N. P. 2016. Development and validation of 
urine‐based peptide biomarker panels for detecting 

bladder cancer in a multi‐center study. Clin Cancer Res, 
15, 4077–4086.

 30 Labaer, J. 2012. Improving international research with 
clinical specimens: 5 achievable objectives. J Proteome 
Res, 11, 5592–5601.

 31 Frantzi, M., Latosinska, A., Fluhe, L., Hupe, M. C., 
Critselis, E., Kramer, M. W., Merseburger, A. S., 
Mischak, H. & Vlahou, A. 2015. Developing proteomic 
biomarkers for bladder cancer: towards clinical 
application. Nat Rev Urol, 12, 317–330.

 32 Karanikolos, M., Mladovsky, P., Cylus, J., Thomson, S., 
Basu, S., Stuckler, D., Mackenbach, J. P. & Mckee, M. 
2013. Financial crisis, austerity, and health in Europe. 
Lancet, 381, 1323–1331.

 33 Horvath, A. R., Lord, S. J., Stjohn, A., Sandberg, S., 
Cobbaert, C. M., Lorenz, S., Monaghan, P. J., Verhagen‐
Kamerbeek, W. D., Ebert, C. & Bossuyt, P. M. 2014. 
From biomarkers to medical tests: the changing 
landscape of test evaluation. Clin Chim Acta, 427, 
49–57.

 34 Anderson, N. L. 2010. The clinical plasma proteome: a 
survey of clinical assays for proteins in plasma and 
serum. Clin Chem, 56, 177–185.

 35 Biron, D. G., Brun, C., Lefevre, T., Lebarbenchon, C., 
Loxdale, H. D., Chevenet, F., Brizard, J. P. & Thomas, F. 
2006. The pitfalls of proteomics experiments without 
the correct use of bioinformatics tools. Proteomics, 6, 
5577–5596.

 36 Mischak, H., Apweiler, R., Banks, R. E., Conaway, M., 
Coon, J., Dominiczak, A., Ehrich, J. H., Fliser, D., 
Girolami, M., Hermjakob, H., Hochstrasser, D., 
Jankowski, J., Julian, B. A., Kolch, W., Massy, Z. A., 
Neusuess, C., Novak, J., Peter, K., Rossing, K., 
Schanstra, J., Semmes, O. J., Theodorescu, D., 
Thongboonkerd, V., Weissinger, E. M., Van Eyk, J. E. & 
Yamamoto, T. 2007. Clinical proteomics: a need to 
define the field and to begin to set adequate standards. 
Proteomics Clin Appl, 1, 148–156.

 37 Urfer, W., Grzegorczyk, M. & Jung, K. 2006. Statistics 
for proteomics: a review of tools for analyzing 
experimental data. Proteomics, 6 Suppl 2, 48–55.



Chapter No.: 1 Title Name: <TITLENAME> p02.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:36:39 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 215

215

Part II

Progressing Towards Systems Medicine



Chapter No.: 1 Title Name: <TITLENAME> c13.indd
Comp. by: <USER> Date: 27 Dec 2017 Time: 09:36:47 PM Stage: <STAGE> WorkFlow:<WORKFLOW> Page Number: 217

217

Integration of Omics Approaches and Systems Biology for Clinical Applications, First Edition.  
Edited by Antonia Vlahou, Harald Mischak, Jerome Zoidakis, and Fulvio Magni. 
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

13.1  Medicine of the Twenty‐First 
Century: From Empirical Medicine 
and Personalized Medicine 
to Systems Medicine

Until the mid‐twentieth century, healthcare was experience 
based. The so‐called empirical therapy relied mainly 
on observational data and the clinical experience of 
healthcare practitioners who, in the absence of complete 
or accurate molecular information on a disease’s under
lying mechanism, prescribed therapeutic solutions 
using practice‐derived guidelines. Empirical therapy was 
applied based on symptoms occurrence and often before 
the confirmation of a definitive diagnosis, in order to 
avoid patient management delays, which might worsen 
the patient’s disease progression. For instance, wide‐
spectrum antibiotics were given to a person before the 
specific bacterium causing an infection is known. 
Fighting an infection sooner rather than later is impor
tant to minimize morbidity, risk, and complications, so 
there is value in getting started with the symptomatic 
information available rather than waiting for accurate 
information. These treatment decisions were guided by 
observations of drug efficacy and safety on whole popu
lations rather than individuals. The main decision maker 
was the treating physician who was called upon to take 
the initiative against an anticipated and likely cause of a 
manifested disease. However, putting a diagnosis on 
limited causal evidence and estimating risk‐to‐benefit 
ratio for a drug prescription was often akin to Damocles’ 
sword hanging over the healthcare practitioners’ heads. 
Drug overprescription, resistance to therapy, difficulties 
with nonresponsive patients, side effects, drug interactions, 
and implications of other patient‐specific conditions 
were common issues.

Triggered by the revolution of molecular biology in 
the second half of the twentieth century, the concept of 
personalized therapy came to the fore. Personalized 
 therapy introduced the idea of “the right treatment, for 
the right patient, at the right time” [1]. The cornerstone 
for this approach has been the significant advancement in 
the understanding of the molecular mechanisms that 
underlie several diseases, mainly promoted by the decod
ing of the complete human genetic code. It was realized 
that each patient has a characteristic genetic background 
that can affect the disease incidence, the course of the 
 disease, and the response to therapy. It was also realized 
that  several diseases can be asymptomatic and do not 
manifest until it is too late for effective patient manage
ment. Thus, early detection of a disease based on reliable 
biomarkers could prevent disease incidence and progres
sion and lead to better prognosis and outcome. The ambi
tion of  personalized medicine is to tailor diagnosis and 
treatment to each patient within a population. For final 
decision making, the physician receives assistance by 
input from molecular diagnostics. Recently, interactions 
among the clinicians, academia, industry, and the 
 pharmacopoeia have been developed to this end. 
The aim of personalized medicine also implies that the 
patients become more involved in their treatment, in 
terms of prevention and prediction. In recent years, 
genome‐wide association clinical studies in large cohorts 
of patients have shed light on disease aspects and 
response to drugs in correlation with patients’ genetic 
background. This was anticipated to lead to safer 
 decisions for patient management [2].

However, there was another aspect that has largely 
gone unnoticed in the concept of personalized therapy: 
the fact that each individual patient in addition to having 
a unique genetic background also has a unique history of 
how he/she grew up, to which environment he/she was 
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exposed, what his/her dietary habits were, what his/her 
lifestyle is, and so on. As a consequence each individual 
presents differences in cell milieu, microbiome, host‐
defense interactions, immune status, epigenome, and so 
on. Even the socioeconomic factors and culture may 
affect an individual’s clinical condition, outcome predic
tion, and response to therapy. These factors overall 
create a unique external and internal environment for 
each patient, which affect the vulnerability to a disease, 
the course of the disease, and the severity of a disease. 
They are also associated with comorbidities as well 
as  the individual’s response to drugs and relative side 
effects. It was soon realized that personalized geno
types are associated with personalized phenotypes [3]. 
Therefore, comprehensive approaches in the setting of 
each disease are needed. This is a gap that systems 
medicine is anticipated to fill in at the dawn of the 
twenty‐first century. It is an effort to understand the 
complex interactions within the human body in light of a 
patient’s genetic background, behavior, and environ
ment. In order to achieve this goal, wide cross‐talks and 
networking of clinicians, academia, industry, pharmaco
poeia, and the patients are needed [4].

At first glance, such systemic approach requires too 
many parameters (such as genetic, epigenetic, biochemi
cal, immunological, environmental, developmental, 
and social) to be defined and correlated on several 
 levels, which make the approach seem a Herculean task. 
However, looking at it more closely, we understand that 
many of these parameters in relation to a disease setting 
have already been defined in each individual field of 
genetics, epigenetics, epidemiology, immunology, and so 
on. The challenge is to correlate and integrate these 
diverse parameters at the interface of the different scien
tific fields in a comprehensive and systemic way that 
would further enable individualized prevention and treat
ment optimization for a specific disease. Advancements 
in research in multiple disciplines during the last decades 
have provided most of the pieces of the puzzle. 
Importantly, the now affordable sequencing of individual 
human genomes has provided the opportunity to gain 
detailed information on each patient [5]. The current 
challenge is how all these pieces will be combined and 
integrated in order to develop a novel comprehensive 
strategy for each patient’s diagnosis, and treatment.

The advanced ‐omics technologies in combination with 
modeling and computational approaches will play a cata
lytic role toward establishing this novel strategy for patient 
treatment [3]. Systems medicine aims at the management 
of a disease before the establishment of symptoms and at 
the maintenance of wellness in the population. Similar to 
personalized medicine, it takes into account the genomic 
characteristics of each patient in order to produce thera
peutic solutions tailored to the needs of each individual. 

However, in this case, individuality of each patient is 
defined based on high‐throughput measurements of many 
other molecular entities in addition to genome profiling. 
Molecular data are integrated with clinical information 
and environmental parameters to produce a comprehensive 
profile for each patient. Another novelty is the partici
pation and interactivity of patients with clinicians to 
generate information, influence decision making, and 
participate in the maintenance of their wellness through 
lifestyle adaptations [6] (Figure 13.1).

13.2  The Emerging Concept 
of Systems Medicine

13.2.1 The Need for Establishment of Systems 
Medicine and the Field of Application

At the dawn of the twenty‐first century, the world is 
 facing an unprecedented situation of aging population. 
In particular, it is projected that the population of <5 
years old will be outnumbered by the population of >65 
years old before 2020. This means that we will soon have 
more old people than children and more people at 
extreme old age than ever before. Population aging is a 
powerful and transforming demographic force, which 
will define the future trends of the current healthcare 
approaches. As both the proportion of older people and 
the length of life increase throughout the world, key 
questions arise. Issues that have emerged are whether 
population aging can be accompanied by longer periods 
of good health, well‐being, social engagement, and 
productivity or it will be associated with more illness, 
disability, and dependency. Other issues are how aging 
will affect healthcare and social costs, if a physical and 
social infrastructure can be established that might fos
ter better health and well‐being in older age, and how 
population aging will differentially affect low‐income, 
developing countries as compared with the industrial
ized and developed ones [7].

This situation is aggravated by an increase in the 
prevalence and burden of several chronic diseases that 
are largely age related, for example, diabetes, cancer, 
cardiovascular diseases, and chronic respiratory diseases. 
In such diseases, knowledge of the background and the 
overall history of a patient, in addition to their genetic 
and epigenetic background, is a prerequisite for better 
and sustainable disease management.

In addition to these noncommunicable diseases, 
there is a recurrence of communicable diseases due to 
emergence of resistant strains of bacteria and viruses 
that can now spread quicker than ever before due to the 
increased movement and migration of large populations. 
Population mobility vastly facilitates the emergence of 
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resistant pathogen strains and the rapid evolution of 
diseases from epidemics to pandemics [7].

Personalized therapy approaches alone are insufficient 
to address the emerging healthcare challenges [8]. Except 
for the increased need for personalized and predictive 
therapy, which is being addressed by personalized ther
apy, these trends create an extra need of reenforcing pre
ventive measures and proactive patient participation in 
healthcare. To do so, appropriate data systems and 
research capacities need to be developed, aiming to 
monitor and understand patterns and relationships. 
Better research coordination is also needed, which could 
unveil the most cost‐effective ways for improving health
care and wellness in countries at different stages of eco
nomic development and with varying resources [8]. 
Toward this purpose systems biology has been recruited 
to fill in the gaps of personalized therapy.

13.2.2 Bridging the Gap: From Systems 
Biology to Systems Medicine

During the last 15 years, the successful emergence of 
systems biology as a research field in its own right has 

revolutionized our understanding of the complexity of 
the human body and the diseases we develop. Systems 
biology is an interdisciplinary approach that focuses 
on complex interactions within biological systems in 
holistic rather than a reductionistic manner. Overall, it is 
a coordinated effort to understand the properties of a 
system as a whole instead of focusing on the properties 
of its individual components. This comes from the reali
zation that the properties of an individual component 
may be significantly influenced by its environment. For 
instance, until now, the focus was on characterizing the 
properties of individual molecules, assuming that a 
molecule has specific functions and is associated with 
certain phenotypes. However, this molecule is part of a 
complex molecular network, and its effect on the cellular 
phenotype is highly influenced by other components of 
the network. Hence, its properties as an individual unit 
are not the same when it is viewed as a part of a larger 
network [9]. Biological systems are now viewed as 
collections of networks operating at multiple levels, 
ranging from molecules, cells, tissues organisms, and 
populations [10]. To this end, systems biology aims at the 
computational and mathematical modeling of complex 
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biological networks across all levels in order to unveil 
properties of cells, tissues, and organisms functioning 
as a system.

This concept possibly signals the end of an era of 
reductionism, which had prevailed during the previous 
decades and was characterized by elucidating functions 
of molecules or pathways in isolation [11]. Breaking 
down a complex problem into smaller and simpler units 
has facilitated the analysis of its individual parameters. 
This effort has now reached a plateau. Major diseases 
are complex and multifactorial, and, thus, reductionism 
struggles to provide solutions. Instead, viewing these 
diseases through a systems biology lens might be a more 
accurate perspective on the rules that dictate their patho
genesis and appropriate management. This is the main 
reason why reductionism tends to be gradually replaced 
by systemic approaches, especially in the study of chronic 
diseases [11].

Biomedical sciences research now moves from a reduc
tionist approach to a systemic approach and attempts to 
understand pathophysiology in an integrative manner. 
To this end, the rapidly increasing amounts of high‐
throughput “big data” and other relevant quantitative 
biological/medical data that are becoming available and 
accessible are exploited. For extracting and mining 
meaningful information from these data and make the 
most of it in the context of a complex disease manage
ment, concepts of a wide variety of sciences, such 
as  mathematics, physics, and engineering, are being 
“co‐opted” into the biological sciences. This attempt also 
requires cooperation of experts at the interface of these 
disciplines.

Technological advancements of the previous century 
have produced adequate new knowledge both in 
 preclinical and in clinical setting. The new century’s 
challenge is finding ways to organize and integrate 
knowledge and information and to establish overarch
ing guidelines for cooperation among multiple disci
plines and stakeholders for comprehensive disease 
management, including prevention, prediction, and 
therapy. Years of research have generated detailed 
information on all levels of organization of biological 
components, from molecules and cells to ecosystems. 
The time has come for integration of the available 
information in order to understand how all these com
ponents work together as systems [10].

Systems medicine is a newly emerging area aiming to 
produce a conceptual and theoretical framework for 
the interpretation and implementation of the rules 
that govern this new way of organizing biomedical 
information. A systems approach to healthcare that will 
be facilitated by multidisciplinary collaboration and 
networking among academia, the clinic, the pharma
copoeia, and the patients is key for its successful 

 implementation and the achievement of a paradigm 
shift in healthcare. Systems medicine can build on the 
successes in the field of systems biology that defines the 
human body as the multidimensional ensemble of net
works. In other words, systems medicine perceives the 
human body as an onion‐layered arrangement of net
works‐within‐networks and attempts to comprehend 
the rules governing their collective behavior [12].

In Europe, the significant potential of systems medicine 
has been recognized since 2004, and 73 health projects 
for research, training, and systems biology infrastructure 
have already been funded [8].

13.2.3 Attempting a Definition

Systems medicine is a rapidly changing field still in its 
infancy. As is often the case, there is no assigned way to 
define it. Its definition has been recently discussed by the 
Coordinating Systems Medicine across Europe (CasyM) 
panel, that is, Europe’s official multidisciplinary consor
tium that intents to develop an implementation strategy 
for systems medicine. As a result, the European expert 
panel came up with the following definition for systems 
medicine:

Systems Medicine is the implementation of 
Systems Biology approaches in medical concepts, 
research and practice. This involves iterative and 
reciprocal feedback between clinical investigations 
and practice with computational, statistical and 
mathematical multiscale analysis and modeling of 
pathogenetic mechanisms, disease progression 
and remission, disease spread and cure, treatment 
responses and adverse events as well as disease 
prevention both at the epidemiological and indi
vidual patient level. As an outcome, Systems 
Medicine aims at a measurable improvement of 
patient health through systems‐based approaches 
and practice.

(https://www.casym.eu/lw_resource/datapool/_
items/item_328/roadmap_1.0.pdf )

13.2.4 The Network‐Within‐a‐Network 
Approach in Systems Medicine

Complex systems can be graphically represented as 
networks. The components represent the nodes of the 
network, whereas their interassociations form the links 
or edges. Networks in technological, social, and bio
logical systems have common designs that are governed 
by fundamental and quantifiable organizing principles 
[13]. For cellular networks, genes, proteins, and metabo
lites are represented as nodes and the interactions among 



Introduction into the Concept of Systems Medicine 221

them as links. Within networks, a fraction of the nodes 
have multiple links and serve as pivotal hubs that can 
exert large individual effects. The vast majority of nodes 
have few links and present milder effects if individually 
modulated. An additional significant characteristic of 
networks is that functionally related nodes tend to be 
highly interconnected and co‐localize in networks, 
thereby forming modules that participate in common 
biological functions [14].

Systems medicine takes into account that a human is 
a dynamic network within other networks. Networks 
are formed at every level of biological organization 
(molecular, cellular, organ, individual, and social/ 
environmental). This means that each upper level 
consists of networks that are formed in lower levels. 
Molecules form networks within cells. Cells commu
nicate and interact with each other and form networks 

(i.e., tissues) within organs. Organs form networks 
(i.e., organ systems) within the human body. Each human 
interacts with other humans and constitutes a node of 
social and environmental networks (Figure 13.2). Each 
of these networks has highly dynamic rather than 
static features, which greatly influences how each 
human will react in the context of a pathological con
dition [15].

13.2.4.1 Great Expectations for Systems 
Medicine: The P4 Vision
In 2004, the pioneers of systems medicine have set forth 
the so‐called P4 vision. P4 medicine is a healthcare 
system that is predictive, preventive, personalized, and 
participatory. It is expected that systems medicine will 
catalyze the development of this emerging field, resulting 
in a paradigm shift in healthcare.
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Figure 13.2 The network‐within‐a‐network concept as 
a cornerstone of the systems medicine approach. Source: 
Vogt et al. [15]. https://link.springer.com/article/10.1007/
s11019‐016‐9683‐8. Licensed under CC BY 4.0.
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In detail, three recent developments have converged to 
give rise to the concept of P4 medicine:

The increasing ability of systems biology and systems 
medicine to unveil the biological complexity of a 
disease

The information revolution, which has facilitated 
collecting, storing, integrating, meta‐analyzing, and 
communicating medical information and patient data 
at a large scale

Access to disease‐related information for everyone 
involved in disease management, including healthcare 
professionals, patients, healthy individuals, scientists, 
clinicians, industry, and policy makers

The enormous amounts of data produced during the 
previous years must now be integrated to achieve a 
comprehensive understanding of a human disease. To 
this end, it has been proposed that detailed molecular 
profiles along with epidemiological parameters should 
be obtained for as many people as possible. Then, these 
data could be analyzed using advanced computational 
tools. This will create new models that will shed light 
on how all elements in the biological networks interact 
to produce healthy and disease states. These models 
are anticipated not only to decode the “black box” of 
complex diseases but also to quantify what it means to 
be healthy [10].

P4 medicine is comprised of four elements that are 
anticipated to be significantly advanced by the collec
tion, storage, accessibility, and exploitation of medical 
information across multiple levels:

a) Prediction: If as much information as possible 
from several disciplines is collected and systemically 
evaluated, it could be exploited in such a way so as to 
assist the detection of a disease at an earlier stage. 
This poses several advantages: the disease is easier 
and more cost‐effective manageable, the drugs are 
deployed in more effective way reducing side effects, 
the patient outcomes are better, and the health eco
nomics are improved.

b) Prevention: Exploitation of information could con
tribute to avoiding the disease in the population, by, 
for example, decreasing exposure to the associated 
risk factors. This is anticipated to overall decrease 
disease incidence and prevalence in the general 
population.

c) Personalization: By unveiling which biological networks 
are perturbed in diseases, new therapeutic targets 
can be selected more wisely and can be tailored to 
the needs of individual patients. To understand what 
each patient needs though, the generation of “per
sonal data clouds” is required. This means that for 
each patient, data should be collected and stored over 

time, regarding their genome, blood tests, lifestyle, 
epidemiological data, activity and stress levels, tran
scriptome, metabolome, microbiome, traditional 
medical records, and so on. These comprehensive 
datasets constitute a database of personalized 
information about each person’s health and disease 
condition [10].

d) Participation: The new component of P4 medicine 
compared with the concept of personalized therapy is 
the participation of citizens. Systems medicine can be 
expanded out from hospitals and clinics into homes, 
workplaces, and schools. The citizens themselves are 
concerned about their health, judging by the fact that 
one in three Americans have gone online to investi
gate a medical condition. This concern creates an 
interaction between citizens and the healthcare 
system with regard to the exchange of information. 
Citizens can provide information that can be accu
mulated to a central “data pool” and be combined 
with other data in this pool. In turn, the citizens can 
retrieve personalized information that will enable 
them to either pro‐act or alter their habits toward a 
lifestyle that will benefit their personal well‐being. 
On the one hand, the participatory parameter is a 
monitoring of each individual health status provided 
by each individual per se, which will assist systems 
medicine to understand disease complexity. On the 
other hand, this effort ensures the citizens’ right to be 
informed, concerned, and proactive in real time about 
their health status [10].

13.2.4.2 How Systems Medicine Will 
Transform Healthcare
P4 medicine is anticipated to induce transformations 
that will form the basis for a new healthcare system. The 
major transformations are as follows [10]:

1) Clinical studies will be transformed into  population‐
based studies. Instead of relying on data from 
 limited test cohorts, data of the whole population 
will be used, aided by sophisticated computational 
analysis for generating more comprehensive models 
of disease.

2) Diagnosis and treatment based on symptoms will be 
replaced by treatment choices based on the cellular 
and molecular patient profiles. The optimization of 
parameters for personalization therapy, through 
acquiring and analyzing more data corresponding to 
each individual patient, is anticipated to improve 
efforts for treating the right patient with the right 
drug at the right time accruing better results and far 
greater cost‐effectiveness.

3) Basic and applied sciences will be integrated with 
clinical practice, prevention, and wellness care.
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4) Healthcare is not restricted to the clinic. Instead, it 
includes the active preservation and enhancement 
of wellness by individuals in their homes and 
workplaces.

5) A new wellness industry is emerging that will effect 
economic growth in the twenty‐first century.

13.2.4.3 The Five Pillars of Systems Medicine
Managing a complex disease within the concept of 
 systems medicine by correlating large datasets all‐with‐
all is an appealing goal, but, at the same time, challenging 
to achieve. However, the recent advances of bioinfor
matics and systems biology can facilitate such efforts. 
In general, the pioneers of systems medicine have defined 
five pillars that could support the handling of large data
sets for the development of systems medicine [10]. 
These are as follows:

State‐of‐the‐art technologies are available and accessible 
for generating data regarding health and disease states 
for each person at multiple levels (from their molecular 
profiling to their behavior within populations).

A digital infrastructure is emerging to link participating 
discovery science and clinical institutions, as well as 
patients/consumers, and healthcare providers.

Personalized data clouds that provide information about 
multiple aspects of each individual, such as molecular 
profiling, social and demographic parameters, medical 
history, and genetic and phenotypic characteristics.

New analytic techniques and technologies that can 
derive actionable knowledge from the data.

Systems models for understanding the health status of 
each individual in terms of dynamic network states.

13.2.4.4 The Stakeholders of Systems Medicine
The concept of systems medicine necessitates the 
involvement and interaction of several social entities, 
that is, the academia, the clinicians, the industry, the 
funders, the citizens, and the policy makers. One major 
difference of systems medicine from personalized 
medicine with regard to the involved stakeholders is that 
it foresees a more active participation for the patients. 
In personalized medicine, academia provides the 
knowledge and the tools for effective disease targeting, 
prediction, and prevention in the preclinical setting, in 
close collaboration with the clinicians. Trials are being 
designed in the clinical setting and run by experienced 
clinicians, who work together with sponsors (i.e., phar
maceutical industry, biotechnology companies, R&D 
companies). Successful therapeutic approaches and 
interventions as well as novel diagnostic markers are 
then being carried forward into medical practice. Policy 
makers were taking the new advances into account to 
modify the existing healthcare frames and legislation, 

for example, by approving novel diagnostic tests for 
 routine examination, including new molecular entities as 
approved drugs [16].

Systems medicine relies largely on the inclusion and 
engagement of citizens to this effort. Instead of treating 
patients as “trial subjects” according to the Helsinki 
Declaration [17], it considers citizens as important 
“collaborators” in this effort. In systems medicine, citizens 
are essential components of the stakeholders’ network, 
whose interaction with other components is anticipated 
to dynamically contribute to the transformation of 
healthcare toward more efficient, safe, and cost‐effective 
methods. Active, informed, and networked patients 
have the ability to both provide the large datasets that are 
essential to power healthcare innovation and reduce 
incidence and prevalence of diseases in the population 
by being educated how to choose health beneficial 
lifestyle decisions [10].

13.2.4.5 The Key Areas for Successful Implementation
Healthcare systems across countries present heterogeneity, 
which might pose some obstacles for the implementa
tion of systems medicine across European countries in a 
consistent manner. Therefore, in order to successfully 
implement systems medicine, it is important to exchange 
experience in developing new systems medicine infra
structures to connect the initiatives and to harmonize 
their activities. Establishment of stable local networks 
that continuously bring together the key stakeholders 
(patients, care managers, care personnel, technology 
providers, entrepreneurs, policy makers, and regulators), 
generation of reference sites to identify and overcome 
local barriers and challenges, exchange of good practice 
and transfer of knowledge among reference sites, and 
adaptation of current legal, financial, regulatory, incen
tive, and educational frameworks are crucial steps 
toward this goal [18].

The CASyM consortium in their last workshop defined 
10 key areas that have to be enhanced in order to facilitate 
implementation of systems medicine in the heterogene
ous landscape of European healthcare systems.

13.2.4.6 Improvement of the Design of Clinical Trials
Due to their current design, clinical trials often lack 
high‐quality, accessible, and standardized datasets. Data 
on each patient are produced by analysis of their sam
ples and frequent monitoring of their health condition. 
However, these data are produced in an inconsistent 
manner, are not readily accessible, and require meta‐
analyses. It is anticipated that phases I, II, III, and IV 
will be redesigned in order to favor a large‐scale, 
patient‐oriented approach. Actions that are suggested 
to be taken toward this goal include targeting of pathways 
instead of individual molecules, evaluating comorbidities 
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and drug interactions, considering adaptive trial design, 
development of in silico clinical trial design, access to 
datasets, development of robust tools for integration of 
datasets using user‐friendly interfaces for the conveni
ence of translational researchers, and categorization of 
modeling approaches [8].

13.2.4.7 Development of Methodology 
and Technology, with Emphasis on Modeling
Data produced over the years using a wide range of 
technologies and sources should be integrated in a 
comprehensive and plausible manner. Computational 
models could be a useful aid in this effort, offering multi
scale models. The large amount of different data and 
data types as well as the many possible ways to combine 
them render data integration difficult by current, mainly 
regression‐based, models. Advanced computational 
methods of analysis and modeling are needed. Despite 
research advances, it remains a sad fact that the vast 
majority of investigational drugs that present satisfac
tory efficacy and safety profiles upon preclinical testing 
are not consistently successful during the transition 
“from bench to bedside,” thus leading to unacceptably 
high and expensive failure rates of clinical trials. 
Establishing and introducing appropriate models is 
anticipated to reduce the inconsistency between the pre
clinical and clinical outcomes. The future challenge of 
mathematicians and bioinformaticians working in the 
context of systems medicine would be to produce relia
ble models from in vitro and in vivo preclinical studies, 
which could better predict outcomes in the clinical set
ting. For instance, drug response and disease risk could 
be better predicted upon successful integration of data 
from the preclinical and the clinical setting [8].

13.2.4.8 Generation of Data
Large amounts of data are required for systems 
 medicine. Data generation should rely on the system
atic deployment of high‐throughput methods, aim 
to  address a clinically relevant research question, 
be based on suitable information from clinical sample 
analysis and patient medical records, be appropriate 
for generation of predictive models, and be properly 
validated [8].

13.2.4.9 Investment on Technological Infrastructure
Exploitation of knowledge from different disciplines 
requires state‐of‐the‐art infrastructure to support data 
handling, storage, sharing, and access. This needs to be 
accompanied by the establishment of standards for the 
assessment of the quality of data and of mathematical 
models used. It also requires core data services and 
management, as well as generation of a reliable archive 
and technical support [8].

13.2.4.10 Improvement of Patient Stratification
The vast majority of clinical trials fail due to insufficient 
efficacy or safety. This necessitates better stratification 
of patients to be enrolled into trials based on integrated 
molecular and clinical patient profiles. Stratification of 
patients based on their genomic, proteomic, and/or 
metabolomics profile could enable tailoring of treatment 
to their personal parameters. In this context, systems 
medicine can contribute to finding specific combinations 
of disease‐associated genes per patient. The ‐omics tech
nologies, which enable the generation, the integration, 
and the interpretation of high‐throughput data for each 
patient and for the whole patient population, are antici
pated to play a crucial role in stratification. Instead of 
focusing on expression of individual disease‐associated 
genes for patient stratification, as was the case until 
now with largely insufficient power, stratification will 
be based on the expression of specific combinations of 
highly interconnected disease‐relate genes, proteins, 
and metabolites organized into networks. Analysis of 
high‐throughput patient molecular data is anticipated to 
reveal such combinations (which have been defined as 
“modules”), which characterize disease processes and 
can be targeted accordingly [8].

13.2.4.11 Cooperation with the Industry
The term “industry” may include a wide range of com
panies, from multinational pharmaceutical enterprises 
to  technology‐driven personal diagnostics operations. 
In the context of systems medicine, emphasis is on 
public–private partnerships. These should combine basic 
research, translational research, clinical research, and 
healthcare aspects. They also have to focus on the need 
of the patient. Their interaction is anticipated to deter
mine the gaps and technological challenges that future 
R&D should address. Additionally, in light of the high 
failure rates of clinical trials, the industry has hesitated in 
making large‐scale investments in innovative approaches 
for disease management. The introduction of a systemic 
framework could produce a more robust proof‐of‐
concept portfolio, which may benefit industry and 
encourage further investment to innovation [8].

13.2.4.12 Defining Ethical and Regulatory Frameworks
The gathering and handling of this amount of personal 
information raises ethical, social, regulatory, and finan
cial issues. First of all, patient participation in the systems 
medicine effort requires improving and promoting health 
literacy and education. Secondly, a pan‐European legal 
framework and corresponding educational programs are 
required to protect patient privacy and data. In addition, 
collection and availability of data able to predict illness 
and disease will significantly influence current models of 
health insurance. This will inevitably necessitate revisiting 
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current healthcare insurance schemes and establishing a 
novel framework for health insurance and insurers, 
aiming to ensure healthcare for all [8].

13.2.4.13 Multidisciplinary Training
For decades, the prevailing trend for scientists and 
clinicians was reductionism and overspecialization. 
They had to be focused on certain topics in order to 
address them more thoroughly. In this decade, the rise of 
systems biology has favored the exact opposite trend of 
taking a look at the “big picture.” This requires a scientist 
or clinician to have training in a wide range of disciplines 
in order to be able to integrate data in a comprehensive 
manner. This ambition is reminiscent of the Renaissance 
era, where the comprehension of scientific concepts in a 
global manner was the guiding beacon that sought rules 
and laws universally applicable across a wide range of 
disciplines. A systems‐oriented scientist is, of course, not 
tasking the scientist or clinician to possess all knowledge 
from all disciplines. Instead, he/she is expected to under
stand the principles through which he/she can access 
and use multidisciplinary information from several data
bases. The task is to educate the future generation to be 
able to collaborate with peers from different fields in 
their everyday routine work. A reductionist‐ to‐ systemic 
transition in the way a scientist understands medicine or 
a clinician understands science requires the introduction 
of appropriate training at several levels of education. In 
terms of medical education, we need to create a coherent 
link between the preclinical disciplines (chemistry, bio
chemistry, cellular and molecular biology, statistics, and 
anatomy), which should be complemented by training on 
networks, statistics, data handling, and modeling. This 
type of training is very important for the medical doctors 
and clinical practitioners who are in the front line of 
patient management and are directly involved in the 
diagnosis and treatment of diseases. These practitioners 
would greatly benefit by familiarization with genomics, 
data integration, bioinformatics, and “‐omics” technolo
gies, in order to be able to incorporate them into their 
work. Therefore, continuing medical education is antici
pated to play a key role toward this goal. Educational 
information and training programs for all career stages, 
aided by web‐based and e‐learning modules, will be the 
cornerstones of continuing education. Such training pro
grams can be designed to be flexible and custom made 
for each practitioner, for example, modular, “study‐at‐
own‐pace,” and cost‐effective. They should also be appli
cable to a variety of background of healthcare 
professionals, from clinicians to paramedics and nurses 
[8]. The creation of such courses is challenging not only 
due to the students’ different backgrounds but also 
because systems biology relies in a wide variety of disci
plines, which no student can fully master. Therefore, 

there is no default solution for teaching topics and tech
niques. Instead, it seems to be much more important to 
inspire students to have a motivation on pursuing multi
disciplinary information on biological systems and 
search for models that can be used to explore them. For 
the future scientist, the ability to estimate the complexity 
of a system, the understanding of the medical problems, 
and the generation and handling of relevant information 
will become more important than overspecializing in 
techniques of systems analysis [19].

13.3  Networking Among All Key 
Stakeholders

The successful implementation of systems medicine will 
be impossible without efficient networking and communi
cation among all the involved stakeholders, including 
patient organizations, academia, industry, medical practi
tioners, and policy makers. Each stakeholder plays a vital 
role in the translation of research into novel predictive 
tools, prevention measures, and personalized targeted 
therapies. Continuous discussion and interaction among 
all stakeholders through frequent conferences, work
shops, and training events is required, and initial actions 
toward this goal have already been taken. Toward this 
goal, an extensive stakeholder advisory board (http://www.
healthydietforhealthylife.eu/index.php/organisation/
stakeholder‐advisory‐board) has already been established. 
It includes a panel of experts from several disciplines as 
well as representatives of the initiative for implementation 
of systems medicine across Europe. Clinical and patient 
organization representatives have been recruited into all 
aspects of these networks, so that all stakeholders have a 
voice. The main purposes of such networks will be (i) 
addressing the needs of clinicians and patients and (ii) sug
gesting ways of exploitation of both existing and novel 
infrastructures to meet these needs. To date, several col
laborative initiatives and synergies have been launched 
among stakeholders across Europe, for example, the 
European Strategy Forum on Research Infrastructures, the 
Infrastructure for Systems Biology Europe, and Biobanking 
and Biomolecular Resources Research Infrastructure. 
Other initiatives aim at raising awareness about financial 
opportunities to investors and politicians [8].

13.4  Coordinated European Efforts 
for Dissemination and Implementation

The establishment of a European society of systems med
icine, with the participation of representatives of all stake
holder groups, will facilitate efficient implementation of 
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systems medicine across Europe. This society has been 
recently established (http://www.eisbm.org/projects/
easym/). It aims to implement actions toward integration 
of efforts across Europe under the umbrella of systems 
medicine. They comprise (i) engagement of  public 
funders to pan‐European initiatives, (ii)  development of 
systems biology‐oriented pan‐European research pro
grams, (iii) recruitment of private funders, (iv) establish
ment of extended networks among clinics and research 
centers, and (v) inclusion of the P4  medicine in the 
European Union’s agenda, which will be translated to 
coordinated support at several levels ( scientific, regula
tory, legal, politic, clinical). Stable, sustainable coopera
tions between major research centers of systems biology, 
computational research centers, and academic clinics 
across Europe will also enhance this effort. It aims 
to  establish an integrative and open community of 
researchers and clinicians, as well as creation of a 
 communication platform for researchers implicated in 
system medicine [8].

Similar initiatives in the context of precision medicine 
and improvement of personalized medicine have also 
been announced by the White House in the United 
States, with special emphasis on the treatment of cancer 
and diabetes. The initiative includes the involvement of 
the National Institutes of Health toward the implemen
tation of P4 medicine [20, 21]. Figure  13.3 describes 
how  the emphasis on key areas of systems medicine, 
orchestrated by participation of the network of stake
holders, will lead to the implementation of P4 medicine 
and to a paradigm shift in future healthcare.

13.5  The Contributions 
of Academia in Systems Medicine

Academia plays a decisive role in the changing landscape 
of personalized therapy toward systems medicine. It is 
anticipated to make major contributions to producing 
and handling multiple levels of high‐throughput data. 

It will also have a major role in solving the technical dif
ficulties that emerge when generating quantitative data
sets for large numbers of system variables across different 
levels of organization. Another major challenge is the 
development of efficient tools that can handle the wide 
variety of available data and mine the disease‐relevant 
data subsets. Overcoming these obstacles will subse
quently lead to the development of models that can be 
used in clinical practice for disease prevention and pre
diction, as well as optimization of personalized therapy. 
Thus, the main contributions of academia in systems 
medicine will be:

a) The generation and management of “big data” from 
each patient: “‐omics” and “multi‐omics” technolo
gies that will be the cornerstones of this effort. 
Toward data management the EU has taken decisive 
strides by funding relevant infrastructures for the 
handling of big data, such as ELIXIR (www.elixir‐
europe.org).

b) The integration of “big data,” which is largely based 
on bioinformatics approaches but has to proceed 
toward computational network modeling.

c) The development of robust predictive disease models 
based on integration of “big data.” Computational 
modeling relies largely on mathematics and computa
tional biology [22]. However, novel animal models to 
simulate the disease could also emerge in the molecu
lar biology research setting to complement data 
accordingly [23].

Figure  13.4 summarizes these contributions of aca
demia in systems medicine.

13.6  Data Generation: Omics 
Technologies

The advancement of high‐throughput analyses has pro
vided the opportunity to collect and process information 
about a sample in a high‐throughput manner at specific 
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Figure 13.3 Systems medicine toward implementation of P4 medicine and a paradigm shift in healthcare.
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time points. “Omics” technologies can provide systems‐
level information of all genes or gene products for any 
sample, for example, for genome (genomics) and epige
nome (epigenomics), coding and noncoding RNA tran
scripts (transcriptomics), protein products (proteomics), 
lipids (lipidomics), and metabolites (metabolomics). 
Notably, the term “omics” is expanding to include other 
systems, such as all microbes (microbiome), environ
mental exposures (exposome), or even all diseases 
(diseasome). High‐throughput analysis of patient sam
ples, followed by appropriate data integration, can be 
exploited for comprehensive understanding of diseases 
in terms of systems medicine [24].

The most widely used “omics” technologies are 
genomics and transcriptomics. Other popular, though 
challenging, omics technologies are proteomics and 
metabolomics. These technologies are discussed in 
detail in other chapters.

13.7  Data Integration: Identifying 
Disease Modules and Multilayer 
Disease Modules

“Omics” approaches can identify genes/gene products/
metabolites that are more commonly deregulated in a 
certain disease. However, due to organismal complexity, 
this information alone does not automatically highlight 
the most appropriate molecules to be used as diagnostic 
markers and therapeutic targets. These only can be identi
fied by systems‐level approaches. Integrated multiomics 

approaches are preferred over omics analysis, which 
relies on only a single data type. Combining multiple 
data types and several levels of high‐throughput infor
mation compensates for missing or unreliable informa
tion attributed to a single data type. In addition, a 
pathway or gene that is confirmed by multiple sources of 
high‐throughput evidence is less prone to false positive 
predictions. Moreover, by integrating all different levels 
of genetic, genomic, and proteomic information, a more 
comprehensive disease‐specific description that simu
lates more accurately the disease complexity can be 
formed. Data can be integrated by two main approaches: 
the multistage analysis, which integrates information 
following a stepwise or hierarchical analysis approach, 
and meta‐dimensional analysis, which integrates multi
ple different data types to develop a multivariate model 
that is associated with one outcome or phenotype [25].

In the context of a disease, there is a significant reason 
for integrating ‐omics data: it has been observed that 
disease‐associated genes tend to form networks of func
tionally related genes, which are termed “disease modules.” 
These disease modules can facilitate identifying the 
organization and prioritization of the disease‐associated 
genes collected by high‐throughput analyses. They can 
also provide insights on the mechanisms and the path
ways underlying the disease. In addition, disease models 
can uncover novel disease genes, biomarkers, or thera
peutic targets, which were not initially identified by 
single‐omics analyses. The general principles of networks 
apply to disease modules. For instance, alteration of hub 
genes is likely to have large effects, whereas alterations of 
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Figure 13.4 The main contributions of academia in 
systems medicine involve generation, integration, and 
modeling of disease‐related data in an interassociated 
and interlocking manner.
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the many genes with few links will probably have small 
effects. Therapeutic targeting of a hub gene is more likely 
to be effective than targeting a gene with few interac
tions. However, this increases the risk of off‐target 
effects. Identification of disease modules can improve 
the selection of the most druggable components of the 
disease module, which would be efficient against 
the disease, while at the same time avoiding side effects 
due to unwanted interactions with molecules outside the 
disease module. This approach is anticipated to optimize 
the efficacy and safety of therapeutic targeting [26].

More importantly, the disease modules are multilayered. 
This means that the relative network module components 
do not belong to only one category of molecules, for 
example, proteins, and therefore cannot be unveiled by 
using only a single data type. The disease modules consist 
of components of several molecule categories, such as 
transcription factors, noncoding RNAs, gene products, 
and other modifiers of gene function (e.g., epigenetic 
factors), which dynamically interact with each other. The 
integration of high‐throughput data from multiple levels, 
both molecular and clinical, can lead to generation of 
multilayered disease modules, which will be more inform
ative on the disease pathogenesis. For example, defining 
an appropriate multilayered disease module that is based 
on the integration of clinical and molecular information 
could lead to the establishment of an optimal combination 
of clinical examination/molecular diagnostics for the earlier 
prediction of disease outcome for individual patients.

Another consideration when defining multilayered 
disease modules is that they dynamically change over time, 
reflecting disease progression. The network compo
nents may be re‐wired over time, in relation with disease 
outcome. Integrating data produced at several time points 
can facilitate the stepwise monitoring of disease course 
[24, 26]. Overall, an important challenge of systems 
medicine is to develop robust methods able to integrate 
all the clinical and molecular ‐omics information.

This step of the process necessitates the development 
of user‐friendly and accessible computational tools for 
the collection, storage, and handling of information. 
Additionally, the establishment of platforms and data
bases for knowledge management will facilitate efforts 
for the integration of “big data” [23].

13.8  Modeling: Computational and 
Animal Disease Models for Understanding 
the Systemic Context of a Disease

The integration of clinical and molecular data in regard 
to a disease across all relevant levels of organization will 
generate disease models that can be exploited as tools for 

further understanding a disease and generating testable 
predictions to improve therapy and prevention. Modeling 
includes molecular modeling (e.g., drug/vaccine target 
predictions, protein–protein interactions), modeling of 
subcellular processes (e.g., linking signaling pathways to 
phenotypes), cell‐based modeling (e.g., cell–cell interac
tions, interactions of cells with their microenvironment), 
tissue/organ modeling (e.g., biomechanical models, 
formation, and maintenance of tissue architecture), and 
body–systems‐level modeling (e.g., pharmacokinetic/
pharmacodynamic predictions, overall survival predic
tions). Samples and experimental models cannot pro
duce all data for all parameters that constitute a disease. 
Thus, computational modeling will be recruited to fill in 
the gaps derived by incomplete experimental data 
through extrapolation and simulation approaches. For 
generating multiscale models to reflect the complexity 
across all levels that are involved to a disease, from 
molecular/cellular to organismal/environmental, several 
actions have to be taken. These include the development 
of computational tools and algorithms for robust multi
scale simulations; the development of mathematical 
approaches to analyze and multiscale models in terms of 
parameter evaluation, sensitivity analysis, identifiability 
analysis, and image analysis; and the establishment of 
workflows for modeling, including computational tools 
that facilitate data management, model construction, 
and analysis and approaches to investigate the interplay 
between the environment and cell response and inte
grate relative data to unified and comprehensive disease 
models [27].

The computational models may unveil novel associa
tions of genes with diseases. This could further guide the 
development of novel animal models in the preclinical 
setting, complementary to the existing ones for more 
thoroughly understanding of disease pathogenesis. For 
instance, if high‐throughput data analysis indicates that 
specific under noticed or overlooked genes are strongly 
implicated in a disease module, then corresponding 
knockout/knockin animal models could be generated for 
the validation and further investigation of this aspect [23].

13.9  Examples and Success Stories 
of Systems Medicine‐Based Approaches

Systems medicine is at the beginning of an exciting and 
challenging road. Systems medicine‐based examples are 
emerging in the context of several chronic diseases. 
These efforts are in several stages of preclinical or clinical 
testing and aim to improve prognostic methods 
or  targeted therapeutic interventions against serious 
chronic diseases. For instance, genome and whole‐exome 
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sequencing methods have been used in the clinic for the 
earlier treatment of neurodevelopmental disorders. 
Transcriptomics has been successfully recruited for the 
prognosis, classification, and stratification of breast 
cancer. In a similar manner, high‐throughput gene 
expression profiling has been recruited for early predic
tion and therapeutic targeting in hepatocellular cancer, 
colorectal cancer, and glioma. Metabolomics are 
exploited in clinical studies for prediction and targeting 
of Alzheimer’s disease [24]. Moreover, systems‐based 
approaches have been adopted in the setting of chronic 
obstructive pulmonary disease (COPD). COPD patients 
display different phenotypes as a result of a complex 
interaction between various genetic, environmental, and 
lifestyle factors. This phenotypic complexity is being 
analyzed in large datasets, in correlation with functional 
genomics assays, using computational biology approaches. 
The management of COPD is now steering toward an 
integrative and systemic approach, focusing on proteom
ics and metabolomics. This strategy aims to identify 
disease subclusters in order to improve the development 
of more effective therapies [28]. Another complex chronic 
condition currently being addressed using comprehen
sive systems medicine‐based strategies is intestinal 
bowel disease (http://www.sysmedibd.eu/).

One of the first European projects that adopted a 
comprehensive systems medicine approach is the 
Mechanisms of the Development of ALLergy (MeDALL) 
(EU FP7‐CP‐IP; Project No: 261357; 2010‐2015) consor
tium for the study of allergies. The results of this project 
have been published recently and provide the first proof 
of concept for the feasibility of systems medicine for the 
successful management of complex diseases. MeDALL 
(http://cordis.europa.eu/result/rcn/175936_en.html) 
was based on a systems medicine approach carried out 
by a networked panel of experts in 54 European sites, 
which linked epidemiological, clinical, and basic research 
data using a stepwise, large‐scale, and integrative 
approach. A knowledge management platform was 
developed, where all partners deposited patient data and 
information, as well as experimental and computational 
tools. The partners had open sharing and access rights to 
the platform. Overall, the database integrates historical 
and newly collected data from around 44 000 partici
pants reporting 398 clinical and phenotypic attributes 
and 160 different follow‐ups at 25 different time points 
between pregnancy and age 20, as well as information 
about available blood samples. Samples have been stored 
in the individual biobanks of the different partners of the 
consortium. The database also includes information on 
allergy‐associated genes based on literature reviews and 
automated text mining. These data were integrated with 
molecular data on protein–protein interactions, tran
scriptional regulation, miRNA regulation, and signaling 

pathways from publicly available databases. Omics data 
produced or made available in this database includes 
23 000 historical genome‐wide association studies, 9 500 
epigenetics, 2 000 proteomics, 750 transcriptomics, and IgE 
microarrays on 4 000 subjects, as well as individual esti
mates of ambient air pollution exposure (10 000 children) 
using computer modeling methods. Ethics considera
tions were also taken into account by establishing a 
dedicated website to address practical information on 
regulatory issues for exchanging biological samples and 
relevant data among the partners of the consortium.

Moreover, a highly sensitive and reliable allergen 
chip tool for detection of 170 allergen molecules was 
developed and applied in the clinic for early detection 
of allergic immune response, within the context of this 
consortium. For addressing bioinformatics aspects, 
machine learning methods were applied using epidemio
logical and clinical data from large patient datasets, and 
a bioinformatic model of multimorbidity of allergic dis
eases was developed. The population‐based studies in 
patient cohorts were complemented with experimental 
animal studies and development of novel mouse models 
for the study of allergy.

Exploitation of the large datasets of this consortium 
led to novel findings. In detail, allergic multimorbidities 
and IgE polysensitization were found to be correlated 
with the persistence or severity of allergic diseases. These 
parameters were confirmed as novel means for differen
tial diagnosis. The integration of multimorbidities and 
polysensitization parameters in patients has resulted in 
reclassification of allergic diseases. This helped to 
improve the understanding of genetic and epigenetic 
mechanisms of allergy, as well as to better manage 
allergic diseases. Ethics and gender were considered. The 
results of this study were translated to clinical activities. 
In detail, the MeDALL data were successfully exploited 
to improve the stratification of allergic preschool chil
dren using multimorbidity and IgE polysensitization as 
predictive markers of disease persistence. In addition, it 
was realized that allergy burden can be reduced with 
relatively simple means on national level. Finland and 
Norway have considered the results of this consortium 
for reforming their Allergy Health Programme. These 
reformations are anticipated to serve as exemplifiers 
for other countries in the future [23].

13.10  Limitations, Considerations, 
and Future Challenges

Biological systems are complex. Systems medicine is a 
coordinated attempt to address this complexity with 
systems‐driven, integrative, cross‐disciplinary, and 
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milestone‐driven platforms and methods. Individual 
investigators and their laboratories will play an important 
role in deciphering the complex details of the broad over
view that are obtained by systems biology and systems 
medicine. The ultimate objectives are to improve healthcare, 
reduce the cost of healthcare, and stimulate innovation. 
The development of systems medicine presents the 
potential to lead to a paradigm shift in healthcare. 
However, this effort also faces limitations and challenges, 
in several levels of its implementation, including academic, 
clinical, socioeconomical, and ethical.

Challenges in academia involve significant methodo
logical problems, such as the accurate detection of 
 signals when numerous variables are measured, as well 
as the discrimination of the informative data from back
ground noise. Other problems related with the clinical 
setting include the combinations of omics data from 
patient samples, which are needed for diagnostic and 
therapeutic purposes, especially given the fact that this 
technology is expensive. Analyses of the cost‐effective
ness of omics platforms for individualized medicine 
should be initiated. Novel software for diagnostic classi
fication is needed, based on the integration of clinical 
information and molecular profiling for a large number 
of patients. In terms of networking among stakeholders, 
multidisciplinary collaborations that include clinicians, 
representatives from patient organizations, experts in 
genomics and bioinformatics, participants from phar
maceutical and biotechnological industries, and health
care and academic leaders are required. The interaction 
among representatives of different backgrounds is a 
challenging task and requires open communication 
channels in order to be effective [24].

Ethics considerations include the final decision making 
on therapy and prevention measures. Personalized 
therapeutic approaches need to be patient oriented. This 
means that in everyday clinical practice the patient’s 
objectives, preferences, and values as well as the availa
ble economic resources have to be taken into account 
[29]. However, in a process which is based on interactions 
among several stakeholders, boundaries are not clear. 
Therefore, the extent of individual responsibility in ther
apeutic decision making should be clearly defined. Ethics 
concerns for the implementation of systems medicine 
include the risks of “eclipsing environmental factors” in 

the context of prediction; exerting reproductive control 
and sliding to “eugenic practice” in the context of preven
tion; reducing a patient’s identity to his or her genes and 
establishing a rigid genetic social hierarchy, in terms of 
personalization; and poor decision making as well as a mis
conception that “patients have a moral responsibility to 
become well” [30]. There is also the concern about the con
fidentiality of information. A prerequisite of systems medi
cine is collecting, electronically recording, and exploiting a 
large amount of data on any individual of the whole popu
lation. Increased accessibility and transferability of these 
data is also needed among stakeholders. Therefore, poli
cies that apply to personalized therapy should be accord
ingly modified. Patient data information should be 
protected so as to both ensure the trust of patients and sup
port interoperable health information exchange [31].

Last but not least, the socioeconomic benefits of sys
tems medicine need to be quantified in order to evaluate 
the effectiveness of this novel concept. Indicators should 
be defined to measure the impact on quality of life, 
reduction of disease burden, and health economics. A 
positive impact could justify additional investments [18].

An old Indian story talks about three blind men who 
came across an elephant. Each of the blind men touched 
a different part of the elephant and gave a description of 
what he believed an elephant was. The person who 
touched the elephant’s trunk claimed the elephant to be 
a snake. The person who touched the elephant’s leg 
declared the elephant to be a tree trunk. The person who 
touched the elephant’s ear identified the elephant to be a 
sail. On the one hand, based on the blind men’s confined 
level of interaction with the elephant, their observations 
made sense. On the other hand, if they had collaborated 
and holistically studied the elephant, its true structure 
might have started to become apparent. However, we 
should keep in mind that in this story all the men had 
been blind and just discussing their observations pose a 
risk of creating more confusion than clarity. Insightful 
interaction among them would be necessary for the 
meaningful integration of their conclusions to compre
hend the global picture of the elephant. Understanding 
complex systems such as the human body can benefit 
from collaboration, but appropriate interactions and 
interdisciplinary networking are an indispensable para
meter for the successful outcome of this effort [6].
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14.1  Introduction

Data mining (DM) is an interdisciplinary area focusing 
upon methodologies for extracting knowledge from 
data using various tools such as database systems, statis
tics, machine learning (ML), and data visualization [1]. 
Analysis of big datasets is centered on finding repeating 
patterns and systematic relations—a task that can be 
achieved only by using sophisticated algorithms and 
computing power. The goal of DM is detection, inter
pretation, and ultimately prediction of qualitative or 
quantitative patterns in data, and for this reason DM 
techniques are commonly used in business, healthcare, 
economics, and scientific research [2].

The ongoing growth of scientific data, caused by rapid 
technological improvements and common usage of high‐
throughput technologies, created the need for effective 
data handling and analysis [3]. Because significant pro
gress has been made in generating, collecting, storing, and 
managing information, DM became an important tool in 
research. Employment of database systems into research 
workflow resulted in easier information retrieval and 
management and hence empowered the development of 
more advanced data analysis techniques. This is particu
larly important in life sciences, given the high complexity 
and multidimensionality of biological data and growing 
trend toward integrative analysis and modeling [4]. DM 
can facilitate discovery of biomedical knowledge to sup
port clinical and administrative decisions, as well as gen
erate novel scientific hypotheses from large experimental 
data, clinical databases, and biomedical literature [2].

DM is often referred to as knowledge discovery in 
databases (KDD) and is in fact the core of a multistep 
process leading to a comprehensive data analysis and 
knowledge extraction. In this chapter, we will describe 
the knowledge discovery processes with focus on DM 

methodologies and their growing applications in scien
tific research. The terminology commonly employed in 
this field is summarized in Table 14.1.

14.2  Knowledge Discovery Process

The interdisciplinary field of DM has grown in popularity 
over the last few decades, as big data analysis has proven 
to be beneficial in many areas, from business to science. 
KDD, a multilevel process designed for automatic explora
tory analysis and modeling of large‐scale data repositories, 
is often referred to as DM. In fact, KDD consists of several 
steps aimed at identifying novel, intrinsic, and character
istic patterns from large and complex datasets. DM is 
the core of the knowledge discovery workflow, preceded 
by  data preparation and preprocessing and followed 
by  extensive patterns evaluation [5]. DM frameworks 
are divided into two groups: theory‐oriented (databases, 
 statistics, ML, etc.) and process‐oriented (Fayyad’s, CRISP, 
etc.). In theory‐oriented framework, we can distinguish 
different approaches to discovery. Database approach is 
based on the query concept that assumes that established 
theory is an essential tool in the discovery process. Both 
statistical and ML approaches rely solely on the data, by 
either fitting model to data or allowing data to suggest the 
model, respectively. On the other hand, process‐oriented 
framework addresses the issues of viewing DM as an 
interactive and iterative process.

Along the DM evolutionary path, standards and good 
practices have been established and collected in the form 
of a specific set of methodologies, named cross‐industry 
standard processes for data mining (CRISP‐DM) [6]. 
They are defined by six crucial steps of knowledge dis
covery processes and guide analysts through the entire 
procedure.
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CRISP‐DM steps include the following:

1) Business understanding—Understanding and defin
ing of business goals and the actual goals of DM. 
With regard to research, this step defines the scien
tific questions to be answered through the application 
of DM.

2) Data understanding—Familiarization with the data 
and the application domain by exploring and defining 
the relevant prior knowledge. Importantly, due to the 
high complexity, DM of biological data requires deep 
understanding of the research domain, biological 
processes, and relations reflected in the data.

3) Data preparation through data cleaning and 
 preprocessing—Creating the relevant data subset through 
data selection, as well as finding of useful properties/

attributes, generating new attributes, defining appropri
ate attribute values, and/or value discretization.

4) DM—The most important step of this process, which 
is concerned with choosing the most appropriate DM 
tools—from the available tools for summarization, 
classification, regression, association, and clustering—
and searching for patterns or models of interest.

5) Evaluation and interpretation of results—Aided by 
pattern/model visualization, transformation, and 
removal of redundant patterns.

6) Deployment—The use of the discovered knowledge.

All steps of KDD are illustrated in Figure 14.1 and will 
be described in detail in this chapter. The KDD process is 
iterative and interactive; thus multiple refinements can 
be performed at each step of the cycle. The ultimate 
goals are either verification of a hypothesis, which relies 
solely on users input, or discovery (further subdivided 
into prediction and description), where new insights can 
be generated by the system.

Although the applications of DM techniques in 
research and healthcare are relatively recent, they 
hold great potential for prediction, diagnosis, and 
treatment by discovery and elucidation of patterns 
and processes that cannot be directly concluded from 
experimental data [2]. There are several research 
domains where learning algorithms are being used: 
genomics, proteomics, microarrays, systems biology, 
evolution, and text mining (TM) [7]. Possible research 
applications are presented in Figure  14.2. Moreover, 
healthcare domain benefits from the application of DM 
through support of medical decision making (such as 
diagnosis process or treatment choice) and improve
ment in administrative management (demographic 
trends, insurance, and quality assurance).

14.2.1 Defining the Concept and Goals

The initial step in the KDD process is defining the purpose 
and the end objective of the analysis. This preparatory 
step is needed to characterize the data, algorithms, and 
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Figure 14.1 The end‐to‐end knowledge discovery (KDD) process. This figure shows the flow of information from the acquisition stage 
through to the final output via numerous steps.

Table 14.1 Data mining terminologies.

 ● Supervised learning—A DM method used to build prediction 
models based on prior knowledge, for example, classification

 ● Unsupervised learning—A condition whereby a prediction 
model is built based on a discovered structure, where the 
grouping is not known, for example, clustering algorithms

 ● Training set—A portion of data used to learn/create a model
 ● Test set—A subset of data used for model validation and 

assessment of classifiers’ performance
 ● Cross‐validation set—A subset of data used for classifier 

enhancement and error estimation
 ● Attribute—Field, variable, feature, and table column
 ● Target value/attribute—A value that has to be predicted
 ● Categorical attribute—An attribute where the values 

correspond to discrete categories
 ● Discretization—Grouping of related values together under a 

single value, quantitative data into qualitative data
 ● Generalization—Ability to produce reasonable outputs for 

inputs not encountered during the training
 ● Overfitting—A problem in modeling, when a function is too 

closely fitted to a training set, thus does not generalize well 
when input values come from external datasets

Common terms frequently used in the process of data mining are listed.
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desired outputs and is vital in order to direct DM efforts. 
Without specific goals, DM may fail to meet desired 
expectations and satisfactory outcome.

14.2.2 Data Preparation/Preprocessing

Data preparation is a major step in the KDD process, as 
the quality of a constructed model is highly dependent 
on the data quality. It can often be the most demanding 
and laborious of all stages, due to the “raw” data hetero
geneity, complexity, and existing uncertainties caused 
by noise, inconsistencies, and missing information. There
fore, preprocessing is required to adjust the data to 
the requirements of DM algorithm. Preprocessing can 
be divided into operations such as data collection, 
understanding, and preparation that include cleaning, 

integration, transformation, and reduction (Figure 14.3), 
which are essential to perform in order to achieve con
sistent, high confidence results.

Once the purpose of the analysis is established and 
data scope is characterized, the consecutive phase is data 
collection and understanding. Often, datasets are derived 
from different sources, and as a consequence, some 
discrepancies can exist regarding common identifiers, 
formats, relationships between attributes, and so on. 
Hence, a comprehensive knowledge of existing varia
tions is needed in order to identify preparation steps and 
therefore obtain unified data. Data cleansing consists of 
actions aimed at detection of incomplete, inaccurate 
records in the dataset and dealing with those inconsist
encies by corrections, deletions, or even predictions of 
missing values. Consecutively, datasets are consolidated, 
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Figure 14.2 Possible research applications of KDD techniques.
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Figure 14.3 Forms of data preprocessing. 
Examples of data handling routines generally 
used in the transformation of acquired raw 
data prior to modeling are shown.
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and a transformation step is applied to convert data from 
the source format to match the destination data system. 
This can involve the following tasks:

 ● Smoothing (noise reduction/removal, binning, clustering, 
regression)

 ● Aggregation (summarization)
 ● Generalization (simplification, hierarchical organization)
 ● Normalization (scaling)
 ● Attribute construction (new attributes constructed 

from the existing ones, support for mining process)

Subsequently, the reduction phase is used to simplify/
aggregate/compress data for easier model generation 
while still retaining critical information. It is especially 
useful when the analyzed dataset is large and various 
exploratory analysis solutions are being tested. One of 
the most common approaches used for the size reduc
tion is sampling, that is, random selection of a smaller 
subset of the initial dataset. Ultimately, processed data 
are loaded into the database repositories. From there 
they can be used by mining algorithms in the modeling 
process.

14.2.3 Database Systems

Considering the huge amount of information, especially 
when referred to multidimensional biological data, 
employment of databases to support the mining process 
is necessary. Database systems are designed to enable 
efficient storage, maintenance, exploration, and exchange 
of deposited data; thus their application in the research 
field is now common [8]. Regardless of the type of applied 
enterprise data storage (e.g., SQL Server, Oracle, IBM 
DB2, Sybase, MySQL, PostgreSQL), all of them serve the 
same purpose, which is storing and enabling easy infor
mation retrieval. The main characteristic feature of data
bases is the storing of data in a strictly organized way. 
The logical structure of the database is determined by 
the data model, which affects the manner of how infor
mation will be stored, formatted, and manipulated. 
There are several architectural data models used in data
base creation, for example, relational, hierarchical, or 
network. Among them, the most popular is the relational 
model, which relies on the mathematical theory of sets 
and is used to build relational databases [9]. For the clar
ity of the chapter, database models and characteristics 
will not be further described.

In the recent years, biological databases have grown on 
popularity as their application significantly facilitates 
information retrieval and bioinformatics analysis [10]. 
They cover various research topics and systemize general 
knowledge about genome, proteome, and RNAs, as well 
as known biological pathways and molecule interactions. 
Moreover, numerous databases cover more specialized 

subjects such as ‐omics studies in disease research [11]. 
Often, these data repositories are publicly available 
online and serve the research community by providing 
up‐to‐date, manually, and/or computationally curated 
data. Given the wealth of the knowledge combined with 
the easy access to information that databases provide, 
both wet‐lab scientists and in silico researchers can 
benefit from this resources [12].

14.2.4 Data Mining Tasks and Methods

DM is at the heart of knowledge discovery process, 
as in this phase, through application of suitable algo
rithms, model is generated from previously selected 
and preprocessed data. The DM tasks can be divided into 
predictive (e.g., classification or regression) and descrip
tive (clustering or association analysis) (Figure 14.4). 
The general idea is that initial input data is subjected 
to an analysis aiming at the discovery of generalized 
patterns to create useful knowledge. This scenario is 
often called inductive learning, where the model is 
derived from training data and should have a predic
tive ability when applied to new data. Major DM tasks, 
that is, classification, regression, and clustering, are 
graphically represented in Figure 14.5.

DM tasks can be performed using various methods, 
developed in the field of statistics or using ML algo
rithms. Determination of which approach to use in the 
process requires primary knowledge about the data 
being analyzed as well as the expected result. In general, 
statistics are especially useful in the analysis of continu
ous datasets. On the other hand, ML methods originated 
from categorical data analysis (e.g., binary outcome), 
which makes them especially useful for dealing with the 
descriptive data features [13].

A general workflow applied for model generation and 
learning starts with data separation into training, valida
tion, and testing sets. The training set, containing most 
of the data (~80% according to good practice), is used to 
create the model. Consecutively, a small validation set 
(~20% of input data) is used to enhance the performance 
of the classifier and estimate the error. Lastly, the model 
is applied to make predictions against the test set. 
An  evaluation of the model is very important for the 
 prediction of how well it will perform in the future and is 
a vital step due to the common DM problem of over
fitting. This phenomenon appears when the model is 
too strongly fitted to the training set and, as a result, 
performs with a poor generalization and prediction. 
In contrary, underfitting occurs when a model cannot 
capture the complexity of the data. Both issues can be 
avoided by applying cross‐validation steps during model 
development. Finally, optimization methods are employed 
to select the best performing classifier.
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Mining methods can be distinguished based on the 
learning form with different degrees of supervision, that 
is, supervised, semi/weakly supervised, and unsuper
vised [14]. In supervised learning (also called direct DM) 
data labels (classes) are known in advance, so the predic
tion model is supposed to classify new cases based on the 

“imposed” knowledge. Regression and classification fall 
into this category. Unsupervised systems are not fed 
with example classes, so the discovery process aims at 
creating classification pattern, which is data driven. The 
prediction is then based on discovered relationships and 
the structure of the underlying data. Additionally, semi 
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Figure 14.4 Data mining tasks. The decision tree of various data mining methods is shown. Source: Maimon and Rokach [5]. Reproduced 
with permission of Springer.
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Figure 14.5 Data mining applications. Commonly employed tasks in data mining such as classification, regression analysis, or clustering 
are depicted.
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and weakly supervised systems use only a subset of train
ing examples, enabling the algorithms to take unlabeled 
data into account and create own clusters. The most 
commonly used algorithms from both statistics and ML 
fields will be described in this section.

14.2.4.1 Statistics
Statistics is a subdiscipline of mathematics that is applied 
in DM to create probabilistic models. Statistical inference 
relies on quantification, collection, analysis, summariza
tion, and interpretation of data. Imposed mathematical 
rigor made statistical methods a highly valued and trusted 
analysis tools. Among them, major approaches used in 
DM tasks are correlation, association analysis, regression, 
and clustering.

14.2.4.1.1 Classification
Classification is a cognitive process designed to organize 
and structure the knowledge about the world. Classi
fication models are widely used in research fields, as they 
aim at creating classes that can distinguish different 
categories of data, for example, benign versus malignant 
cancer patients. A model is built upon discovered rela
tionships between the data attributes and tested on 
so‐called prediction sets. The goal of classification is 
to predict a certain outcome given an input. Predictive 
model is an output of processing algorithm, which dis
covers relationships between attributes in the training 
set. The algorithm is evaluated on the prediction accu
racy of the discrete target attribute. This ranking is con
ducted using test set data, which was not used for the 
initial modeling. Performance of the classifier is meas
ured as a percentage of positive hits against the total 
number of predictions [2]. Classic example of statistical 
classification is Iris flower dataset, which consisted of 
50 samples from each of three species of iris (Iris setosa, 
Iris virginica, and Iris versicolor). Four features were 
measured from each sample: the length and the width of 
the sepals and petals. Based on the combination of these 
four features, Fisher developed a linear discriminant 
model to distinguish the species from each other [15].

14.2.4.1.2 Correlation
A correlation indicates the strength and relationship 
between two random variables or two sets of data. Based 
on the dependence between the variables, predictive 
relationships can be elucidated; thus this method is com
monly used in research. For example, there are many 
publications that prove correlation of kidney function 
with kidney size (measured by echo sonography) [16], 
blood pressure [17], and thyroid dysfunction [18]. In bio
marker research it is common to investigate the corre
lation between renal function and a single or a group 
of biomarkers, for example, the urinary NGAL level is 

increased in children with ureteropelvic junction obstruc
tion [19] or the correlation between cystatin C and the 
glomerular filtration rate (GFR) [20].

14.2.4.1.3 Regression
The regression function is used to predict numerical 
values; thus it is sometimes referred to as “classification 
with continuous classes.” The constructed model is a best 
fit function to observational datasets provided as input. 
Several types of regression processes exist, such as linear, 
nonlinear, and multivariate types. The quality of the model 
is evaluated with statistical measures such as root mean 
squared error (RMSE) and the mean absolute error (MAE).

Regression modeling has many applications in trend 
analysis, time series predictions, biomedical, and drug 
response modeling. The regression analysis seeks to 
determine the values of parameters of a function that fits 
best to a set of observational data. There are a variety of 
different types of regression in statistics, but the basic 
idea is that a created model maps values from predictors 
in such a way that the lowest error occurs in making a 
prediction. We can distinguish the following:

 ● Linear regression—Where the relationship between 
predictor and target is linear.

 ● Multivariate linear regression—There are multiple 
predictors to determine the target value.

 ● Nonlinear regression—Relationship between predictor 
and target cannot be approximated with a straight line.

 ● Logistic regression—Predictor is categorical (dichotomous).

Regression analysis is widely used in research to gener
ate predictors of patient outcome, for example, the study 
of Suzuki et al. presented the model of hearing outcomes 
of patients with sudden hearing loss. Based on selected 
prognostic factors such as age, days from onset to treat
ment, initial hearing level, and known hearing indices 
from the study cohort group, they were able to estimate 
the hearing prognosis for new patients [21]. Worth men
tioning is the educational paper of Leffondre et al. where 
applicability of different regression models is compared 
(based on exemplary chronic kidney disease (CKD) patient 
cohort), in order to familiarize the reader with good 
practices and pitfalls when performing this analysis [22].

14.2.4.1.4 Association Analysis
Association rules help uncover hidden relationships 
between data through analysis of frequent patterns that 
appear in the large dataset and are rendered statistically 
dependent. There is a large similarity between correla
tion and association, but the former is considered more 
rigidly defined [23]. Among different measures of asso
ciation, some of the most commonly used are Pearson’s 
product moment correlation coefficient, Kendall’s tau, or 
Spearman’s rho.
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Studies aiming at associations’ discovery in kidney 
research are, for example, linking kidney conditions with 
common genetic variants responsible for Mendelian 
diseases proved that single nucleotide polymorphisms 
(SNPs) are not associated with eGFR [24]. In the study of 
Lu et al. [25], authors investigated if age and BMI influ
ence progressive loss of kidney function. Analysis of a 
large cohort of veterans using Cox model showed that a 
BMI above 30 kg/m2 and older age are associated with 
rapid loss of kidney function in patients with eGFR of at 
least 60 ml/min per 1.73 m2. Moreover, best clinical out
comes are expected for patients with BMI of at least 
25 kg/m2 but less than 30 kg/m2. Association analysis was 
also performed in the study of Ginsberg et al. to investi
gate the risk of adverse safety events in patients with 
advanced CKD. Observational study data was used to 
determine co‐occurrence in events that can result in 
disease progression, revealing some with frequent 
association between disparate episodes, such as falling 
or severe dizziness among diabetic patients, often 
accompanied by hypoglycemia [26].

14.2.4.1.5 Clustering
Clustering is a common task used in statistical data analy
sis, which groups similar objects (discrete or continues 
attributes) in the set of so‐called clusters. Created model 
can be used for mapping of new instances to initially 
established clusters. It is an example of unsupervised 
learning method, as grouping is performed on unlabeled 
data, contrary to classification. Usually, the points are in 
high‐dimensional space (have multiple parameters/attrib
utes describing them), and similarity between them is 
defined as a distance measure. Euclidean distance is one of 
the possible ways to estimate similarity (distance) between 
two points (e.g., samples) in a multidimensional space. It is 
defined as the square root of the sum of the squares of the 
differences between the corresponding coordinates of 
the points and is denoted by equation ((x, y) and (a, b) are 
coordinates of the points in the plane)

 dist , , ,x y a b x a y b2 2
 

Clustering can be performed using various algorithms:

 ● Hierarchical methods—Build a tree of clusters, with 
root being a collection of all features and leaves 
 containing one single element.

 – Agglomerative (bottom‐up) algorithms—Iteratively 
“nearest” clusters (points) are combined together.

 – Divisive (top‐down) algorithms—Initial cluster is 
iteratively split into smaller sub‐clusters.

 ● Partitioning methods—Map a collection of elements 
(e.g., genes, proteins) into k ≥ 2 clusters, aiming to 
maximize a particular criterion.

 – K‐means methods—Initiated by k random centroids 
in Euclidian space, points are assigned to the cluster 
clusters and position of centroid (center of a cluster 
is updated).

 – Self‐organizing maps (SOM).
 ● Fuzzy clustering—Form of soft clustering, that is, one 

element can be assigned to more than one cluster.

Clustering in DM can be applied in the preprocessing 
step to support other algorithms such as correlation or 
classification, but it can also be a stand‐alone tool in the 
analysis. There are numerous examples of clustering usage 
in a variety of fields like engineering, computer sciences, 
life sciences, or economy [27], as well as in exploratory 
data analysis, for example, for species categorization and 
determination of interspecies relationships [28], image 
clustering, or pattern recognition. Image clustering can 
support the process of image annotation, indexing, and 
segmentation aiming at disease identification (e.g., 
cancer classification based on histology image) [29]. For 
example, in the field of breast cancer, image clustering 
largely supports risk stratification and diagnosis of patients 
[30]. In the work by Vivona et al., clustering algorithm suc
cessfully identified microcalcifications on mammograms, 
which are pathological breast lesions, generally difficult 
to identify due to its small size (0.1–1.0 mm) and poor 
contrast [31]. In terms of pattern recognition, in the study 
of Zang et  al., hierarchical clustering was performed 
to analyze treatment data of over 8000 CKD patients in 
order to gain knowledge about commonly used clinical 
treatment patterns. Based on the results, six different 
patient classes were recognized that differed with regard 
to comorbidities, progression level, demographics, sex, 
and age. This approach shows that electronic health 
records (EHR) analysis can be beneficial in elucidating 
best suited treatment regimes, as well as applications in 
multifactorial disease studies such as CKD [32].

14.2.4.2 Machine Learning
The field of ML is a combination of computational science 
and artificial intelligence (AI) focused on data‐driven 
model and pattern discovery, where computers are given 
the ability to learn without being explicitly programmed. 
In ML, a model is built using a statistical theory based 
either on training data or past experience. Importantly, 
the system can learn and improve through experience. 
An important characteristic of ML models is the ability 
of generalization, which is the ability to truly reproduce 
the output of the function [7].

ML consists of variety of approaches to tackle DM 
tasks. They can be categorized into two main groups:

 ● Symbolic approaches
 – Decision trees
 – Logical representation
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 ● Statistical approaches
 – Bayesian classifiers
 – Neural networks (NN)
 – Support vector machines (SVM)

Remarkably, some algorithms are a mixture of both 
approaches. Additionally, ML algorithms can be divided 
into supervised and unsupervised learning methods.

14.2.4.2.1 Decision Trees
Tree‐based methods are widely used in predictive mode
ling, due to their simplicity and good predictive power. 
Decision trees are a popular way of visual representation 
of data by splitting it into a comprehensive set of branch‐
like segments. Each tree consists of decision nodes and 
leaf nodes (representing classification or decision) and 
originates from the root node at the top of the tree. 
The decision tree analysis can be used to represent 
both categorical and numerical data, thus giving rise to 
either classification trees, which work with discrete 
variables, or regression trees, which assign continuous 
values for prediction [33].

Among the decision tree family, the most popular 
algorithms are ID3, C4.5, CART, CHAID, and MARS. 
In the basic model (ID3 algorithm), a tree is constructed 
using a top‐down approach, where the first attribute is 
the root. The creation of a decision tree relies on itera
tive classification of instances, sorting them with regard 
to how well they classify the training set. The measure 
describing how well a particular attribute separates the 
set is called information gain. In the same manner, 
descendants of the root are created with possible attrib
ute values forming tree branches [33]. At each step, 
splitting criterion is selected. If so‐called greedy selec
tion algorithm is used, a locally optimal choice is made, 
and there is no backtracking of former decisions. 
On the contrary, a non‐greedy approach can be used to 
constructing globally optimal multivariate decision 
trees, explicitly considering all decisions in the tree 
concurrently [34].

Decision trees are widely used to support decision 
making, as they offer a clear visual representation of the 
selection process and can be easily transformed into a set 
of “IF” rules. For this reason, they can be applied in 
numerous research areas. For example, a decision tree 
was developed to guide clinical studies in the field of 
drug development through classification of different 
membrane transporters, which determined safety and 
efficacy profiles of drugs [35]. Additionally, the tree clas
sification can be helpful when mining patient health 
records for diagnosis prediction, patient stratification, 
treatment options, and general prevention. In the recent 
paper by Huang et al. [36], classification methods were 
explored for the early prediction of diabetic nephropathy 

(DN) among diabetic patients. As DN is the leading 
cause of progressive renal failure among diabetics, the 
authors performed a decision tree modeling based on 
genetic and clinical characteristics of diabetic patients’ 
cohort.

14.2.4.2.2 Bayesian Classifiers
The Bayesian classification algorithm is a statistical 
approach based on Bayes’ probability theorem. In a nut
shell, the algorithm allows us to predict a class, given a 
set of features using probability. As an example, we could 
predict whether a fruit is an apple, orange, or banana 
(class) based on its features, for example, color, shape, 
and so on. Formally, the Bayesian rule calculates a condi
tional probability of an event (posterior) given the prob
ability of initial belief (prior) with relation to a likelihood 
probability of a new hypothesis. The naïve Bayes classifier 
is the most basic approach used for classification tasks. 
It offers great conceptual and implementational simplicity, 
as it assumes independency of an attribute value of other 
existing attributes [37]. A naïve Bayesian classifier offers 
a surprisingly excellent performance and despite its 
unrealistic assumption, as attribute values are not always 
independent, often outperforms more sophisticated 
classifiers [38].

Graphical models encoding a joint probabilistic distri
bution among the attributes are called Bayesian networks 
(BN). They can rely on Bayesian statistics, but not 
exclusively. These graphical structures help in gaining 
knowledge about uncertain domains. In BN each node in 
the graph represents a random variable, while the edges 
between the nodes represent probabilistic dependencies 
among the corresponding random variables [39]. There 
are several advantages over other existing analysis tools 
that BN have to offer. First of all, they can handle missing 
data without producing an incorrect interpretation 
due to an independency of variables. What is more, a 
network can help with an exploration of causal relation
ships in the data and as a result, improve the prognosis. 
Since an implementation is straightforward, it is easy to 
combine existing knowledge with data and avoid the 
problem of overfitting [40].

BN classifiers are widely used in research field, facili
tating systems biology modeling. Wang et  al. present 
utility of this classifier in ‐omics data integration aim
ing at novel discoveries in mechanisms of complex 
 diseases. Proposed BN classifier effectively predicted 
protein–protein interactions and grouping of proteins 
based on function, resulting in selection of potential 
biomarkers for hepatocellular carcinoma (HCC) [41]. 
Another interesting application was use of BN to prior
itize patient clinical data in the study by Singh et  al. 
Proposed classifier accurately classified (93.50% of 
accuracy) radiology reports marking them either as 
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“high” or “low” priority, which can support clinicians 
with reviewing process of medical documents and 
improve patient safety through faster feedback in case 
of worrisome results [42].

14.2.4.2.3 Artificial Neural Networks
Artificial neural network (ANN) is a classification algo
rithm inspired by the way a biological nervous system 
processes information. The artificial neuron model reflects 
the behavior of natural neuron processing patterns. 
When a signal is received by neural synapses located on 
the dendrites and a certain threshold, which is needed 
to activate the neuron, is surpassed, then the stimulated 
neuron emits a signal through the axon and therefore 
can activate other neurons. In ANN models, this com
plexity is highly abstracted. A simple NN consists of 
three interconnected layers: an input layer (similar to 
synapses) receiving the signal that is further multiplied 
by weights according to its strength, a hidden layer 
representing the activation function (threshold), and an 
output layer that returns the processing output. ANN 
can have many topologies depending on the complexity 
of the task. Nevertheless, the process of training involves 
adjusting the weights (values) of the functions connect
ing each layer to the best relationship model between the 
input.

The strength of an NN approach lies in the capability 
of learning from experience, which can help solve 
problems that traditional computational and statistical 
methods cannot handle. They are commonly used for 
mining patterns and trends that are too complex to be 
discovered without the employment of substantial 
computational power. There are two main types using 
NN architecture: feedforward networks, such as single‐/
multilayer perceptions where information moves in one 
direction without any feedback involved, or recurrent 
(feedback) networks, which allow neurons to send feed
back signals to each other through the employment of loops 
and cycles in the model, for example, Kohonen’s SOM.

ANN can be applied to various research fields to sup
port decision making or classification and screening 
tasks, such as in disease prediction and diagnosis [43–46], 
as well as disease or patient stratification [47–49].

14.2.4.2.4 Support Vector Machines
The SVM algorithm is an example of a supervised train
ing method used for classification and regression analysis. 
The concept of this method is to map data points (input 
vectors) in the input space to a high‐dimensional feature 
space. The values extracted from the dataset that serve 
as an input to SVM algorithms are called features. 
In  some cases, feature selection is required prior to 
a  classifier construction, as some attributes might be 
 considered redundant for the learning process [50]. 

In the feature space, a decision hyperplane is constructed, 
which ensures good separation of classes and high 
generalization ability. SVM algorithm attempts to find a 
linear separator of data points by maximizing the margin 
between the two classes. As accurate linear separation 
might not exist for many multidimensional datasets, 
SVM based on kernel functions are used to construct 
nonlinear separators [51].

The SVM approach emerged as a good alternative to 
classic analysis methods. It has proven effective for 
 disease diagnosis and prediction, especially in the field of 
neuroimaging for neurological and psychiatric disease 
predictions [50]. Apart from imaging data, SVM are used 
in many case–control studies aimed at disease detection, 
as an example in the field of peptidomics where a classi
fier (CKD273) has been developed to assess the stages of 
CKD [52]. In the study by Marom et al. [53], the SVM 
algorithm was employed to detect if a simple breath test 
can serve for early detection of CKD.

14.2.4.3 Text Mining
TM is a topic that utilizes many DM approaches for 
comprehensive text analysis to be used for exploration, 
discovery, classification, or prediction purposes. Contrary 
to databases, where information is presented in an 
organized and informative manner, textual data has no 
structured components, which makes the querying and 
analysis a real challenge. Additionally, the volume of 
data considered for information retrieval is huge, which 
further impedes the TM process. Effective TM is of 
special interest in biomedical research, as evidenced by 
the growing number of publications concerning this 
topic and possible applications (Figure 14.6). As novel 
findings are disseminated among the scientific commu
nity in the form of manuscripts, extraction of valuable 
information that can be used for further modeling 
needs to be performed manually or with the help of TM 
tools. However, the rapidly generated literature is diffi
cult to keep up with, and following distinct research 
areas in the traditional manner is becoming nearly 
impossible, because of the lack of scalability of manual 
curation [54].

In the search for new knowledge, many DM tech
niques, combined with natural language processing, 
have been employed and have substantially improved 
over the past decade [55,56]. The application of TM in 
the field of systems biology not only enabled automatic 
detection and annotation of molecules such as genes or 
proteins but also empowered more advanced discover
ies of biological events and interactions between bio
logical components [57]. Consequently, TM supports 
the development of many biological databases through 
automated processes of data collection [58–61]. It is 
also popular in studies where electronic patient records 
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(EPR) are screened in search for disease patterns or 
diagnostic tools [62,63]

14.2.5 Pattern Evaluation

The final step of the knowledge discovery process is the 
evaluation of an obtained model and its optimization and 
interpretation. As previously mentioned, this assessment 
is needed to determine how well the classifier performs 
and if an under‐ or overfitting problem exists. There are 
several methods to evaluate the model by measuring 
various indicators such as error rate, squared error, likeli
hood, information gain, cost function, or margins. For this 
purpose, a validation set (holdout pattern) is isolated from 
the data collection; nevertheless in the case of a small 
sample size where a separate subset of data cannot be 
selected, other validation patterns can be employed [64]:

 ● k‐Fold cross‐validation—The dataset is divided into k 
subsets where one of the subsets is used as the valida
tion set and the remainder is used for training. The 
process of model evaluation is performed for different 
validation sets, and an error is produced as an average 
of errors from k‐iterations.

 ● Leave‐one‐out—The model judgment is calculated for 
each example from the dataset being used as a test set, 
and then the average is calculated for all judgment 
values.

 ● Bootstrapping—From the original dataset, a sample 
subset is selected, and a model is trained and evaluated 
by a calculation of training, testing, and final errors 
that are averages of every iterations.

Based on the given error of the predictor, the existence 
of under‐ or overfitting can be discovered. An additional 
use is in optimization methods that are developed to 
tune learning parameters of a model to choose the best 
scoring classifier.

14.3  Data Mining in Scientific 
Applications

Scientific DM is probably the most challenging 
and exciting area of bioinformatics. Significant tech
nological advancements made in the field of high‐
throughput ‐omics, that is, genomics, transcriptomics, 
proteomics, and metabolomics, directed current 
efforts toward designing software able to handle the 
analysis of the continuing flow of experimentally 
generated data [65]. DM approaches have been used 
to support traditional statistical techniques to 
address “big data” challenges, such as accounting for 
the large dimensionality and complexity of biological 
data [66]. Growing interest in DM techniques in 
research can be noticed through rapidly increasing 
number of scientific publications concerning these 
topics (Figure 14.7).

Given the diversity of DM algorithms, distinct views 
on DM have been taken by researchers. Commonly, DM 
is considered as an induction, that is, generalization of 
data through exploration of possible patterns and 
replacement of low‐level values (such as numeric value 
of age) by higher‐level concept values (e.g., young, old, 
age intervals). Similarly, DM is also presented as an 
approximation process, in which exact information is 
simplified in an attempt to identify hidden structure 
of the data. Among database system community, DM is 
perceived as intelligently querying a dataset [3]. 
Therefore, there is no definite recommendation when 
deciding what DM approach to use for the exploration 
of the scientific data. Diversity of available options 
makes it difficult for a non‐experienced researcher to 
choose the most appropriate method. However, some 
algorithms have been used more frequently with regard 
to the specific type of ‐omics data analyzed and will be 
presented here.
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14.3.1 Genomics Data Mining

Computational methods of data analysis are considered 
the most advanced in the field of genomics. Next‐gener
ation sequencing technologies measuring DNA, RNA, 
and epigenetic patterns are the source of large genomics 
datasets, rich with information, but difficult to process 
and extract valuable information. There are numerous 
challenges accompanied with the analysis of such data. 
As high‐throughput genomics experiments yield a huge 
number of candidate targets, the probability of false 
positive results is high. Relying solely on stringent statis
tical criteria might discriminate many real targets and 
introduce high false negative error. Thus, DM techniques 
need to account for this so‐called multiple comparisons 
issue and minimize both types of errors. Moreover, high 
dimensionality and variability (noise) of genomics data 
further add to the complexity of the analysis [67].

A number of scientific publications report successful 
application of DM techniques in the area of genetics 
and genomics. ML techniques have been widely used for 
gene annotation, prediction of gene function, identifica
tion of regulatory elements, and so on [68]. Unsupervised 
learning methods of clustering as well as supervised 
learning algorithms are typically used to establish gene 
expression patterns in different study groups [69]. How
ever, it has been pointed that many factors, both technical 
and biological, such as differences in analysis platforms, 
normalization methods, or gene expression correlation 
might be a source of discrepancy between identified 
prognostic markers [70]. Therefore, many efforts have 
been made aiming to define stable feature selection in 
the field of biomarker discovery [70,71].

Clustering of microarray data is commonly used as a 
method to efficiently reduce dimensionality of gene 
expression data. Figure 14.8 shows an example applica
tion of learning algorithm for building and evaluation of 
a model using scientific data. Both classes of clustering 

algorithms, that is, hierarchical and partitioning, have 
been applied in genomics data analysis [72]. Output of 
this analysis is a two‐dimensional dendrogram, where 
genes with similar expression patterns are grouped 
together and connected by branches. These formed 
clusters might suggest co‐expression, co‐regulation, or 
existence of groups in samples or even detect outliers 
[73]. Importantly, interpretation of the results is often 
the most challenging part of clustering analysis. BN 
are another type of unsupervised learning methods 
that have been applied for gene expression analyses. 
Constructed network represents conditional dependen
cies between genes, which might be translated into 
possible interactions within cells and, thus, provide novel 
biological insights. For this reason, Bayes’ nets attracted 
attention of scientists and were used as a discovery 
method in a number of genomics studies [74–76]. Lastly, 
classification methods are widely applied in microarray 
analyses to find gene expression patterns able to discrim
inate diseased from healthy people and predict disease 
stages or patient outcome.

14.3.2 Proteomics Data Mining

Similarly to genomics, a variety of DM techniques have been 
fruitfully applied in proteomics data analysis. DM appli
cation can provide information on individual proteins 
through protein annotations and prediction of protein 
structure, function, location, or possible interactions 
[77]. Moreover, proteomics DM enables gaining deeper 
understanding of protein networks in health and disease. 
Due to their high‐throughput nature, mass spectrometry 
(MS)‐based methods for characterization of protein con
tent and expression in biological samples have largely 
benefited from DM techniques [78]. Primarily, mining 
can be performed on yet unprocessed information (mass 
peaks) to find distinctive patterns in data. Furthermore, 
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identified peptides and/or proteins can be used as an 
input for the learning algorithm, which can pinpoint the 
proteins discriminating patients from healthy controls 
and facilitate biomarker discovery and unraveling the 
biological mechanisms of different diseases [79].

ML algorithms are becoming a popular tool in the 
proteomics research. Supervised learning methods have 
been used for the development of classification tools, 
useful in diseases diagnosis and biomarker research. 
For example, in the work of Good et al., capillary elec
trophoresis coupled to MS (CE‐MS) has been used to 
measure naturally occurring peptides in urine of CKD 
patients, healthy controls, and patients with different 
diseases. Using SVM algorithms, a polypeptide classifier 
(CKD 273) is able to diagnose CKD patients with 85.5% 
sensitivity and 100% specificity [80]. Along these lines, 
through SVM modeling, Jiang et al. have developed an 
interaction network‐based proteomics classifier for the 
diagnosis of prostate cancer (PCa). Interestingly, one of 
the proteins comprising the classifier was also identified 
as an independent prognostic marker of PCa [81]. Other 
popular applications of learning algorithms in proteom
ics have been recently described in an excellent review 
by Kelchtermans et al. [82].

14.4  Bioinformatics Data Mining Tools

Proven benefits from DM application give way for the 
development of various informatics tools capable of 
performing mining tasks. There are many general DM 
systems that can be used for biological DM such as SAS 

Enterprise Miner, R, Matlab, SPSS, S‐Plus, IBM 
Intelligent Miner, Microsoft Analysis Services, SGI 
MineSet, and Inxight VizServer. However, some biologi
cal DM tools such as GeneSpring, Spot Fire, VectorNTI, 
COMPASS, Statistics for Microarray Analysis, and 
Affymetrix Data Mining Tool have been developed. Also, 
a large number of biological DM tools are provided by 
the National Center for Biotechnology Information and 
by the European Bioinformatics Institute (www.ncbi.
nlm.nih.gov).

14.5  Conclusions

In the era of emerging technologies and big data where 
enormous amounts of information are produced on a 
daily basis, there is a great need for solutions supporting 
efficient analysis and knowledge discovery. DM tech
niques offer promising solutions to deal with this task 
through the employment of sophisticated statistical 
algorithms combined with AI approaches and an exten
sive use of database management systems. The field of 
DM is rapidly evolving, providing constantly improving 
ways to mine data to detect hidden patterns, relation
ships, and interactions. The KDD is a step‐by‐step 
approach to guide analysts through the complex stages of 
data analysis with use of DM methodologies.

The biomedical research field has greatly benefited 
from DM as shown by the growing number of scien
tific publications where various mining techniques 
have been used. DM methodologies have proven suc
cessful in tackling many bioinformatics tasks and are 
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being continuously developed to enable effective data 
analysis. Therefore, given the ever‐growing amount of 
biological data and its complexity, knowledge discovery 

approaches are fast becoming essential and are 
expected to play a significant role in the present and 
future research.
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15.1  Introduction

The various components of a biological system do not 
act individually, but rather through complex hierarchi
cal, coordinated, dynamical, and nonlinear interactions 
of a large number of components (e.g., proteins interact
ing with DNA, RNA, metabolites, and other proteins) 
that allow the functioning (or dysfunctioning) of the 
system itself [1]. Therefore, a biological function gener
ates as an emergent property [2] of the system and is 
not ascribable or found in its single components, but 
only in their networking.

High‐throughput technologies allow to collect genome‐
scale comprehensive molecular information— collectively 
referred to as ‐omics data—using an increasing number of 
sophisticated high‐throughput technologies, including 
transcriptomics, proteomics (that includes the study of 
protein level and posttranslational modification data at 
the proteome scale),  metabolomics, and interactomics. 
Indeed, our current understanding of biological func
tions is not limited by availability of vast amounts of 
data (big data), but rather by our ability to integrate and 
process them. Systems biology [3, 4] is the conceptual 
and operative approach needed to extract and integrate 
information from this huge amount of different ‐omics 
data. The systems biology approach systematically 
organizes, integrates, and rationalizes the different ‐
omics data through statistical analysis, computer‐aided 
modeling, and visualization. It requires different scientific 
competencies so to give them structure, improve our 
understanding of emergent  properties and their design 
principles, and gain ability to predict the behavior of a 
system and to exploit it for applicative purposes 
(Figure 15.1).

Most common diseases affecting adults, including cardio
vascular diseases, cancer, and diabetes, are multifactorial 

and derive by the interaction of several genetic and 
environmental factors concurring to phenotype and 
clinical manifestation [5–9]. As ‐omics data become 
available with ever‐increasing accuracy and decreased 
cost, they can be used to guide the choice, design, and 
follow‐up of effective therapeutic approaches, allowing 
to translate systems biology to medicine that aims at 
tackling the complexity of multifactorial diseases by 
means of systematic and integrated approaches for 
clinical purposes, that is, to allow a more efficient disease 
classification and identification of novel therapeutic 
 targets. Post‐genomics ‐omics‐based systems medicine 
aims to transform diagnostic and therapeutic strategies 
being, in the next future, “personalized and predictive,” 
namely, able to suggest the most potentially effective 
drug for any patient and to eventually foretell if and when 
a disease will occur and how it will develop [10–14].

Healthcare systems have nowadays to face considera
ble challenges connected with the highly variable clinical 
efficacy of current drugs as well to the huge costs asso
ciated with drug discovery, development, and clinical 
trials, inevitably causing economical suffering and high 
impacts on the financing of the sector. Indeed, a basic 
problem of the current disease classification system, 
based on phenotype determination, is that the same phe
notype may derive from several disease mechanisms. 
Thus, a drug directed against one of those mechanisms 
would not be clinically effective in patients with different 
underlying mechanisms [15].

Let us take breast cancer as an example. During the 
last 30 years, the definition of a few biomarkers allowed 
to identify molecular breast cancer subgroups with 
different clinical characteristics, clinical courses, and 
sensitivities to existing therapies and allowed to design 
novel and more effective treatments for patients [16]. 
Patients with estrogen receptor‐negative, human epidermal 
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growth factor receptor 2‐positive cancers are currently 
treated with the monoclonal antibody trastuzumab and 
have one of the more favorable prognoses of all breast 
cancer patients. However, trastuzumab is effective 
only in up to 50% of these patients, possibly because of 
various resistance mechanisms. As knowledge of the 
molecular events underlying the ability to respond to 
trastuzumab treatment increases, novel accurate predic
tive biomarkers—allowing to identify those patients 
who will respond to trastuzumab treatment—and/or 
novel drug targets will be identified. The increased 
resolution in the classification of these tumors will allow 
to develop new, highly targeted molecular therapeutics 
and at the same time to devise molecular diagnostic tools 
that will allow to implement a truly personalize medicine.

In this chapter we describe approaches to ‐omics inte
gration that may uncover information hidden in each 
individual ‐omics. Integration of ‐omics data can be fully 
exploited if combined with modeling approaches, allow
ing to develop precision, personalized medicine of 
patients of multifactorial diseases, such as cancer.

15.2  Data Sources

‐Omics technologies generate extremely large datasets 
and a quick web search can give a first picture of the huge 
variety of data sources publicly available. Assessing their 
relevance and quality may be a particularly hard task due 
to the heterogeneity of representations and notations.

Historically, the Human Genome Project has been 
the first ‐omics initiative related to human health. This 
pioneering study gave rise to a plethora of initiatives 
paving the way toward the current explosion of data 
generated by means of different ‐omics approaches. 
Focusing exclusively on data sources related to cancer 
disease, Table  15.1 describes some of the most rele
vant repositories of ‐omics data. Most of the available 
resources deal with genomics, transcriptomics, and pro
teomics data with some emphasis on cancer‐related 
data. More recent initiatives tend to shed light on the 
heterogeneity of cancer in terms of genomic mutations 
and phenotypic differences among the different tumor 
subtypes. Table  15.1 highlights a substantial lack of 
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Figure 15.1 Overview of the systems biology approach toward the realization of personalized medicine. The many different ‐omics data 
currently available (reddish box) must be deposited in one or more database in order to systematically organize the information and to 
facilitate the data integration process. Integrated ‐omics data are analyzed (light‐blue box) by means of statistical methods, computer‐
aided modeling, and visually represented in order to understand emergent properties and design principles of the biological system 
(orange cartoon). Personalized ‐omics data (green box), the knowledge of emergent properties/design principles, and different scientific 
competencies (purple box) will ultimately merge, allowing to develop personalized medical treatment of multifactorial diseases.



  Table 15.1    Main data sources available for data integration. 

Data source Main features Type of ‐omics data Web page References    

Gene Expression 
Omnibus (GEO)

Repository of gene expression data from more than 2500 studies Proteomics  http://www.ncbi.nlm.nih.gov/geo/ Edgar et al.   [17]  , Barrett 
et al.   [18]    

Ensembl Sequence data fed into a gene annotation system creating a set of 
predicted gene locations saved in a MySQL database for 
subsequent analysis and display

Genomics  http://www.ensembl.org Hubbard et al.   [19]    

TRANSFAC database Data on eukaryotic transcription factors and their miRNAs, 
binding sites, and regulated genes

Regulomics  http://www.biobase‐international.
com/product/transcription‐factor‐
binding‐sites 

Wingender et al.   [20]    

1000 Genomes Project Generic genetic variants whose frequencies are at least of 1% in 
the human population by NGS sequencing of genomes from 
many individuals. The raw and processed data associated with 
the 1000 resulting genomes are also stored and managed

Genomics  http://www.1000genomes.org/ Abecasis et al.   [21]  , 
Abecasis et al.   [22]    

Encyclopedia of DNA 
Elements Project 
(ENCODE)

Integration‐based approach aimed at the characterization, for a 
set of animal models/tissues/cell lines, of the profile of mRNA 
expression, histone marks and transcription factor binding 
profiling, DNA methylation, chromatin conformation, and 
location of active regulatory regions, among others

Genomics  http://genome.ucsc.edu/ENCODE/ Ecker et al.   [23]  , 
ENCODE Project 
Consortium   [24]  , 
Harrow et al.   [25]    

Transcriptomics  
Epigenomics  
Regulomics  

The Cancer Genome 
Atlas Project (TCGA)

Provides insights into the heterogeneity of different cancer 
subtypes by creating a map of molecular alterations for every 
type of cancer at multiple levels. For instance, the endometrial 
carcinoma has been characterized by mRNA, miRNA, protein, 
DNA methylation, copy number alterations, and somatic 
chromosomal aberrations

Transcriptomics  http://cancergenome.nih.gov/ Weinstein et al.   [26]    
Regulomics  
Proteomics  
Epigenomics  
Phenomics  

International Cancer 
Genome Consortium 
(ICGC)

Coordinates large‐scale cancer genome studies in tumors from 50 
cancer types/subtypes of main importance across the globe. 
More than 25 000 cancer genomes are studied at the genomics, 

Genomics  https://www.icgc.org/ Hudson et al.   [27]    
Epigenomics 
Transcriptomics  

Cancer Genome 
Project (CGP)

Uses the human genome sequence and high‐throughput 
mutation detection techniques to identify somatically acquired 

Genomics  http://www.sanger.ac.uk/research/
projects/cancergenome/ 

Pleasance et al.   [28]    
Phenomics  

Catalogue of Somatic 
Mutations in Cancer 
(COSMIC)

Contains data generated from the ICGC and TCGA studies, the 
Cancer Genome Project (CGP), and targeted sequencing of the 
NCI60 cell lines (a panel of 60 human cell lines) in known 

Genomics  http://cancer.sanger.ac.uk/cosmic Bamford et al.   [29]    
Phenomics  

Clinical Proteomic 
Tumor Analysis 
Consortium (CPTAC)

Has the goal of understanding the molecular basis of cancer 
through the application of proteomics technologies and workflows, 
systematically identifying proteins that derive from alterations in 

Proteomics  https://proteomics.cancer.gov/
programs/cptac 

Ellis et al.   [30]  , Zhang 
et al.   [31]    Genomics  

Kyoto Encyclopedia of 
Genes and Genomes 
(KEGG)

KEGG contains representations of biological systems. It 
integrates genetic building blocks of genes and proteins, chemical 
building blocks of small molecules and reactions, and wiring 
diagrams of molecular interaction and reaction networks. Thus, 
KEGG databases are categorized into systems, genomic, 
chemical, and health information

Many, including 
genomics, 
proteomics, 
Interactomics, and 
metabolomics

 http://www.kegg.jp Kanehisa and Goto   [32]    

Multi‐Omics Profiling 
Expression Database 
(MOPED)

Omics expression database that contains over five million protein 
and gene expression records. It links to various protein and 
pathway databases, including GeneCards, Panther, Entrez, 
UniProt, KEGG, SEED, and Reactome. Protein identifiers are 
integrated from GeneCards, GI, RefSeq, Locus Tag, UniProt, 
WormBase, and SGD

Mainly proteomics 
and 
transcriptomics

 http://moped.proteinspire.org  
(accessible only with valid 
certificate)

Kolker et al.   [33]  , Higdon 
et al.   [34]    

Search Tool for the 
Retrieval of Interacting 
Genes/Proteins 
(STRING)

Database of known and predicted protein interactions. The 
interactions include direct (physical) and indirect (functional) 
associations, derived from genomic context, high‐throughput 
experiments, co‐expression, and previous knowledge. STRING, 
currently covering about 10 million proteins from 2031 
organisms, quantitatively integrates interaction data from these 
sources for a large number of organisms and transfers 
information between these organisms where applicable

Interactomics  http://string‐db.org/ Snel et al.   [35]    

 Human Protein 
 Atlas (HPA) 

Database of information for almost all human protein‐coding 
genes. Data are available on expression and localization of 
proteins based on both RNA and protein data

Proteomics  http://www.proteinatlas.org Uhlen et al.   [36]    

Human Metabolome 
Database (HMDB)

Database containing 41 993 metabolite entries, 5 701 protein 
sequences are linked to these metabolite entries. Each entry has 
around 110 data fields with 2/3 of the information on chemical/
clinical data and the rest regarding enzymatic or biochemical 
data

Metabolomics  http://www.hmdb.ca Wishart et al.   [37]  , 
Wishart et al.   [38]  , 
Wishart et al.   [39]    

MINT The database contains experimentally verified protein–protein 
interactions mined from the scientific literature through human 

Interactomics  http://mint.bio.uniroma2.it/mint/
Welcome.do 

Licata et al.   [40]    
Bibliomics  

IntAct Database of molecular interaction data, here every interaction is 
derived from literature or submitted directly by the user

Interactomics  http://www.ebi.ac.uk/intact/ Orchard et al.   [41]    

BioGRID Repository with interaction data manually curated. It contains 
56 300 publications for 1 060 041 protein and genetic interactions, 

Interactomics  http://thebiogrid.org Oughtred et al.   [42]    
Regulomics
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information on metabolomics, a technology having a 
great potential to impact clinical practice (e.g., biomarkers 
for diagnosis, monitoring, and definition of new ther
apeutic targets). In this context, a current challenge is the 
definition of metabolite resources with comprehensive 
spectral libraries, various integrative approaches, and 
serious considerations for clinical validation of the 
identified biomarkers [43].

15.3  Integration of Different 
Data Sources

The definition and the population of a database is by far 
the most effective way to represent and organize a wide 
range of data; however, biological databases are affected 
by the lack of uniformity in types and formats of data 
sources, mainly due to the lack of a unique standard. 
Databases of pathways are an example of this problem. 
For example, some of the 547 biological pathways 
reported in Pathguide (http://www.pathguide.org) are 
similar and redundant but are defined with different 
boundaries and components. This heterogeneity has to 
be taken into account when genome analysis methods 
based on pathways are applied (e.g., in Refs. [44–47]). 
Indeed, the same input data can generate different results 
if different databases are used for the analysis [48]. 
To overcome these issues, Cantor and colleagues pro
posed to use multiple databases for each analysis [49] in 
order to balance divergences among databases and/or to 
validate similar results obtained from different data 
sources. Gomez‐Cabrero and colleagues, while review
ing data integration in the ‐omics era, advocate the need 
to create standards at earlier stages when novel data‐type 
resources are developed [50].

One of the first definitions of database integration has 
been formulated in the context of the smoothening of 
redundancies between databases, pointing out the need 
to access different databases with overlapping content 
and to connect several of them, as if the user were inter
acting with one single information system. In general, 
since 1980s, two main approaches have been defined to 
efficiently integrate data coming from different sources:

1) Data warehousing: Data warehousing consists in the 
storage of all the data belonging to a certain category 
from different databases in only one large database, 
according to the process named ETL (extract, trans
form, and load) [51].

2) Federated approaches: In contrast to data warehouse, 
in federated databases data remains in the original 
data source. The integration consists in mapping data 
from each source on the federated database; thus, the 
end user can operate on a simple database. This data 

storage approach is relevant when the researcher 
needs updated information or must integrate a large 
amount of data deriving both from private and public 
databases [52].

The second approach is currently trending in the 
domain of life sciences. Proving this fact, one of the most 
common ways to connect data from several biological 
databases consists in implementing hypertext links 
between entries of different data sources. As such, link 
integration approaches represent a connection between 
web pages, whereas the actual integration method is 
then carried on by a user or by another application. As a 
matter of fact, this approach requires a significant 
amount of manual work in order to integrate data: 
scientific institutions that maintain biological databases 
have to face a time‐consuming checking process to map 
the links between entries from distinct data sources. 
Therefore, given the high number of databases pertain
ing to the biological field, only links to the most used 
ones are typically set. A meaningful example is provided 
by one of the main search engines for health science 
databases: Entrez Global Query Cross‐Database Search 
System (http://www.ncbi.nlm.nih.gov/sites/gquery), a 
tool that is able to retrieve information stored in several 
sources and regarding biomolecular sequences, struc
tures, and literature references.

15.4  Integration of Different ‐Omics Data

It is becoming more and more evident that the inte
gration of multi‐omics layers is required for a deeper 
understanding of complex biological entities. To meet 
this goal, initial attempts of data integration reported in 
literature analyzed data from individual ‐omics sepa
rately. This phase was then followed by downstream 
actual integration of previous independent and parallel 
analyses outcomes. However, this method entails the loss 
of key emergent properties, which only become apparent 
by analyzing multi‐omics dataset as a whole and not by 
studying the system as the sum of its parts [53]. The first 
step in the integration of multi‐omics layers is the joining 
of information deriving from their pairs. In the following 
paragraphs, we will illustrate examples of pairwise 
integration between different ‐omics data.

15.4.1 Integrating Transcriptomics and Proteomics

Several studies in model organisms have shown that 
mRNA and protein expression profiles are often poorly 
correlated [54–56]. Proteins are generally more stable 
than mRNAs [57], so situations where a protein is still 
abundant in the near absence of the cognate mRNA 
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may arise. The opposite situation (i.e., low protein level 
while the corresponding transcript is high) may derive 
from poor translation of the mRNA. This happens either 
because the RNA itself is poorly translatable (due, e.g., to 
secondary structures that hamper translation [58, 59]) or 
because of interaction with other molecules, such as 
the trans‐acting factors, RNA‐binding proteins (RBPs), 
and small RNAs that bind to the mRNA and modify 
its  translatability [60]. Among these natural antisense 
transcripts that regulate gene expression [61] are 
small  (19–22 nucleotide) non‐protein‐coding RNA 
 molecules (microRNAs or miRNAs). miRNAs downreg
ulate  expression of their target mRNAs through specific 
base pairing that results in decreased translation of the 
mRNA or leads to mRNA degradation [62]. Although a 
large number of human miRNAs are reported to be impli
cated in several developmental and adult disease states 
(e.g., cancer), many of their mRNA targets and their 
impact on phenotypes remain unknown [63]. Recently, 
due to the advance of high‐throughput and low‐cost 
experimental methods, there has been a huge develop
ment of computational methods based on sequence com
plementarity between the miRNA and the mRNAs [64].

The utility—and possibly the necessity—of integrating 
mRNA, miRNA, and protein expression in order to 
obtain a more comprehensive view of the system under 
study has been recently pointed out [65]. A possible 
approach to integration involves the analysis of indi
vidual ‐omics layers separately, whose results are then 
merged and compared. By way of example, Com and 
colleagues in a study of gentamicin nephrotoxicity report 
that transcriptomics and proteomics data were comple
mentary and that their integration provided a more com
prehensive picture of the putative nephrotoxicity 
mechanism of the antibiotic, consistent with histopatho
logical evidence [66]. Although valuable, this approach 
misses the interconnection between the different ‐omics 
layers and may fail to uncover the system‐level func
tional properties. By mapping transcriptomics and 
proteomics datasets on the protein interaction network 
and using chronic kidney disease as an example, Perco 
and colleagues show that such a joint analysis highlights 
pathways and processes characteristic for the phenotype 
under analysis that goes unnoticed when the two data
sets are analyzed independently [67]. A similar, network‐
based methodology for integrative analysis of proteomics 
and transcriptomics data on psoriasis showed comple
mentarities between two levels of cellular organization 
and allowed to identify common regulators—such as the 
most influential transcription factors and receptors—for 
two datasets [68]. Imielinski and colleagues identified 
subnetworks enriched in differentially expressed genes 
within networks built from proteins differentially 
expressed in estrogen receptor positive breast cancer 

tumors [69] from which a gene expression‐based signa
ture biomarker predictive of clinical relapse could be 
constructed.

Liu and colleagues [53] focused on the melanoma 
subset from NCI‐60—a panel of 60 different human 
cancer cell lines from 9 different tissues. They quantified 
the additional information provided by their method 
compared with non‐joint approaches and observed that 
integration and annotation in the analysis of different 
type of data changed the flow of information, with the 
joint analysis giving fully relevant molecular information 
only upon annotation of all mRNA, proteins, and 
miRNA. Particularly, compared with the separate analysis, 
the joint analysis better described melanogenesis, while 
the separate analyses failed to identify enrichment in 
melanin biosynthetic and metabolic processes, both 
related to the basal melanocyte physiology. A similar 
algorithm (iCluster) has been used to cross‐correlate 
gene copy number and transcriptional profiling to dis
cover potentially novel cancer breast and lung cancer 
subtypes by combining weak, consistent alteration patterns 
across subtypes [70]:

A final approach worth mentioning exploits the Bayesian 
framework to infer gene regulatory network form tran
scriptomics, whose accuracy is extended by combining 
prior knowledge [71] or protein–protein interaction 
(PPI) data [72].

The reader is referred to Haider and Pal [73] for a recent 
comprehensive review detailing other methods for inte
grating transcriptomics and proteomics networks.

15.4.2 Integrating Transcriptomics and Interactomics

Analysis of genome‐wide expression profiles recently 
allowed to identify several disease markers (e.g., [74]), 
exploiting the link between perturbations of a particular 
phenotype and changes in mRNA levels. In this kind of 
analysis, each gene is scored for the ability of its expres
sion pattern to discriminate between various classes of 
disease; subsequently, marker sets are selected based on 
attributed scores (signature‐based approach). However, 
different marker sets for a specific disease are found 
among different studies (e.g., [75, 76]), likely because 
changes in expression of the few selected genes may be 
small compared with those of the downstream effectors, 
which may vary significantly among patients [77]. As 
such, a better strategy to identify markers would be to 
combine gene expression measurements over groups of 
genes that fall within common pathways [78–80]. 
Nevertheless, pathway‐based analysis (to which gene‐set 
enrichment analysis (GSEA) belongs) has the limitation 
that there is still no assignment of most human genes to 
a specific pathway.
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A partial solution to these challenges lays in the use of 
PPI networks (the interactome) that provide a compre
hensive map of functional interactions in the cell and 
allow the identification of subnetworks (composed by a 
group of proteins functionally linked to each other) 
that are significantly dysregulated in a disease of interest. 
In this regard, the development of a scoring scheme to 
assess the collective dysregulation of multiple interacting 
genes (mapped on the corresponding protein on the PPI 
network) and the development of efficient computa
tional algorithms to search for subnetworks with sig
nificant scores represent the main methodological 
challenges. Commonly, the differential expression of 
each gene is first scored individually using a standard 
statistical test (e.g., t‐test), and then subnetwork scores 
are computed as an aggregation of these individual 
differential expression scores. However, these methods 
provide limited systems level insights, since they assess 
the differential expression of functionally related genes 
individually and cannot capture patterns of coordinated 
dysregulation. An alternative strategy has been proposed 
in Ref. [81]. Here, authors illustrate a representation 
where genes having consistent expression patterns are 
mapped on PPI networks to form subnetworks that are 
significantly dysregulated in a disease of interest and 
may be conserved across multiple species [82]. Chuang 
and colleagues [83] applied a protein‐network‐based 
approach to identify markers of metastasis within gene 
expression profiles, with the aim of detecting genetic 
alterations and predicting the probability of metastasis 
in unknown samples. They show that the network‐based 
method has many advantages compared with earlier 
analyses of differential expression:

1) The generated subnetworks provided models of the 
molecular mechanisms underlying metastasis.

2) Though analysis of differential expression usually 
does not allow detecting genes with known breast 
cancer mutations (such as KRAS, among others), 
these genes play a key role in the protein network by 
interconnecting many expression‐responsive genes.

3) Subnetworks are remarkably more reproducible 
among different breast cancer cohorts than separate 
marker genes selected without network information.

4) Accuracy in prediction is higher with network‐based 
classification, as demonstrated by selecting markers 
from one dataset and applying them to a second 
independent dataset.

A further evolution of the method, called interactome–
transcriptome integration (ITI), consists in the integra
tion of the analysis of several gene expression datasets 
(multi‐dataset) to extract subnetworks that discriminate 
breast cancer distant metastasis [84]. The method 
showed increased performance on a vast collection of 

publicly available data and was validated on two inde
pendent breast cancer gene expression datasets [85, 86].

For a further dissertation on the essential role for the 
comprehension of biological systems of the integration 
between transcriptomics and interactomics (as well as 
with other categories of ‐omics data, such as genomics 
and proteomics), we refer the interested reader to a 
recent review [87] that summarizes strengths and weak
nesses of the different approaches.

15.4.3 Integrating Transcriptomics 
and Metabolic Pathways

In order to better understand the role of differentially 
transcribed metabolic genes in the context of metabolic 
pathways, Patil and Nielsen [88] devised a technique of 
network enrichment whose goal is to identify the 
“reporter metabolites,” that is, those spots in the metabo
lism where there is a crucial regulation to maintain 
homeostasis (i.e., a constant level of the metabolite) or to 
reset the concentration of the metabolite to a different 
level required for the correct functioning of the meta
bolic network. The first step of the procedure consists 
of mapping differential expression data on the corre
sponding enzymes of a genome‐wide biochemical 
network (whose reconstruction process is described 
in the following section), adding a specification of the 
significance of differential gene expression. In this way, 
each metabolite node is scored based on the normalized 
transcriptional response of its neighboring enzymes. 
When dealing with differential data, the normalized 
transcriptional response is calculated as size‐independent 
aggregated Z‐scores of the neighboring enzymes. The 
scoring used to identify reporter metabolites is a test 
for the null hypothesis hereafter formulated: “Neighbor 
enzymes of a metabolite in the metabolic graph show 
the observed normalized transcriptional response by 
chance.” Metabolites with the highest score are defined 
as reporter metabolites, that is, those metabolites around 
which transcriptional changes occur.

All in all, advantages of performing a multidimensional 
‐omics analysis to obtain more information from human 
high throughput data instead of analyzing a single ‐omics 
data type can be summarized as follows:

1) Integration of multiple data types is a strategy to 
prevent information loss due to the fact that informa
tion on a biological entity (gene, protein, transcript, 
etc.) can suggest to refine other ‐omics analyses in 
order to fill information gaps or to correct wrong data 
associations.

2) Different data sources providing information on the 
same gene or pathway are less likely to produce “false 
positives.”
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3) Examination of different levels of regulation by means 
of an integrated approach is a promising way to 
unravel the functioning and fine regulation of the 
biological system under examination.

Readers interested in mathematical aspects of meth
ods for multi‐omics data integration may refer to a recent 
review [89]. The availability of dedicated servers for the 
analysis of multi‐omics datasets, including transcrip
tomics, miRNomics, proteomics, and genomics may 
help to spot similarities and differences between the 
enrichments obtained from different ‐omics and widen 
the use of integrative multi‐omics analyses [90].

As highlighted in “Introduction,” many common dis
eases such as cancer, diabetes, and cardiomyopathy should 
be considered as network diseases. If the complexity of the 
network is not taken into account, we may fail in identify
ing a potential drug having high efficacy and low toxicity 
[91–94]. One of the main reasons of such a poor predic
tive power is that the exploitation of individual ‐omics 
platform does not provide enough information to link 
drug response with personalized ‐omics profile. Indeed, a 
stronger integration of different ‐omics platforms could 
validate data and help in clarifying the connections 
between ‐omics, as well as accelerate multi‐target drug 
discovery [95]. Cellular subsystems have been defined 
by ontologies, such as Gene Ontology (GO). It has been 
proposed that such a hierarchical structure may guide the 
organization of ‐omics data. Interpretation of this “onto
type” through logical rules generated by machine learning 
techniques allowed predictions of the growth properties 
of over 2000 yeast strains carrying inactivation of two 
genes and could pave the way for interpretation of the 
phenotypic properties of complex diseases [96]. According 
to similar reasoning, an initiative to define the hallmark 
networks of cancer has been recently launched [97].

As we will see later, a further step, modeling, may be 
required to fully extract information hidden in ‐omics 
data structure according to mechanistic principles and 
generate experimentally testable predictions.

15.5  Visualization of Integrated  
‐Omics Data

Consistently with the need for ‐omics data integration 
approaches, a strong need for tools able to represent 
them in an effective way has emerged among scientists 
and clinicians belonging to different communities. To 
satisfy this need, visual representations of ‐omics data 
have been extensively used to give an immediate repre
sentation of the complexity beyond the systems, to sum 
up relevant information [98], and to help to formulate 
hypotheses on represented systems.

The recourse to visualization strategies has been 
motivated by the fact that the human brain has a 
remarkable capability to process visual information in 
order to identify patterns (e.g., biochemical pathways) 
and relevant topological features (e.g., the presence 
of  highly connected nodes called “hubs”) [99]. The 
“visual complexity” of these representations ranges 
over various orders of magnitude spanning from the 
description of a small functional units (signal trans
duction and metabolic pathways, interaction pool of a 
protein), to the representation, at whole cell/tissue/
organism level, of the interactions involving different 
‐omics data.

The development of high‐throughput ‐omics tech
nologies has imposed a change of paradigm for the 
definition of these representations, shifting from the 
manual curation and refinement to fully (or partially) 
automatized procedures exploiting sophisticated soft
ware. Even if recent efforts have produced remarkable 
results (see Ref. [100] for an extensive review and 
Table  15.2 for a non exhaustive list of relevant and 
widely used tools for data visualization), in this domain 
some challenges are still open.

A first challenge is related to the scalability of the 
methods. Scalability issues are particularly relevant in 
network representations, an obvious and traditional 
way to visualize data and their relationships (generally 
nodes represent entities and edges represent relation
ships). This type of representation is intuitive and 
powerful for simple systems, but has also some scala
bility limitations: when the system size and complexity 
increases, also the “visual complexity” increases, and 
since most of the software make use of standard 
 visualization packages, the most common layout of 
the network is often a very uninformative “hairball” 
(Figure 15.2a) [98].

The wide usage of this primitive layout is mainly due 
not only to the lack of knowledge on the inner organi
zation of the network (e.g., cellular localization of 
 elements, molecular functions, structure of protein 
complexes, etc.) but also to the difficulty of represent
ing the system in a way expected by the user (e.g., the 
arrangement of metabolic or signaling pathways using 
an immediately recognizable shape). To move from the 
uninformative “hairball layout” to a more meaningful 
representation, several algorithms have been devised 
to visually organize the network, on the basis of given 
criteria, such as node degree distribution, geometrical 
representations (e.g., circles, grids), directionality of 
the process (hierarchical representations), and physical 
simulations, modifying both the spatial layout and 
 placing information (i.e., ‐omics data) on network 
 elements (color/dimension/shape of nodes and edges). 
In Figure 15.2, we provide an example of useful ‐omics 



  Table 15.2    Visualization tools focused on interaction networks. 

Visualization 
tool Main features Functions and compatibility Advantages Web page References    

Arena 3D Standalone free application Allows visualizing 
biological multilayer networks in 3D

 http://www.arena3d.org/ Pavlopoulos 
et al.   [101]    

BioLayout 
Express3D

Layout, visualization, and clustering of large‐
scale networks in both 3D and 2D. Supports 
both unweighted and weighted graphs. Uses a 
graphic render, so that the size of networks 
that can be processed is limited

Highly interactive: it is possible to 
switch between 2D and 3D 
representations, zoom in/out, rotate or 
move the network. Markov Clustering 
algorithm is incorporated and data are 
automatically separated in distinct 
groups. Compatible with Cytoscape

Offers different analytical 
approaches to microarray data 
analysis

 http://www.biolayout.org Freeman 
et al.   [102]    

CellDesigner Structured diagram editor for drawing 
gene‐regulatory and biochemical networks

Visual representation of biochemical 
semantics, direct integration with 
SBML ODE Solver and Copasi, and 
linkage to SBW‐powered simulator 
modules

Intuitive user interface helps to 
draw a diagram with the standard 
SBGN notation

 http://www.celldesigner.
org 

Funahashi 
et al.   [103]    

Cytoscape Stand‐alone Java application. Provides 2D 
representations of large‐scale networks (up to 
hundredth thousands of nodes and edges). 
Supports directed, undirected, and weighted 
graphs and has powerful visual styles

Highly interactive: possible zoom in 
and out and browsing of the network; 
organization of multiple networks and 
possibility to compare them; allows to 
select subsets of nodes/interactions 
and search for active subnetworks/
pathway modules; incorporates 
statistical analysis of the network. 
Compatible with other tools. Allows to 
import mRNA expression profiles, 
gene functional annotations from GO, 
and KEGG

Visualization of molecular 
interaction networks and their 
integration with gene expression 
profiles and other data. Allows the 
manipulation and comparison of 
multiple networks. Many plug‐ins 
are available for more specialized 
analysis

 http://www.cytoscape.org Shannon 
et al.   [104]    

E‐cell 3D Software platform to model, simulate, and 
analyze complex, heterogeneous, and multi‐
scale biochemical reaction systems

E‐Cell 3D exploits the advanced 
graphics APIs of MacOS X; however 
this is the only supported operative 
system. 3D networks can be navigated 
using Nintendo Wii remote controller

Models stored in Systems Biology 
Markup Language (SBML) XML 
file can be directly converted to E‐
Cell 3D

 http://ecell3d.iab.keio.ac.
jp/index.html 

Tomita et al. 
  [105]    

iPath Interactive Pathways Explorer (iPath) is a 
web‐based tool for the visualization, analysis, 
and customization of the various pathways 
maps

KEGG‐based overview maps Extensive map customization and 
data mapping capabilities. All maps 
in iPath can be easily converted to 
various bitmap and vector 
graphical formats for easy inclusion 
in documents or further processing

 http://pathways.embl.de Yamada et al. 
  [106]    

MapMan A user‐driven tool that displays large datasets 
onto diagrams of metabolic pathways or other 
processes

Based on Java and hence cross 
platform

 http://mapman.gabipd.org/ Thimm et al. 
  [107]    

(Continued)

Visualization 
tool Main features Functions and compatibility Advantages Web page References    

Medusa Open‐source Java application. Provides 2D 
representation of networks up to a few 
hundred nodes and edges. Uses nondirected, 
multi‐edge connections, allowing the 
simultaneous representation of more than 
one connection between two bioentities

Highly interactive: allows the selection 
and analysis of subsets of nodes. A text 
search can be applied to find nodes. 
Medusa has its own text file format 
not compatible with other 
visualization tools or integrated with 
other data sources

Shows multi‐edge connections, 
each line representing different 
concepts of information. It is 
optimized for PPI data as taken 
from STRING

 https://sites.google.com/
site/medusa3visualization/ 

Hooper and 
Bork   [108]    

Ondex Stand‐alone freely available open‐source 
application. Provides 2D representations of 
directed, undirected, and weighted networks. 
Handles large‐scale networks of hundred 
thousands of nodes and edges and supports 
bidirectional connections. Different types of 
data are separating in different disks–circles 
interconnected with each other

Various filters allow to selectively add or 
remove connected nodes from the 
display. A tree‐like subgraph can be 
extracted from a given node and the 
most important nodes at any level can 
be determined. A filter is available to 
import microarray expression level data. 
Data may be imported through many 
databases, among which are 
TRANSFAC, Gene Ontology, and 
KEGG

Ability to combine heterogeneous 
data types into one network. 
Suitable for text mining, sequence, 
and data integration analysis

 http://www.ondex.org/ Koehler et al. 
  [109]  , Kohler 
et al.   [110]  , 
Skusa et al. 
  [111]    

Osprey Stand‐alone application running under a wide 
range of platforms. Provides 2D 
representations of directed, undirected, and 
weighted networks. Not efficient for large‐
scale network analysis but provides various 
layout options and ways to arrange nodes in 
different geometric distributions

Provides several features for functional 
assessment and comparative analysis 
of different networks together with 
network and connectivity filters and 
dataset superimposing. Also allows to 
cluster genes by GO processes. Data 
can be loaded either by using different 
text formats or by connecting directly 
to several databases

Various filtering capabilities render 
Osprey a powerful tool for network 
manipulation. The key feature is 
the ability to incorporate new 
interactions into an already existing 
network

 http://tinyurl.com/
osprey1/ 

Breitkreutz 
et al.   [112]    

Pajek Stand‐alone Windows application. Offers 2D 
and pseudo3D representations and supports 
single, directed, and weighted graphs. Suitable 
for large‐scale networks with thousands or 
millions of nodes and vertices. Great variety of 
layout options. Separates data into layers, 
allowing the display of hierarchical 
relationships. Can handle dynamic graphs and 
reveal how networks change over time

Highly interactive, many clustering 
methods. Allows decomposition of a 
large network into several smaller 
networks and detection of clusters in 
them

Variety of layout algorithms 
facilitating exploration and pattern 
identification within networks

 http://pajek.imfm.si/ Batagelj and 
Mrvar   [113]    

It has its own input file format, not 
compatible with commonly used 
formats; not connected with any 
biological data sources  

PathVisio Pathway analysis and drawing software to 
draw edit and analyze biological pathways. 
Experimental data can be easily visualized on 
pathways and relevant pathways that are 
over‐represented in a dataset can be easily 
found

Provides a basic set of features for 
pathway drawing, analysis, and 
visualization. Additional features are 
available as plug‐ins

Plug‐ins extended functionalities 
and can also be customized for an 
advanced use

 http://www.pathvisio.org Kutmon et al. 
  [114]    
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(Continued)

Visualization 
tool Main features Functions and compatibility Advantages Web page References    

Medusa Open‐source Java application. Provides 2D 
representation of networks up to a few 
hundred nodes and edges. Uses nondirected, 
multi‐edge connections, allowing the 
simultaneous representation of more than 
one connection between two bioentities

Highly interactive: allows the selection 
and analysis of subsets of nodes. A text 
search can be applied to find nodes. 
Medusa has its own text file format 
not compatible with other 
visualization tools or integrated with 
other data sources

Shows multi‐edge connections, 
each line representing different 
concepts of information. It is 
optimized for PPI data as taken 
from STRING

 https://sites.google.com/
site/medusa3visualization/ 

Hooper and 
Bork   [108]    

Ondex Stand‐alone freely available open‐source 
application. Provides 2D representations of 
directed, undirected, and weighted networks. 
Handles large‐scale networks of hundred 
thousands of nodes and edges and supports 
bidirectional connections. Different types of 
data are separating in different disks–circles 
interconnected with each other

Various filters allow to selectively add or 
remove connected nodes from the 
display. A tree‐like subgraph can be 
extracted from a given node and the 
most important nodes at any level can 
be determined. A filter is available to 
import microarray expression level data. 
Data may be imported through many 
databases, among which are 
TRANSFAC, Gene Ontology, and 
KEGG

Ability to combine heterogeneous 
data types into one network. 
Suitable for text mining, sequence, 
and data integration analysis

 http://www.ondex.org/ Koehler et al. 
  [109]  , Kohler 
et al.   [110]  , 
Skusa et al. 
  [111]    

Osprey Stand‐alone application running under a wide 
range of platforms. Provides 2D 
representations of directed, undirected, and 
weighted networks. Not efficient for large‐
scale network analysis but provides various 
layout options and ways to arrange nodes in 
different geometric distributions

Provides several features for functional 
assessment and comparative analysis 
of different networks together with 
network and connectivity filters and 
dataset superimposing. Also allows to 
cluster genes by GO processes. Data 
can be loaded either by using different 
text formats or by connecting directly 
to several databases

Various filtering capabilities render 
Osprey a powerful tool for network 
manipulation. The key feature is 
the ability to incorporate new 
interactions into an already existing 
network

 http://tinyurl.com/
osprey1/ 

Breitkreutz 
et al.   [112]    

Pajek Stand‐alone Windows application. Offers 2D 
and pseudo3D representations and supports 
single, directed, and weighted graphs. Suitable 
for large‐scale networks with thousands or 
millions of nodes and vertices. Great variety of 
layout options. Separates data into layers, 
allowing the display of hierarchical 
relationships. Can handle dynamic graphs and 
reveal how networks change over time

Highly interactive, many clustering 
methods. Allows decomposition of a 
large network into several smaller 
networks and detection of clusters in 
them

Variety of layout algorithms 
facilitating exploration and pattern 
identification within networks

 http://pajek.imfm.si/ Batagelj and 
Mrvar   [113]    

It has its own input file format, not 
compatible with commonly used 
formats; not connected with any 
biological data sources  

PathVisio Pathway analysis and drawing software to 
draw edit and analyze biological pathways. 
Experimental data can be easily visualized on 
pathways and relevant pathways that are 
over‐represented in a dataset can be easily 
found

Provides a basic set of features for 
pathway drawing, analysis, and 
visualization. Additional features are 
available as plug‐ins

Plug‐ins extended functionalities 
and can also be customized for an 
advanced use

 http://www.pathvisio.org Kutmon et al. 
  [114]    
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Visualization 
tool Main features Functions and compatibility Advantages Web page References    

Pathway 
Tools

A tool to guide the user through creation, 
editing, querying, visualization, and analysis 
of Pathway Genome Databases

Wide diffusion in different research 
communities

Pathway Tools ‐omics viewers 
allow ‐omics datasets to be 
graphically painted onto three 
system‐level diagrams: a diagram 
of the full metabolic network of the 
organism, a diagram of the full 
regulatory network of the 
organism, and a diagram of the full 
genome of the organism

 http://bioinformatics.
ai.sri.com 

Karp et al. 
  [115]    

It can also depict data from 
multi‐omics data types 
simultaneously, such as mixing 
gene‐expression and metabolomics 
data in one diagram  

PIVOT Java application free for academics. Projects 
in 2D and uses single non directed lines to 
show relationships between bioentities. No 
limits in the size of data presented

Allows the expansion of the network, 
to highlight dense areas of the map, to 
visualize a subarea of a big network. 
Many features help to navigate and 
interpret the interaction map and to 
connect remote proteins to the 
displayed map through graph‐theory 
algorithms. Configured to work with 
proteins from human, yeast, 
 Drosophila , and mouse links to 
external web information pages

Best suited for visualizing PPIs and 
identifying relationships between 
them

 http://acgt.cs.tau.ac.il/
pivot/ 

Orlev et al. 
  [116]    

ProMeTra An open‐source framework that provides 
visualization methods for multi‐omics 
datasets

The integration of genomics and 
transcriptomics datasets originating 
from different services

Format SVG is used to facilitate the 
visualization of the results of 
complex functional genomics 
experiments

 http://fusion.cebitec.
uni‐bielefeld.de 

Neuweger 
et al.   [117]    

Tulip Stand‐alone free application. Allows generic 
visualization of extremely large networks and 
supports 3D visualization

 http://tulip.labri.fr/
TulipDrupal/ 

Auber   [118]    

VANTED Stand‐alone free application. Supports 
combined visualization of abundance data, 
networks, and pathways

 https://immersive‐
analytics.infotech.
monash.edu/vanted/ 

Junker et al. 
  [119]  

Table 15.2 (Continued)
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data visualization: in box b, transcriptomics data have 
been mapped on nodes (genes) using a color code for 
expression level (red for upregulation, green for down
regulation, yellow for no change), while slice size in the 
pie chart is proportional to the number of experiments 
where the gene has the same expression pattern (up‐/
downregulation or no change). In the same graph, node 
size is proportional to the node degree (i.e., nodes hav
ing a large number of connections—hubs—have a larger 
size). Edges in box b indicate interactions between pro
teins encoded by genes represented in nodes, dashed 
edges indicating a low confidence interaction. In box c, 
the layout of a metabolic network has been manually 
defined accordingly to a commonly used representation 
(in the panel a portion of the tricarboxylic acid (TCA) 
cycle). Metabolites are represented with blue nodes 
having sizes proportional to the node degree, while 
reaction nodes are marked with green diamond nodes. 
Edge thickness is proportional to the value of the flux 
through a given reaction. In box d, another metabolic 
network has been represented using a default layout. 
However metabolite nodes have been represented using 

boxes inside of which structural formulas are shown; 
the abundance of every metabolite can be represented 
here coloring the border of the box accordingly to a 
color gradient.

A promising way to face visual complexity emerging 
from ‐omics size networks is represented by clustering 
approaches (e.g., MCODE) that are integrated with net
work visualization tools and used, for example, to predict 
higher‐order protein complexes from the interaction 
data. Network clustering is a new kind of clustering 
method that is performed using correlation networks, 
in  which each node is a gene and each edge indicates 
co‐expression of two genes under a given experimental 
condition (Figure 15.3). Available tools include BioLayout 
Express 3D and Cytoscape.

A challenge is connected to the retrieval of desired 
information and to the network navigation for the explo
ration of the “surroundings” of a given element, an activity 
that could generate insights to direct the investigation of 
the system.

Another challenge can be identified in the enrichment 
of the visualization by adding further information (e.g., 

Information
content

“Hairball” visualization of PPi

(a)

(b) (c)

Transcriptomics Fluxomics Metabolomics

(d)

Figure 15.2 From uninformative to meaningful ‐omics data visualization with Cytoscape. Adding data on the network in a rational way 
improves the information content of the representation. On the top part, an example of hairball layout obtained using data from high‐
confidence protein–protein interactions [120] (a). On the lower level, examples of ‐omics data mapped on a network modifying its 
elements (nodes and edges color/dimension, layout) exploiting Cytoscape apps (Node Chart Plug‐in for transcriptomics (b), CyFluxViz for 
fluxomics, (c) and chemViz2 for metabolomics (d)).
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attributes from external sources and database) while 
maintaining a good readability of the relevant informa
tion. In this context, when network enrichment is used 
to find pathways or networks where genes are significantly 
over‐represented, a valid aid for the interpretation of 
the results of the analysis is the superimposition on the 
reference map of the metabolite concentrations or 
significance levels toward a certain metric by means of 
dedicated tools, such as MapMan, Pathway Tools Omics 
Viewer (Figure 15.4), and ProMeTra.

Lastly, future perspectives on ‐omics visualization 
through networks representations include (i) the explo
ration of three‐dimensional layouts, that is, multiple 
networks (representing each one a homogeneous type of 
data) linked among them to provide a more complete 
understanding of the system (e.g., BioLayout Express 
3D); (ii) combinations of both three‐dimensional layouts 
and temporal descriptions (e.g., E‐Cell 3D); and (iii) lay
outs that mix aspects of classic and three‐dimensional 
representation (e.g., Arena3D).

Besides network representations, visualization of ‐omics 
data can be performed through complementary approaches 
that aim at aggregating information and reduce visual 
complexity. In particular in the context of transcriptomics 
(expression profiles), many tools implement scatter plots 
combined with dimensionality reduction, profile plots, 
heat maps, dendrograms, and clustering.

An interesting cloud‐based, community‐driven resource 
(GenomeSpace, http://www.genomespace.org) has been 
recently presented [122]. Through the implementation 
of workflows, GenomeSpace aims to make the use of 
integrative analysis accessible to non‐programmers.

15.6  Integration of ‐Omics Data 
into Models

The statistical and machine learning approaches to data 
integration illustrated earlier provide a first attempt to 
identify the biochemical pathways perturbed in different 
patients and statistical correlations with drug responses. 
Identifying recurrent mutations in cancer reveals 
widespread lineage diversity and mutational specificity, 
but fails to deliver a system‐level understanding of the 
molecular mechanisms behind the emergence of dif
ferent phenotypes [123]. On the other hand, network 
biology approaches that apply topological and graph 
theory concepts to biological networks statistically 
inferred from ‐omics data or reconstructed according to 
a priori knowledge are important for understanding the 
structure and properties of the integrated cellular net
work and its modular structure, with the ultimate aim of 
understanding its organizational principles [124]. 
Enrichment of network modules, which integrate ‐omics 
data with known or predefined molecular scaffolds, 
allows the identification of the portions of the network 
that are most active under a given condition [125]. 
Nevertheless, by relying on a static conceptualization of 
the network while ignoring its integrated dynamics in 
state space, also these methods fail to provide a mecha
nistic understanding of the disease, which would be 
desirable to reliably predict individual drug response.

The mechanistic understanding of a system requires the 
integration of these data under mathematical and rela
tional models that can describe dynamically the relation
ships between their components. Two main computational 

(a)

(b)

(c)

(d)

Figure 15.3 Network showing a clustering of 
co‐expression data using Cytoscape. Source: 
Dataset from Prieto et al. [121]. In the 
network, genes are mapped as nodes, while 
edges represent the co‐expression relation. 
Identified clusters (isolated groups of nodes 
highlighted with ellipses) represent different 
cellular functions, for example, A, 
mitochondrial metabolism; B, ribosome; C, 
nuclear related metabolism; and D, immune 
response.



Figure 15.4 A cellular overview of the metabolic network of yeast generated with Pathway Tools. In this visualization, metabolic reactions are subdivided in pathways 
(grey boxes), exchange reactions are placed across the border of a rectangle representing the cellular membrane, while reactions not assigned to a specific pathway are 
grouped on the right side. The metabolic map has been enriched with data (colored nodes) on reporter metabolites (see section “Integrating Transcriptomics and 
Metabolic Pathways” for a reference on reporter metabolites), the color of the node is set accordingly to the confidence value for the reporter metabolite identification (top 
left color bar), the distribution of nodes having a given confidence value is shown on a histogram in the bottom left corner.
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frameworks allow to predict the phenotype that emerges 
from a given biological network structure: kinetic mod
eling and constraint‐based modeling.

Kinetic modeling allows estimating the evolution in 
time of the concentration of each network component in 
a reacting system (such as metabolites, transcripts, or 
proteins). The transition from one state of the network 
to the following one is determined by the interaction 
with the other network components and by rate law 
equations. The traditional way of modeling the time 
evolution of the molecular populations in a reacting 
system is to use ordinary differential equations (ODEs). 
However, when more appropriate, an approach that 
considers stochastic fluctuations can be applied.

An example of data integration into kinetic modeling 
is provided by the kinetic model of glycolysis in yeast 
[126] and Plasmodium falciparum [127]. Each glycolytic 
enzyme was kinetically characterized and the param
eters of kinetic equations (e.g., Michaelis–Menten) 
were chosen to best fit the experimental kinetic data; 
the resulting rate laws incorporated into the model. 
The difficulty in obtaining kinetic parameters and their 
appropriateness for in vivo situations makes it difficult if 
not impossible to scale up traditional kinetic models to 
large (genome‐wide) networks. A recent paper [128] 
integrated metabolic profiling data obtained from the 
plasma of different patients into a whole‐cell, metabolic 
kinetic model of a red blood cell (RBC) (that includes 
55 transport and 87 intracellular reactions). The models 
allowed to identify individuals at risk for a drug side 
effect and protective genetic variations, proving the fea
sibility and usefulness of “personalized” kinetic models, 
whose use will accelerate discoveries in characterizing 
individual metabolic variation. Still, routine integration 
of ‐omics data into kinetic modeling remains a problem
atic task that is awaiting improved methodologies.

On the contrary, constraint‐based modeling is a frame
work well suited for metabolic network modeling and 
multi‐omics data integration, which is capable of provid
ing a deeper understanding of metabolic functions than 
data alone [129]. Constraint‐based modeling relies on 
the idea of excluding phenotypes that do not abide by 
the imposed constraints, iteratively restricting the space 
of possible phenotypes until getting the most plausible 
one(s) [130]. Fundamental assumption of this kind of 
techniques is a pseudo‐steady state for internal metab
olites concentrations. As compared with kinetic 
modeling, constraint‐based modeling has the substan
tial advantage of not requiring any knowledge on 
kinetic parameters governing reaction rates. Recent 
developments of constraint‐based models account for 
gene expression reconstructions that use approximate 
stoichiometric relationships between the level of 
enzymes and their cognate catalyzed fluxes to compute 

feasible, optimal, and spatially resolved states describing 
the cellular composition at the molecular level [131].

15.6.1 Multi‐Omics Data Integration into 
Genome‐Scale Constraint‐Based Models

The starting point for multi‐omics data integration, 
within the constraint‐based framework, is the descrip
tion of the entire metabolism of a given organism as a 
network. This goal is attainable, thanks to the increased 
access to genome sequencing and annotation tech
niques. Moving from functional gene annotation, a 
metabolic reaction can be associated with each meta
bolic gene, that is, the reaction catalyzed by the corre
sponding enzyme. Once the identified reactions are 
grouped by metabolite, a genome‐wide metabolic net
work is obtained. According to this paradigm, several 
genome‐wide reconstructions are today available for 
different organisms, from microorganisms to human. 
An example is provided by Recon2 [132] and HMR 
[133], which encompass virtually all the reactions that in 
principle can occur in human metabolism and are there
fore considered as generic reconstructions. Genome‐
wide generic reconstructions can be customized on 
specific cell types or tissues (or even patients) by 
exploiting several kinds of ‐omics data and appropriate 
algorithms (for a review see Ref. [134]). The so‐obtained 
specific network represents the subnetwork that is 
known to be active in a given cell, according to its tran
scriptome, proteome, metabolome, and fluxome [135].

The family of ‐omics data that can most naturally be 
incorporated into genome‐wide networks is fluxomics 
data. Constraint‐based models allow indeed to specify 
the boundaries for the flux allowed for a given reaction. 
Constraints on nutrient intake and secretion fluxes 
(exchange reactions in the constraint‐based terminology) 
are determinants in reducing the space of possible 
phenotypes.

The incorporation of transcriptome data to further 
constrain the flux distribution solution space is less 
straightforward. The main approaches are (i) the switch 
approach (e.g., GIMME and iMAT), using on/off reac
tion fluxes based on threshold expression levels, and 
(ii) the valve approach (e.g., E‐Flux and PROM) to regu
late reaction fluxes according to relative gene/protein 
expressions [136]. See Ref. [137] for a recent review.

Paradoxically, metabolite profiling may be the kind 
of ‐omics data that can most difficultly be integrated 
into genome‐wide models (as reviewed in Ref. [138]). 
However, several algorithms, such as the INIT and tINIT 
[135, 139], have been proposed as an effective strategy to 
extract the portions of a generic GW model that is active 
in a given tissue or cell type, according to heterogeneous 
biological evidence, including metabolome. Based on 
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proteome, or on transcriptome when the former is not 
available, INIT assigns weights to the reactions in the 
HMR according to their different levels of evidence in 
the specific tissue or cell type. A unitary weight is also 
assigned to demand reactions (reactions that remove 
metabolites from the network) according to detected 
metabolites to impose the capability to accumulate a 
set of metabolites. An optimization process is then 
performed with the aim of maximizing as much as pos
sible the reactions fluxes with a high weight (since the 
corresponding enzymes have a high expression level) 
while minimizing the others. Reactions that carry flux in 
the obtained optimal flux distribution are assigned to the 
tissue‐ or cell‐specific model.

A more complex approach for integrating quantitative 
proteomics and metabolomics data with genome‐scale 
metabolic network models, called integrative ‐omics‐
metabolic analysis (IOMA), was also proposed [140], 
which requires a mechanistic model of reaction rates. 
To evaluate the predictive performance of IOMA, the 
authors applied it to predict metabolic flux for RBC 
for which a detailed kinetic model is available. 
Remarkably, they demonstrated the advantages in the 
use of both proteomics and metabolomics to infer 
metabolic flux, as compared with inputting only one 
of the sources.

Once an active network is obtained according to the 
different integration algorithms, flux balance analysis 
(FBA) is then typically applied to determine the flux 
distribution that maximizes or minimize a specified 
objective.

15.7  Data Integration and 
Human Health

The integration of different ‐omics data, without the 
aid of computational models, has allowed identifying 
biomarkers of different human diseases. We focus here 
on the next step: how integration of data into models 
may improve system‐level understanding of human 
diseases and, in perspective, may help in defining novel 
drug targets and better therapeutic regimens.

15.7.1 Applications to Metabolic Diseases

Genome‐wide metabolic networks find their natural 
application in the study of metabolic diseases. In the 
simplest case, inborn error of metabolism (IEM) can 
be easily simulated by “deleting” the reaction catalyzed 
by the enzyme coded by the defecting gene. Metabolic 
biomarkers can then be predicted by monitoring the 
change in their feasible exchange flux [141]. Indeed, 

Recon 2 predicted 54 reported biomarkers for 49 
 different IEMs, with an accuracy of 77% [132]. However, 
metabolic network modeling has also been successfully 
applied to the investigation of more complex metabolic 
diseases, such as diabetes. As an example, the integra
tion of transcriptome data and metabolic pathways, 
through pathways enrichment analysis, has supported 
the identification of reporter metabolites that allow 
to  distinguish nonalcoholic fatty liver disease from 
healthy patients [142].

Varemo and colleagues [143] elucidated metabolic 
alterations in skeletal myocytes associated with type 2 
diabetes at a system level, by generating cell‐type‐
specific RNA‐sequencing (RNA‐seq) data for human 
myocytes and studying the correlation of this data with 
proteome data for myocytes from the Human Protein 
Atlas. Then, the authors constructed a comprehensive 
myocyte genome‐wide model using these data and 
mapped transcriptional changes related to type 2 diabe
tes on the myocyte genome‐wide model. An extensive 
transcriptional regulation in type 2 diabetes emerged, 
particularly around pyruvate oxidation, branched‐chain 
amino acid catabolism and tetrahydrofolate metabolism, 
connected through the downregulated dihydrolipoam
ide dehydrogenase.

Jozefczuk and colleagues [144] analyzed network fea
tures of hepatic steatosis, another common metabolic 
disease. The authors generated gene‐set enrichment and 
over‐representation analysis through the pathway data
base integration system ConsensusPathDB. Network 
analysis of expression data of steatosis samples versus 
control revealed several pathways and functional mod
ules of the disease, on which a first model prototype of 
steatosis related processes was developed. The prototype 
model included a minimal network, comprising a regula
tory network (based on the transcription factor SREBF1) 
linked to a metabolic network of glycerolipid and fatty 
acid biosynthesis (including the downstream transcrip
tional targets of SREBF1). As the glutathione pathway 
was among the pathways enriched in steatosis versus 
control, the authors mapped mRNA expression data to a 
kinetic model of the glutathione synthesis pathway, 
focusing on a subset of complete pathways, rather than 
all genes of the genome. Then, Jozefczuk and co‐authors 
extended this approach to other pathways important 
for liver regulation and functioning, such as fatty acid 
biosynthesis, fatty acid metabolism, bile acid pathway, 
gluconeogenesis, urea cycle, glycolysis, TCA cycle, and 
glyoxylate shunt. An object‐oriented, comprehensive, 
multi‐pathway, and multi‐tissue in silico platform to 
investigate hepatic metabolism and its associated dereg
ulations has been constructed. The SteatoNet model’s 
ability to effectively describe biological behavior has 
been proven by its ability to identify metabolic flux 



Integration of Omics Approaches and Systems Biology for Clinical Applications264

alterations previously identified experimentally in liver 
patients and animal models [145].

15.7.2 Applications to Cancer Research

Besides metabolic diseases, modeling of metabolic 
networks finds a large application in cancer research, 
where alterations in metabolism have been identified 
as a major hallmark of cancer [5, 134, 146]. FBA— 
typically exploited to predict physiologically relevant 
growth rates or the rate of metabolite production as a 
function of the underlying biochemical networks 
[147, 148]—is particularly useful to investigate the 
metabolic reprogramming performed by cancer cells 
[149]. FBA allows to identify, given a specified nutrient 
availability, the distribution of metabolic flux across 
the various pathways that maximize growth. In fact, 
enhanced growth indistinctly characterizes cancer 
cells and can be regarded as their “purpose.” With this 
aim, the Human Metabolic Atlas offers a collection of 
tissue‐specific reconstructions for both health and 
tumor tissues, obtained with the INIT algorithm, start
ing from the generic human reconstruction HMR and 
from ‐omics data in public databases such as the 
Human Protein Atlas [36].

The Human Metabolic Atlas also includes functional 
personalized GEMs for six hepatocellular carcinoma 
(HCC) patients [139]. Agren et al. [139] identified strong 
differences among the six HCC patients and simulated 
the effect of potential antimetabolites, by blocking the 
reactions that the corresponding metabolite engages in. 
They identified potential antimetabolites with antipro
liferative or cytotoxic effect against HCC tumors for all 
six patients. Among these potential antimetabolites, 
they experimentally evaluated the effect of an l‐carnitine 
analog on HepG2 cell proliferation, confirming their 
genome‐scale modeling predictions.

In 2015, Asgari and colleagues [150] used the human 
metabolic model Recon1 as a scaffold to reconstruct 
tissue‐specific models with the E‐Flux method, which 
maps gene expression data into a genome‐wide model 
by constraining the maximum possible flux through 
the reactions. Then, through FBA, the authors com
puted the reaction fluxes between normal and corre
sponding cancer cells in their subsystems. They found 
that the distribution of increased and decreased meta
bolic fluxes was unrelated to the significantly up‐ and 
downregulated metabolic genes of the associated can
cer. Thus, they demonstrated that expression pattern 
of all metabolic genes (and not just significant up‐ and 
downregulated ones) plays a key role in metabolic 
rewiring of cancer cells. Consistently, rather than 
 differential expression of specific genes, 7 subsystems 
(out of 13 common to all considered cancer cells) 

appear to be responsible for the Warburg effect: 
 glutamine metabolism, nucleotides, glycolysis, oxida
tive phosphorylation, pentose phosphate pathway, 
TCA cycle, and pyruvate metabolism. Therefore, the 
Warburg effect appears to be a consequence of meta
bolic adaptation.

GEMs indeed represent a valuable tool to investigate 
the rationale behind metabolic events associated with 
cancer like the Warburg effect [151]. In this regard, 
Shlomi and colleagues inserted a solvent capacity con
straint to the genome‐scale human metabolic recon
struction Recon1 [152] to show how aerobic glycolysis 
emerges as the best strategy for growth. Along similar 
lines, [153] used a reduced flux balance model of ATP 
production constrained by the glucose uptake capacity 
and by the solvent capacity of cell’s cytoplasm to dem
onstrate that the Warburg effect is a favorable catabolic 
state for rapidly proliferating cells with high glucose 
uptake capacity.

When studying metabolic plasticity and the ability of 
cells to adapt to changing environmental conditions, 
“core models” may be a valuable alternative to GEMs by 
allowing to highlight the more relevant properties of 
the network [154]. Di Filippo and colleagues extracted 
and manually curated, from the corresponding GEMs 
in the Human Metabolic Atlas, specific constraint‐
based core models for liver, breast, and lung tumors. 
A core model reconstructed starting from the original 
general human metabolic network was used as a refer
ence. The three tumor models showed common meta
bolic properties reported in different kind of tumors: 
downregulation of respiratory chain, enhanced glyco
lytic flux, and stimulated utilization of glutamine via 
reductive carboxylation. Metabolic flux distribution 
among the three tumors was significantly different. 
Reactions that were present in the reference model, but 
absent in the tumors models, were isolated. Their inser
tion into the cancer models resulted in a less cancerous 
phenotype, and vice versa, their deletion from the 
generic models lead to a more cancerous phenotype. 
A group of reactions in particular was identified to be 
critically responsible for the reversion of tumor models 
toward less cancerous phenotypes [155]. The group 
includes the transport of phosphates from cytosol and 
mitochondrion, whose role for the correct functioning 
of the respiratory chain was indeed demonstrated in 
 literature [156]. The metabolic advantages provided by 
particular metabolic events as compared with alterna
tive phenotypes may also be investigated by comparing 
ensembles of flux distributions consistent with alterna
tive strategies [157].

The workflow of constraint‐based data integration 
approaches to cancer is schematically illustrated in 
Figure 15.5.
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15.8  Conclusions

Integration of different ‐omics technologies allows to 
better extract hidden information in each dataset, 
allowing an unprecedented precision in the definition 
of the molecular phenotype of patient‐derived samples. 
Correlation of these high‐resolution molecular pheno
types to the clinical outcome provides precious indica
tions for the development of novel stratification procedures 
to be used in the choice of the more appropriate therapeutic 
regimen. Integration of (multi)‐omics data into mathe
matical models of diseased networks—notably metabolic 

networks—allows ex post examination of patients data 
collections. These personalized models provided the 
proof of principle of their ability to identify fragility points 
and to design appropriate personalized therapeutic 
 regimens. As technical improvements and reductions in 
cost make it easier and easier to collect ‐omics data and 
more powerful and efficient computational methods are 
devised, it will be possible to apply this workflow in real 
time and use it as a guide in the design of a patient’s per
sonalized therapy, enabling the customization of medical 
care to the specific phenotype of each patient rather than 
providing a single, conventional treatment.
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16.1  Introduction

In this chapter we will discuss methods to construct and 
analyze comprehensive and predictive models of bio-
logical systems. Such models include all of the elements 
and regulatory structures necessary to model the dynamics 
of the normal system. They also allow us to elucidate 
how perturbations in one or more regulatory interactions 
will alter those dynamics. Many disease processes such 
as cancer or diabetes arise from alterations in regulatory 
network components that transcend the classical defini-
tions of signaling pathways, and modeling allows us to 
study their behavior as part of a complete system.

Over the last few decades, a wide range of modeling 
frameworks has been developed. These combine prior 
knowledge from traditional hypothesis‐driven experiments 
(in which the function of individual gene products is care-
fully investigated using orthogonal approaches) or existing 
databases with ‐omics‐level signatures of biological 
systems derived from high‐throughput technologies. 
Decades of research on how individual regulatory inter-
actions assemble into signaling pathways provides a rich 
source of information for the assembly of more complex 
predictive systems‐level models—the “bottom‐up” 
approach to model construction. This complements the 
‐omics‐driven top‐down approach that also includes the 
application of computational techniques to analyze (and in 
some cases reduce) complex high‐throughput data in order 
to facilitate the process of model construction (Figure 16.1).

Modeling regulatory networks involves two main 
steps. The first is to build the primary structure of the 
network, while the second is to choose and apply the 
appropriate mathematical approach to simulate its 
dynamical behavior. In the following section we will 
discuss the first step, that of network construction. 
Networks may be constructed using experimental data 
(such as high‐throughput ‐omics data), existing published 

knowledge, or a combination of the two. Tools that can 
infer a regulatory network from high‐throughput data 
[1–3] include REVEAL (that uses Boolean modeling 
[4]), BMA [5] and ScanBMA [6] (that use probabilistic 
modeling to generate Bayesian networks), and ARACNE 
[2, 7], CLR [8], and C3NET [9] (that use mutual infor-
mation to assemble correlation networks). Here we will 
focus on strategies that take advantage of existing 
published knowledge to construct regulatory networks 
for complex biological systems. We call these networks 
prior knowledge networks (PKNs).

16.2  PKN Construction Through 
Expert Biocuration

The scientific literature is the most useful source of 
information when starting to build a PKN. From the 
existing knowledge and reported experimental evidence, 
one can assemble a directed graph that includes the 
relevant components of the system of interest as well as 
the relationships between them (inhibition or activation). 
The most popular research tools are the classical search 
engines such as PubMed (NCBI) and Google Scholar, but 
several text mining tools were developed over the last 
decade to scan the literature such as iHOP [10], an online 
text mining service that provides a gene‐guided network 
to access PubMed abstracts. The text mining literature 
contains numerous softwares and platforms (for a com-
prehensive review see Ref. [11]).

Pathway and reaction databases are other precious 
curated sources of knowledge. KEGG Pathway Database 
provides manually drawn maps of interactions and 
reactions. Reactome [12] is also a manually curated 
database of human pathways and interactions. Other 
databases are more disease specific such as Atlas of 
Cancer Signaling Networks (ACSN) [13] where molecular 
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mechanisms involved in cancer are collected and repre-
sented in the form of five interconnected maps, each 
covering signaling processes involved in apoptosis, cell 
survival, cell motility, cell cycle, and DNA repair. IntAct [14], 
which is part of the IMEx consortium (www.imex.org), 
also provides curated molecular interaction database. All 
these resources provide tooling to search and overlay 
experimentally determined measurement from gene to 
protein expression.

A number of commercial resources are also available 
to help with the reconstruction and overlay of PKNs, for 
example, Ingenuity Pathway Analysis, Ariadne, and 
MetaCore, that provide several services such as manually 
curated database of signaling pathways, text mining, and 
knowledge extraction and a number of tools to analyze 
and manipulate networks. These services are not open 
source or freely accessible, rendering their access costly.

These PKN resources presented in Figure 16.2 are good 
starting points for network modeling since they offer a 
global view of the system. However, they all have the draw-
back that they are not contextualized for specific biological 
cases since they merge information from different experi-
mental, tissue, and cellular contexts. Most of time these 
PKNs need to be refined and trained to experimental data 
before being used for in silico simulation experiments and 
analysis. This issue is addressed in Section 16.3.1.5.

Top-down
HT

Expression data
(microarrays, RNA-seq)

Proteomics
Metabolomics

Infer networks
-Reduce complexity-

Compose networks
-Build up complexity-

Literature resources
Knowledge databases

Small-scale experiments

Describe Predict

Bottom-up

Figure 16.1 Modeling regulatory network at the intersection of 
the top‐down and the bottom‐up methodologies to describe 
biological systems and predict their behavior/outcome.

Starting point
Elements (genes,

proteins, coumpounds)
specific to the model

Literature resources

New interactions Confidence level

• Recurrence

• Logic inside the model

• Publication types

Figure 16.2 Curation workflow for prior 
knowledge network (PKN) construction 
and the different steps necessary to build 
a contextualized PKN.
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16.3  Modeling and Simulating 
the Dynamical Behavior of Networks

The choice of modeling approach will depend on the 
complexity of the biological question (or knowledge net-
work) as well as the quantity and type of data available. 
We will discuss here several modeling approaches that 
range from the quantitative modeling using ordinary 
differential equations (ODEs) to qualitative and logical 
modeling. Quantitative modeling provides detailed 
information about the dynamical behavior of a biological 
system but requires experimental data on kinetic param-
eters that are rarely available. Quantitative modeling is 
therefore generally applied to the study of small and well‐
characterized systems. Qualitative modeling approxi-
mates quantitative behaviors using a limited number of 
defined states and does not require experimental data 
on kinetic parameters. This feature makes qualitative 
modeling a powerful means to study and predict the 
behavior of large networks for which detailed kinetic 
data is not  available. An overview of the modeling 
workflow is presented in Figure 16.3.

16.3.1 Logic Models

16.3.1.1 Boolean Networks
Logical modeling of biological systems was pioneered by 
Kauffman [15, 16]. Among logic‐based methods, the 
simplicity of Boolean models makes them an attractive 
means to describe large networks. A Boolean network 
consists of a set of nodes representing genes, proteins, 
regulatory RNAs, small molecules, and other components 
that are relevant to the biological process of interest. 
The node states are binary, where 1 represents an active 
node and 0 an inactive node—and where activity could 
be the result of protein production or an activating modi-
fication such as phosphorylation. Interactions between 
nodes are represented by edges that denote the influence 
of one node over another—either activation or inhibition. 
The state of a node (0 or 1, corresponding to the logical 
values FALSE or TRUE) is determined by the state of its 
input nodes. Interaction among inputs is captured by 
Boolean functions as combinations of elementary AND, 
OR, and NOT gates that generate logic rules for target 
activation/inactivation. The identity of gates is determined 
based on prior knowledge and experimental observations. 

A C

E DB

&

A C

E DB

&

A C

E DB

&

A C

E DB

&

IF
 F

A
LS

E

IF FALSE

IF TRUE

IF
 T

R
U

E

(a) Build network
structure and

define Boolean
Functions

(b) Compute
attractors

(c) Test the
correctness of

the model

(d) In silico
experiments
Predictions

(e) Experimental
validation

(f) Final model

Figure 16.3 Modeling workflow. Network construction and iterative optimization against experimental datasets. (a) Toy example of a 
Boolean network with five nodes A, B, C, D, and E and one AND logic gate; arrow edges are activations and T edges are inhibitions. 
(b) Network attractors: grey nodes are active (1) and white nodes are inactive (0). (c) Test the correctness of the model compared with 
experimental data: expression data, proteomic data, or other data relevant for the biological question. (d) In silico simulations and 
experimental prediction. (e) Experimental validation of simulation outcomes. (f ) Final model.
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For example, a node A is active if one of its activators 
B or C is active, and its inhibitor D is inactive; the logical 
function of A would be A = (B or C) AND NOT D.

Simulation of network dynamics involves (i) updating 
the nodes based on their inputs (Boolean function) and 
(ii) searching for the long‐term behavior of the network 
where the node states stabilize, also called attractors.

An updating scheme is needed when simulating 
dynamics using Boolean models [17]. In the synchro-
nous updating scheme, we make the assumption that all 
events in the system have similar timescales and all genes 
change their state simultaneously. However, in the asyn-
chronous model, one node state is updated at a time. 
There are deterministic and stochastic asynchronous 
schemes. In stochastic schemes, the node that is updated 
in the next time step t + 1 is chosen randomly, whereas in 
deterministic asynchronous schemes, the nodes are 
updated according to a predetermined order. The 
requirement of asynchronous models for high CPU time 
prevents their use for analysis of large and highly con-
nected networks; hence there is a need for the synchro-
nous models as alternative.

A snapshot of the state of all the nodes in the network 
at a time t is called the state of the network. Attractors 
are the states where the system stabilizes. They repre-
sent the stable behavior of the system. Simulation 
allows one to identify these attractors. Simple attrac-
tors feature only a single state, while complex attractors 
feature multiple states among which the system oscil-
lates. Positive functional feedback loops (sequences of 
edges by which nodes positively influence their own 
activation) are a feature of systems with multiple stable 
states where functional negative feedback loops generate 
cyclic attractors [18].

Identifying network’s attractors is biologically relevant 
since attractors may be associated with cellular pheno-
types, assuming the network has been well designed. 
Attractor analysis allows one to compare the activation 
level of network components with prior knowledge and 
experimental data. An attractor must be able to reproduce 
prior experimental observations; if it fails the network 
structure and Boolean functions should be checked. 
These comparisons are used to test the correctness of the 
model. Data used to test the correctness of the model 
must be different than those used to construct the model. 
Knockout experiments could be used as training sets to 
optimize the network. Several iterations of curation and 
optimization may be necessary to obtain a model that 
best reproduces known experimental behavior. One 
example of iteration process is the recent study of Flobak 
et al. on drug combination simulations to test drug syn-
ergy in gastric cancer cells [19]. The authors removed 
iteratively from the PKN components not targeted by 
drugs to obtain a network sufficiently small to allow 

asynchronous simulations while consistent with the 
whole network behavior, enabling thus the analysis of all 
single and pair inhibitions. Their simulation predicted 
synergetic inhibitory action of 5 combinations from a 
total of 21, of which 4 of these predictions were experi-
mentally confirmed, thereby demonstrating the benefits 
of such an approach.

Simulation of the Boolean network behavior and the 
identification of attractors can be performed using a 
number of tools. BoolSim/genYsis [17] provides a set of 
algorithms for synchronous and asynchronous node 
update to compute the attractors, as well as functions to 
perform gene perturbation experiments. It has been used, 
inter alia, for simulating in silico perturbation experi-
ments that enabled the identification of IL‐11 as novel 
pluripotency‐associated factor capable of sustaining self‐
renewal in human pluripotent stem cells [20]. GINsim 
[21] and SQUAD [22] are other simulation tools designed 
for qualitative modeling. Unlike BoolSim that is a 
command line tool, GINsim—used, inter alia, to compute 
the steady states of the previously cited model of drug 
synergy in gastric cancer cells [19]—and SQUAD provide 
user‐friendly graphical interfaces, which is more conveni-
ent especially for non‐computational scientists. Moreover, 
SQUAD enables to create a continuous dynamical system 
and localizes its steady states that are located near the 
steady states of the discrete system; it has been success-
fully used to reproduce the behavior of the regulatory 
network implicated in T‐helper cell differentiation.

Logical modeling is becoming nowadays a popular 
modeling framework generating the need of format and 
tool standardization. The Consortium for Logical Models 
and Tools (CoLoMoTo) [23] is an international open 
community that brings together modelers, curators, and 
developers of methods and tools. It aims at the definition 
of standards for model representation and interchange 
and the establishment of criteria for the comparison of 
methods, models, and tools. The colomoto.org website 
contains the methods, formats, and software relevant for 
logical modeling.

The Boolean approach provides a way to narrow down 
possible experimental combinations that need to be 
tested. It has been successfully used to study several 
biological systems. Chasapi et al. [24] describe a model 
of the septation initiation network in Schizosaccharomyces 
pombe that includes 54 nodes and 124 edges. Their model 
was able not only to reproduce known experimental out-
puts such as the septation blockage by cdc11 and cdc16 
deletion but also to make in silico the counterintuitive 
double‐mutant phenotypic prediction that Sid4p mutant 
cells would septate if they express Cdc7p in high levels. 
This prediction has been validated in vivo, demonstrat-
ing the power of qualitative modeling in hypothesis 
generation and prediction of experimental outcomes.
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Another example of successful collaboration between 
Boolean modeling and experimental approaches is the 
recent study by Guex and Crespo et  al. Researchers 
combined prior knowledge with a network inference 
strategy that consists of using experimental measure-
ments and in silico predictions to construct and refine 
the network that controls TIE‐2‐expressing monocytes 
(TEM) pro‐angiogenic function. This network was 
then used to identify, through simulations, combined 
treatments that would alter TEM pro‐angiogenic activity. 
All the minimal perturbations that bring the TEM 
from highly pro‐angiogenic phenotype to the weak 
pro‐angiogenic one and vice versa were tested, and four 
of the five predicted combined treatments were validated 
experimentally. The treatments proved to be highly effi-
cient and may constitute a novel valid therapeutic strategy 
in breast cancer [25].

16.3.1.2 Probabilistic Boolean Networks (PBN)
In order to encode Boolean functions, it is necessary to 
understand how different inputs that are the regulators 
of a given target (protein, gene, etc.) operate to influence 
its activity/state so that appropriate logic connectives 
(AND, OR, NOT) can be used to encode the Boolean 
function. However, the lack of experimental evidence 
raises the need to express uncertainty in the regulatory 
logic and overcome the deterministic inflexibility of 
Boolean networks. In probabilistic Boolean networks 
(PBN), each node can have several Boolean functions 
and each function can have a probability based on prior 
data. A regulation function is then randomly selected at 
each time step for each node according to its probability 
[26, 27]. The result is a sequence of states that constitutes 
a Markov chain with fixed transition probabilities. 
Shmulevich et al. [26] used a subnetwork designed from 
human glioma gene expression data to demonstrate their 
proposed method for the steady‐state analysis. Their 
study relies on the use of Monte Carlo methods to ana-
lyze the corresponding Markov chains. Thus, they used a 
subnetwork of 15 genes constructed from human glioma 
gene expression dataset and then analyzed the joint 
steady‐state probabilities of combinations of two genes: 
Tie‐2 and NF‐κB, Tie‐2 and TGFB3, and TGFB3 and 
NF‐κB. Their results seem to be consistent with what is 
known about these genes in tumorigenesis. Indeed they 
show that TGFB3 and NF‐κB are directly linked, which is 
very likely since TGFB3 is a homolog of TGFB1, already 
known to have a direct regulatory relationship with 
NF‐κB.

16.3.1.3 Multiple Value Modeling
In some cases such as when the effect of a component on 
its target depends on more than two levels of activation, it 
may be necessary to consider further levels of activation 

of node states rather than the simple binary Boolean 
values (0/1). To take into account such cases, several 
methods and tools were proposed to extend the Boolean 
modeling by allowing a range of intermediate values for 
node states. Tools such as BoolSim [17, 28] and GINsim 
[21] designed at first for Boolean modeling were extended 
to take over multi‐valued nodes in Boolean networks. 
However, in some cases there is a need to encode more 
complex rules than those allowed by the conventional 
Boolean framework. To emphasize this point, we discuss 
in the next section the fuzzy logic (FL)‐based modeling.

16.3.1.4 Fuzzy Logic‐Based Modeling
FL modeling extends simple Boolean modeling by 
allowing a range of intermediate values for node states 
rather than the simple binary values. The intermediate 
values in FL models can be descriptive classes such 
as “low,” “medium,” and “high,” with logic operators 
connecting these descriptive inputs to a specific out-
put, offering an interesting intermediate alternative 
between Boolean models (BM) and ODEs. Inputs are 
mapped to outputs thanks to list of if‐then statements 
called rules where the “if ” part is the antecedent and the 
“then” part the consequent.

In FL the truth of any statement is a matter of degree. 
Before the rules can be evaluated, inputs must be fuzzi-
fied: membership functions are used to assign values of 
inputs to a descriptive input class. They define how each 
input is mapped to a membership value called degree 
of membership that ranges from 0 (no membership) to 1 
(full membership). If the antecedent has more than one 
input, fuzzy operators are applied. As illustrated in 
Table 16.1, to resolve the statements the min() function 
can be used to resolve the AND, the max() to resolve the 
OR, and the additive complement for the NOT. Indeed if 
we keep the fuzzy values at their extremes 0 and 1, the 
standard Boolean logic applies, and we can easily demon-
strate that the min(), max(), and the additive complement 
preserve the results of AND, OR, and NOT truth tables 
that remain unchanged. In the context of FL modeling, 
we can then consider other intermediate values.

FL rules need not to be unique in contrast to Boolean 
logic where only one rule can be used and a weight can 

Table 16.1 Example of the use of membership functions.

A B A and B min(A,B) A or B max(A,B) NOT A 1 − A

0 0 0 0 0 0 1 1
0 1 0 0 1 1
1 0 0 0 1 1 0 0
1 1 1 1 1 1
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be applied to each FL rule to specify whether it should be 
used or not. The final step aims to assign one value to the 
output. It is called defuzzification; the results of multiple 
rules are combined and resolved to determine the output 
value. Thanks to this flexibility of FL gates, intermediate 
levels of activity and complex processing functions can 
be modeled.

Aldridge et  al. used this method to model signaling 
network induced by tumor necrosis factor (TNF), epi-
dermal growth factor (EGF), and insulin in human colon 
carcinoma cells [29]. They describe step by step the 
assembly of the signaling network and the application of 
the FL framework to incorporate qualitative and noisy 
data and produce relevant quantitative predictions. They 
used as starting point a PKN diagram, and then logic 
gates and their associated membership functions were 
generated from the cellular responses to the cytokines 
treatments. Their model simulations recapitulated most 
features of their data, generated new insights regarding 
mitogen‐activated protein kinase 2 (MK2) and extracel-
lular signal‐regulated kinase (ERK) pathways cross‐talk, 
and uncovered unexpected inhibition of the inhibitor of 
nuclear factor kappa‐B kinase (IKK) by EGF treatment. 
These observations show once again the ability and 
usefulness of network modeling to generate testable 
biological predictions that cannot be obvious from simple 
inspection of the data.

Subsequently a new approach to FL modeling named 
constrained fuzzy logic (cFL) was introduced by Morris 
et al., enabling the formal training of a PKN to experi-
mental data and resulting in a quantitative network 
model [30]. Their method was implemented in the 
CellNetOptimizer software. It comprises three main 
stages: First, the PKN is converted into a cFL model. 
Second the model is trained to experimental data. 
Third, trained models are refined and reduced. This 
method is limited by some issues such as the excessive 
CPU time requirement that was addressed by a nonlin-
ear programming (NLP) optimization formulation 
approach [31].

Another recent study combined PKN and FL modeling 
to address the question of downregulation of hepatic 
detoxification during inflammation [32]. The response 
of primary human hepatocytes to IL‐6 stimulation was 
investigated. The approaches used were chemical per-
turbation experiments, single inhibitions of STAT3, 
PI3K, and MAPK and then combinatorial inhibitions 
upon IL‐6 stimulation to train the model. The R library 
CNORfuzzy [33] was used for the analysis. The resulting 
model suggested a central role of RXRα receptor as link 
between inflammatory signaling and drug‐metabolizing 
enzymes and transporters. This prediction has been 
experimentally validated by siRNA‐mediated RXRα gene 
silencing.

16.3.1.5 Contextualization of PKNs Using 
Experimental Data
PKNs are a good starting point when modeling gene/
signaling regulatory networks. Most PKNs are derived 
by combining the results from many different experi-
mental systems and are not specific to a given biological 
context such as a tissue or cell type. These may have 
distinct variants of “textbook” signaling pathways, and 
these may also be altered in disease states. PKNs are also 
biased in their composition as individual components 
may have been studied to varying degrees.

The detection of truly active signaling topologies based 
on comprehensive experimental data is then necessary 
to accurately model specific biological systems. To more 
accurately model specific biological systems, starting 
PKNs may be trained or contextualized using experi-
mental data from that system. Some of the methods for 
this contextualization process are described as follows:

SigNetTrainer is based on an integer linear programming 
formulation to encode constrains on the qualitative 
behavior of the nodes. It proposes a set of algorithms 
to detect and remove inconsistencies between meas-
urements and PKN topology [34]. It has been applied 
by Michailidou et  al. to improve the mechanistic 
knowledge of human hepatocellular carcinoma chem-
oprevention in order to provide a strategy to assess the 
preclinical candidates [35]. The PKN has been 
obtained by merging pathways from databases such as 
KEGG and Ingenuity into a signaling network and 
then contextualized to proteomic data.

CellNOptR is another software for building logic models 
by training PKNs to experimental data. It converts the 
PKN to a Boolean network and identifies the optimal 
sub‐model that fits the multiple perturbations experi-
mental data [33]. It has been used, inter alia, by Vega 
et al. to investigate the mechanism governing budding 
yeast cell signaling pathway interactions [36]. Models 
of high osmolarity glycerol (HOG) and the mating 
pheromone response pathways were trained to phos-
phoproteomic time course data corresponding to the 
stimulation with NaCl, pheromone, and both stimuli.

PRUNET is a recently developed software where a single 
experiment comparing two cellular phenotypes is 
sufficient for contextualization. Besides the PKN, it 
takes as input a list of up‐ and downregulated genes 
resulting from the comparison between two stable cel-
lular phenotypes and returns a contextualized network 
[37]. The authors demonstrated the applicability of 
their method using four previously published models 
as examples: epithelial–mesenchymal transition [38], 
T‐helper lymphocyte differentiation [39], induction 
of pluripotent stem cells [40], and differentiation of 
human embryonic stem cells into cardiomyocytes [41]. 
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They added to these models consistent and inconsistent 
interactions and then used training sets from the same 
publications for contextualization. The resulting net-
works were then used to predict expression values and 
simulate perturbations to evaluate whether contextu-
alized networks reproduce expected response.

16.3.1.6 Ordinary Differential Equations
Quantitative models need real‐valued parameters over a 
continuous timescale. A detailed model of regulation can 
be described by ODEs. ODEs were among the first 
approaches used by researchers to model cell physiology 
in the 1970s [42]. They provide detailed information 
about the dynamic of the network, but the fact that they 
require high‐quality kinetic data makes them applicable 
to only few systems.

These equations describe the instantaneous change 
of molecular concentrations of each component as a 
function of the level of its regulators. These changes are 
expressed as reaction‐rate equations that have the 
mathematical form

 
dxi
dt

fi x i n, 1
 

There are n equations; x is the vector concentration of 
proteins, RNAs, or metabolites and fi a usually nonlinear 
function. These equations can be extended to take into 
account concentrations (u) of input elements such as 
externally supplied nutrients:

 
dxi
dt

fi x u i n, , 1
 

Solving these rate equations depends on f. In general, 
these equations are difficult to solve analytically when 
fi(x) are nonlinear. One way to work around this issue is 
to have resort to numerical simulations. The approxi-
mate values of x1, x2, …, xn are calculated for consecutive 
time points t1, t2, …, tn to approximate the exact solution 
of the equation. Several tools have been developed to 
create such models and simulate their behaviors such 
as SCAMP, DBSolve, MIST, and GEPASI. SMBL soft-
ware guide lists (http://sbml.org/SBML_Software_Guide/
SBML_Software_Summary), inter alia, ODE‐based sim-
ulators and analysis tools.

Alternatively one can simplify the model. The Hill and 
Michaelis–Menten equations are the most frequent sim-
plification used to model biochemical phenomena of 
small systems [43]. Valenime et al. [44] used the Hill 
functions to model a dynamic model of the gene regula-
tory network involved in Arabidopsis flowering time. 
Their network integrated eight genes that represent 
the core of the network responsible for flowering time 
regulation and for which the available experimental 

data provide a clear description of their mutual inter-
actions. Model parameters were estimated from gene 
expression time courses of the selected eight genes in 
wild‐type and various genetic backgrounds. A total of 
35 parameters in 6 equations were estimated per gene. 
The model was validated by simulating changes in 
expression levels in mutants and comparing these 
predictions with independent expression data as well as 
comparing predicted and experimental flowering times 
for several double mutants.

ODE approaches are well suited for modeling cell 
cycles; one example is the Caulobacter crescentus model 
that describes the molecular mechanism for control of 
the cell division cycle [45]. In this study authors 
 constructed around the three master regulators of cell 
division cycle: CtrA, GcrA, and DnaA, a mathematical 
model of the temporal dynamics of the regulatory elements. 
Parameter values for rate equations (rate constants, 
binding constants, and thresholds) were determined 
from experimental data. The model successfully repro-
duced the behavior of wild‐type, mimicked correctly the 
phenotypes of many mutants, and predicted phenotypes 
of novel mutants.

A second example is the budding yeast cell‐cycle 
 regulatory network model. This topic was studied from 
various sides by Tyson et al. [46–48]. They use mathemati-
cal modeling to study the different aspects of yeast cell 
cycle such as the START and FINISH events of mitosis 
[47]. Their models, most of the time, accurately describe 
the behavior of wild‐type cells such as growth, division, 
and regulation and are supported by the phenotypes of 
hundreds of mutant strains, giving new insights on different 
aspects of yeast cell‐cycle control and regulation.

16.3.1.7 Piecewise Linear Differential Equations
In most situations the required detailed information for 
ODE modeling on reaction mechanism and the large 
number of parameters needed for the equations are not 
available. Indeed, determining such parameters implies 
the need of large and detailed experimental data, hence 
the need to create more qualitative models. Piecewise 
linear differential equations (PLDE) have favorable 
mathematical properties that facilitate the analysis.

PLDE have been at first proposed by Glass and 
Kauffman in 1973 [16] and were then extensively studied 
from a theoretical point of view. However, because of the 
difficulty of applying them for large networks, they have 
been rarely used to model real biological systems [49]. 
Softwares developed for qualitative modeling such as 
Genetic Network Analyzer (GNA) [50] or BooleanNet 
[51] allow to study such models and to evaluate their 
steady states. GNA has been used to build a model of 
nutritional stress response in Escherichia coli [52]. The 
network included six genes that play a key role in the 
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response of the cell to carbon starvation, and then 
based on experimental literature, a PLDE model has 
been constructed. GNA was then used to simulate the 
transition from exponential to stationary phase and the 
reentry into exponential phase. The model was finally 
validated by comparing the simulation results with 
experimental data.

16.3.1.8 Constraint‐Based Modeling
Constraint‐based modeling has been widely used to 
model large‐scale metabolic pathways unmanageable 
with kinetic modeling approaches. It aims to model the 
dynamics of metabolism at cellular level by using con-
straints that limit cell behavior such as mass balance, 
energy balance, and flux limitations to differentiate 
between those network states that are achievable by the 
system from those that are not. One of the most applied 
methods is flux balance analysis (FBA) in which the 
stoichiometry of the underlying biochemical network 
constrains the steady states that may be reached by 
the system [53, 54]. It is worth mentioning here the 
MetaNetX.org platform that provides a suite of tools for 
accessing, analyzing, and manipulating metabolic net-
works, including FBA [55].

The first step of a FBA is to define the system: as 
reported in the PKN reconstruction section, metabolic 
pathways can be built from prior knowledge by assem-
bling metabolites and metabolic reactions. Several data-
bases provide organism‐specific metabolic pathways. 
MetaNetX.org also provides access to hundreds of 
genome‐scale metabolic networks and pathways [55].

Following the construction of an organism‐specific 
network of metabolic reactions, these are converted into 
matrix form: S is the stoichiometric matrix where each 
row represents a metabolite and each column represents 
a reaction and V is the matrix of fluxes. Figure 16.4 shows 

S and V matrices for a toy model composed by three 
metabolites.

At steady state, the flux through each reaction is 
given by S∙V = 0, it is the null space of S. As large 
 models contain more reactions than metabolites, there 
is more than one possible solution to these equations; 
however a bounded solution space is identified, and 
additional constraints on the basis of experimental 
measurements in a cell can be used to determine the 
steady state. An additional constraint could be the 
maximization of biomass production that is a widely 
used objective function as this represents a reasonable 
metabolic goal under most growth conditions (see 
following text). This (or another) objective function is 
then used to solve the equations. Several computa-
tional tools have been developed to solve these equations 
using linear programming such as the COBRA Toolbox 
[56], OptFlux [57], and FAME [58].

In order to study the effects of environmental or genetic 
perturbations on cellular metabolism, several methods 
have been developed to integrate measurements of 
changes at the transcript, protein, and metabolite level 
under the FBA framework. Machado and Herrgard 
evaluated several published methods for integrating 
transcriptomics data to genome‐scale metabolic models 
[59] but found that none performed better than the con-
ventional FBA. This indicates that further improvements 
are necessary for methods designed for a predictive 
purpose.

Other methods were developed for the production of 
contextual metabolic models using experimental data: 
mCADRE [60] is a method developed by Wang et al. to 
infer context‐specific networks based on gene expres-
sion data and metabolic network topology. This method 
has been used to reconstruct 126 human tissues and cell 
type‐specific metabolic models.
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INIT [61] is another algorithm developed to integrate 
several types of data to generate metabolic networks 
that are active in a certain context. It has been applied 
to reconstruct genome‐scale metabolic networks for 
69 human cell types and 16 cancer cell types. The program 
used the Human Protein Atlas as source to assess the 
presence/absence of enzymes in the different cell types, 
tissue‐specific gene expression data, and metabolomics 
data as additional constraints.

Protein levels should provide a more accurate snapshot 
of metabolism than transcript levels. Montezano et al. pro-
pose a new approach for defining the FBA objective func-
tion from proteomics data for the bacterium Mycobacterium 
tuberculosis exposed to mefloquine [62]. FBA requires the 
specification of an objective function representing the goal 
of the cell; a commonly used goal is biomass synthesis. 
However, biomass maximization is not expected to be the 
main metabolic goal of the cell when exposed to antibiot-
ics. The authors propose a method to determine the objec-
tive function based on the level of proteins in the cases 
where the organism is under drug‐induced stress. They 
calculate from protein levels in the sample the coefficients 
needed. Their method is summarized as follows: after a 
normalization step, they defined two cases; the simplest 
case is when each enzyme catalyzes one reaction. In this 
case the coefficient c of each reaction is the normalized 
quantitative value of the enzyme obtained with the prot-
eomics experiment. A more complex situation is when one 
reaction is catalyzed by a combined action of multiple 
enzymes. In this case a Boolean expression that describes 
the combined action of all enzymes is solved in order to 
obtain the final value of c.

16.3.1.9 Hybrid Models
Mathematical models based on PKNs have guided our 
understanding of many systems at several levels ranging 
from gene regulatory network to metabolic models, pro-
viding insights into the qualitative behavior of the system 
or in a more quantitative evaluation of its components. 
However each approach has advantages and limits, cap-
tures different aspects of biology, and consequently 
yields only a part of the global picture. By combining 
diverse methods, one can move toward more global and 
realistic models that better describe the behavior of 
 living organisms at the molecular level with a greater 
level of detail.

An integrative method that combines different mode-
ling procedures was used to model the whole‐cell life 
cycle of Mycoplasma genitalium [63, 64]. Twenty‐eight 
sub‐models representing gene networks, signaling, and 
metabolism describing functional processes were mod-
eled separately. These sub‐models described different 
areas of cell biology form transport and metabolism to 
host interaction encompassing DNA replication and 

maintenance, RNA/protein synthesis, and maturation 
and cytokinesis. All sub‐models were then unified by 
linking their common inputs and outputs.

Next, the authors verified that the model reproduces the 
training data. To do that, they simulated 128 wild‐type 
cells in culture environment predicting cell mass and 
growth rate and also molecular properties as count, localiza-
tion, and activity of molecules. Their model calculations 
were consistent with many observed  cellular features. 
Then independent datasets that were not used to con-
struct the model were employed for validation.

Subsequently, the authors used this model to perform 
 different in silico predictions: they observed previously 
undetected cellular behaviors including in vivo rates of 
protein–DNA association and an inverse relationship 
between the duration of DNA replication initiation and 
the rate of DNA replication. They also evaluated the 
global distribution of energy in the cell and performed all 

Table 16.2 Tools cited in the text by task.

Task Tools

PKN construction PubMed
Google Scholar
iHOP
Reactome
KEGG Pathway
IntAct
ACSN
Ingenuity Pathway Analysis
MetaCore

Boolean modeling BoolSim
GINsim
SQUAD

Constrained fuzzy logic CellNetOptimizer
PKN contextualization SigNetTrainer

CellNOptR
PRUNET

ODEs SCAMP
DBSolve
MIST
GEPASI

PLDE Genetic Network Analyzer
BooleanNet

FBA MetaNetX
COBRA Toolbox
OptFlux
FAME
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 possible single‐gene in silico perturbations to evaluate 
essential genes required for cellular life. The model 
agreed with previously observed genes essentiality in 
79% of the cases.

The authors demonstrated the feasibility of such 
hybrid models, and the fact that these models have 
succeeded in recapitulating a broad set of experimental 
data and provided insight into several biological pro-
cesses supports the idea that such an approach should be 
helpful to tackle the complexity of biological systems.

16.4  Conclusions

Several modeling frameworks were introduced in this 
chapter (Table  16.2) with some examples of applica-
tions. Nevertheless the cited methods do not constitute 

an exhaustive list of all existing methodologies; we 
could almost say that each model is unique since the 
adopted strategy depends on the biological questions, 
the available data, the network size, and the technical 
limitations.

Frequently these models miss several significant 
pieces and constitute only an approximation to reality; 
however they demonstrated through numerous studies 
the last decades that they are useful on helping us to 
better understand the systems for which they are 
 formulated and consequently bring the knowledge 
closer to what is actually happening in living cells and 
organisms.

The development and improvement of modeling meth-
ods together with the advancements in the high‐through-
put technologies as single‐cell measurements will certainly 
drive more detailed and more accurate modeling.
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17.1  Introduction

The exponential growth and availability of data is a 
prominent characteristic of our era. In fact, the amount 
of information produced every day is bigger than ever, 
and an efficient way to store, access, and process it has 
become a significant challenge. That is why database 
systems (DBS) became an essential tool in data manage
ment life cycle and are commonly used in all domains 
where information is highly valued. The emergence of 
database technology has stimulated the development 
and progress of many businesses and applications.

Scientific research is one of the fields where databases 
are used in order to organize information such as scien
tific publications, molecules, biological pathways, patient 
records, experimental results, and so on [1]. Databases 
serve as the foundation for considerable progress in sci
entific disciplines ranging from computing to biology [2]. 
With the advent of high‐throughput technologies that 
allow for simultaneous examination of thousands of mole
cules (genes, proteins, metabolites), adoption of DBS in 
order to support the process of extraction and analysis 
became inevitable due to the size and intricacy of the 
data [3]. In the field of bioinformatics, where computer 
science and biology meet, knowledge is often inferred 
from analysis of enormous amounts of complex data, 
and databases are necessary. The combination of com
putational and experimental systems biology approaches 
allows for the elucidation of complex biological mecha
nisms and offers efficient process modeling tools [4].

This chapter introduces basic concepts of DBS and data 
integration. Initially, technical aspects of DBS and data 
models are presented. In particular, relational databases 
(RDB) are discussed. Subsequently, biological databases 
and their application in research with special emphasis 
on ‐omics data are reviewed.

17.2  Database Systems

17.2.1 Introduction to Databases

The formal definition of a database states that it is a 
shared collection and description of logically related 
data, designed to meet the information needs of an 
organization [5]. With the exponential growth of informa
tion volume, databases became essential for data storage 
and particularly data analysis and reporting. Regardless 
of the field of application, whether it is for business or 
research purposes, some general definitions related to 
DBS are universal, and their knowledge is essential for 
good understanding of database utility. Therefore, this 
section presents an overview of the most important 
technical concepts of DBS and database design.

17.2.2 Data Life Cycle and Objectives 
of Database Systems

Data life cycle is a term describing the flow of the data 
in the entire data management process. In scientific 
research, the purpose of data life cycle management is to 
support scientific discovery, reliability, and reproducibility 
through collection of high‐quality data that can be effec
tively managed and reused [6]. Data life cycle starts with 
the project plan and the definition of the scope of a 
project. Next, data is collected from various sources and 
curated to meet the purpose and design criteria. A good 
study design ensures the availability of data for discovery 
and reuse in the future. Subsequently, the data and their 
description (metadata) are stored in a repository from 
where they can be accessed, analyzed, and interpreted in 
the discovery step. Lastly, data undergo various quality 
controls, cataloguing, and classification and are placed into 
storage. The data life cycle is depicted in Figure 17.1.
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The database is a component of a bigger structure, 
called DBS, that consists of elements for database 
management, related hardware, software, and end users. 
A simplified representation of DBS is illustrated in 
Figure  17.2. Crucial element in DBS structure, apart 
from the database itself, is the database management 
system (DBMS)—a computer software designed for 
the management of the database. It serves as an interface 
between end users or software applications and the data
base, allowing for data querying and manipulation and 
simultaneously ensuring data accessibility, consistency, 
and security [7]. With relation to database usage, three 
main roles can be distinguished, that is, database admin
istrator, application programmers, and end users [5]. 
The task assigned to database administrator is database 
design and maintenance such as server and applications 
upgrade, structure modifications, backup and recovery, 
performance optimization, and monitoring of system 
security. Application programmers develop and imple
ment interfaces enabling end users to access and query 
the database resources according to their requirements. 
The objective of the DBMS is to ensure that the data is 
correctly handled at each point of data life cycle. Main 
goals include ensuring [7]:

 ● Data availability—Accessibility of data to users
 ● Data integrity—Maintaining and assuring data accu

racy (formats, units, etc.)

Acquisition
(collect data)

Curation
(standard

format, units)

Discovery
(processing,

analysis,
interpretation)

Preservation

Storage

Data life cycle

Purpose
(define scope)

Figure 17.1 Data life cycle. Concept supporting the management 
of the data and the flow of an information system’s data 
throughout its life cycle: from creation, collection, and discovery 
process until storage or disposal.

Database

Procedures

Computer

DBS

Database
DBMS

(software)

Database designer/administrator

Application 2

Application 1
End user 1

End user 2

Peripherials

Operating
system

DBMD software

Applications
programs

System
administrator

Database
administrator

Application
programmers

End users

Hardware

D
at

ab
as

e 
sy

st
em

 (
D

B
S

)

Software

Roles (people)

Figure 17.2 Simplified representation of database system (DBS) and components. End users communicate with the software systems/
applications, which, in turn, communicate (through the programming interface) with the DBMS. The DBMS communicates with the 
operating system to store data in and/or extract data from the database.
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 ● Data consistency—Minimizing number of redundancies 
and duplicates

 ● Data security—Introducing various levels of security 
for users, password protection, and so on

17.2.3 Advantages and Limitations

Data management using databases and DBMS has 
 significant advantages. File‐based repositories, where 
the same information might be stored in many files, 
require a lot of storage space and contain redundant 
information. Database design aims at data integration, 
where the problem of redundancy is minimized and 
controlled by DBMS. Moreover, lack of redundancy 
reduces the risk of inconsistencies in the data. If any 
change occurs, there is no need to update each file 
 separately, but the update can be performed only once, 
resulting in the new value being available to all users at 
the same time. Importantly, DBMSs ensure data integ
rity—consistency and validity of information through 
use of constraints that specify formats that are allowed 
to be introduced in the database. Another advantage of 
a centralized database approach is that additional 
information can be extracted by integrating data. New 
dependencies can be derived from integration of multi
ple sources, thus bringing an added value compared 
with analysis of each source independently. Additionally, 
DBMSs enable efficient sharing of the data, as they are 
stored in one central repository. Moreover, DBMSs 
provide protection of the database from unauthorized 
users (through roles, passwords, or logs). Data security 
is especially important for confidential data. Lastly, an 
undeniable benefit of databases is cost reduction 
through integration of multiple sources into one repos
itory, which is of value especially to large organizations, 
where maintenance of one central system might have a 
lower total cost than several small systems running 
independently [7].

Apart from the advantages of DBMS, some drawbacks 
have to be pointed out. The process of designing the 
database, its maintenance, and usage is quite complex. 
To take full advantage of the system, it is vital for all 
people involved in the process (from designers to end 
users) to understand its structure and functionality. 
Failing to properly design and use all available tools can 
result in unforeseen problems and limited performance. 
Additionally, adoption of DBMS is costly in memory size 
required for the software to work efficiently.

17.2.4 Database Design Models

In order to better understand the evolution of database 
design, it is of importance to understand the hierarchy 

of data. The basic building blocks of the database are 
“raw” facts (data) that have none or little meaning when 
not organized in a logical manner. What defines the 
“raw” information is the value of its field (e.g., a field 
might define a telephone number, price, or date). Many 
related fields consist a record, which is a set of connected 
values that describe a particular item (e.g., a record of an 
employee will consist of fields such as name, birthday, 
salary, position, etc.). A collection of all (e.g., a file of all 
students enrolled at the university) is called a file. 
Multiple files can be integrated into a database, which is 
at the top of the data hierarchy tree. Figure 17.3 depicts 
the data hierarchy levels.

In the course of years, approaches of database design 
have evolved from simple file‐based system toward more 
advanced and elegant solutions. The three most common 
implementation database models are hierarchical, net
work, and relational models (Figure  17.4). Hierarchical 
and network databases have been substituted by set‐
oriented RDB, which are now transforming into object‐
oriented and multimedia DBS [5]. Moreover, non‐RDB 
models emerged to address the requirements of new 
applications and handle the explosion in the volume and 
variety of data in recent years. In the history of database 
evolution, the following approaches have been adopted:

1) File‐based system
The very first attempt used in the past to store data in 
an organized manner resulted in databases in the 
form of separate files in folders [8]. This system per
formed adequately for storage and retrieval of small 
datasets, but had many limitations, as it required a 
significant effort to extract, process, or cross‐refer
ence information, due to the fact that data might be 
stored in separate files and formats. Major limitations 
included data duplication (which is undesirable due 
to excessive use of storage space, loss of data integrity, 
and consistency), data dependence (difficult to change 
once defined structure), incompatible file formats 
(structure dependent on programming language used 
for the development), and reliance on the developer 
for reporting (fixed queries, difficult to adjust reports 
to users’ needs). Additionally, lack of data security, 
integrity, and possibility to access the data simultane
ously by several users led to the development of alter
native database solutions.

2) Hierarchical data structure
Hierarchical databases follow a treelike data struc
ture. Records are linked from top to bottom following 
strict hierarchy rules. It is an example of one‐to‐many 
(1 : M) relationship, where each parent can have 
many children, but each child has only one parent. 
Hierarchical databases are suitable for simple data 
representation. Among the advantages, data security, 



Database Creation and Utility 289

independence, and integrity can be pointed out. 
Unfortunately, this type of database is quite complex 
and inflexible in management and requires the 
knowledge of its physical structure. Implementation 
of relationships other than one‐to‐many is not possi
ble, and development of applications is often time 
consuming and complicated.

3) Network data structure
Network databases are similar to hierarchical model 
but provide more flexibility by means of the design of 

existing relationships. Each relationship (called a set) 
is a composition of at least two entities—an owner 
(parent) and a member (child) record, where many‐
to‐many (M : M) relationships are allowed. In com
parison with hierarchical models, network systems 
allow the modeling of more natural relationships 
between entities.

4) Relational data structure
The relational model following the well‐established 
relational database management system (RDBMS) 

Data
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File

Record

Field ALB

ALB

ALB

HP
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Serum albuminP01
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Organism

Sequence
Taxonomy

Function

ID

Protein name
Gene name
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Gene nameProtein nameID

Figure 17.3 Hierarchy of data. Database consists of 
integrated files, which are a collection of related 
records. Each record is a collection of related fields, 
where single facts or attributes are stored.
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Hierarchical database Network database Relational database

Figure 17.4 Schematic representation of hierarchical, network, and relational database models.
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principles is currently the most widely used in data
base design. The concept of RDB was introduced by 
Edgar E. Codd in 1970. The strength of this approach 
lies in solid fundaments founded on mathematical 
principles—theory of sets and linear algebra. Basic 
concepts of RDB (illustrated in Figure 17.5) [7] are as 
follows:

 ● Data is organized in tables, where each table repre
sents an object, concept, or thing (called an entity).

 ● Each entity contains a set of properties that describe 
it (attributes).

 ● Dependencies between entities are represented by 
relationships.

 ● Relationships can take three logical forms: one‐to‐
one, one‐to‐many, and many‐to‐many.

 ● Relation is a set of entities and their relationships.
 ● Tuple/record is one row in a table.
 ● An attribute or combination of attributes that 

uniquely identify a tuple is called a primary key.
 ● Structured Query Language (SQL) is the program

ming language to access and manipulate data in the 
database.

Importantly, in RDB, data is only stored once, assuring 
data consistency, easy management (updates, dele
tions), and efficient storage. Additionally, data stored 
and organized in tables is much more comprehensive 
and easy to understand. Scalability is another advan
tage of RDB: new data can be easily added without 
the need to modify existing records. In addition, the 
usage of relational algebra in the database queries 
ensures that there is no ambiguity, which may be a 
problem in network‐type databases.

Drawbacks that can be pointed out include the com
plexity of an RDB and difficulty of creation regarding 
definition of entities, relationships, and constraints. 

Furthermore, usage of such database requires the 
knowledge of its structure and relationships, which in 
some cases can be intricate. Nevertheless, it is certainly 
worth putting a significant effort in the design phase. 
Well‐designed database limits the number of errors 
in the data and significantly decreases the amount 
of  information that has to be inserted, because of 
redundancy control. Additionally, the capabilities of 
DBMS systems provide great performance and tools 
to manage data effectively.

5) Non‐relational (distributed) structure
The concept of non‐relational (NoSQL) databases 
has emerged quite recently, as a response to ever‐
growing volumes of data and the need of more 
flexible ways of data management and storage, as 
compared with RDB (described earlier). The term 
NoSQL was first used in 1998 for an RDB that omit
ted the use of SQL and was ultimately assigned to all 
databases following non‐relational structure  [9]. 
Therefore, NoSQL is used as an umbrella term for 
collection of concepts about data storage and 
manipulation in all databases that do not follow the 
popular, rigid principles of the relational model. 
NoSQL databases feature flexibility, scalability, and 
better performance, compromising transactional 
integrity and efficient data querying (no support for 
joins and order by operations) [10]. Non‐RDB struc
ture types include (Figure 17.6):

 ● Key‐value stores (hash tables)—Database structure 
designed for storage of associative arrays in a form 
of couples (key, value). As in RDB, a key is a unique 
identifier of assigned value, whereas the value can 
be either a structured or completely unstructured 
element (i.e., binary large object (BLOB), e.g., image, 
audio). Implementation of the key‐value model is 

(a) Entity-relationship diagram representation

(b) Relational table structure
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Figure 17.5 Basic concepts of relational model. (a) Database entities (tables) are matched based on data in key columns, forming a 
relationship. (b) Relational model organizes data into tables (relations) of columns and rows, with a unique identifier of each row (primary key).
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considered to be the simplest among non‐RDB 
types. Great scalability and performance are among 
the main advantages of key‐value stores; however 
queries and update operations on parts of the value 
are often inefficient.

Examples: Redis (www.redis.io), Project 
Voldemort (www.project‐voldemort.com)

 ● Column family stores—NoSQL object containing 
columns of related data. Similarly to key‐value 
stores, unique identifier (key) points to value, this is 
distributed among a set of columns. The columns 
are arranged by column family and given the schema‐
less structure; each row can contain a different 
number of columns. Therefore column family stores 
are excellent for storing and processing large 
amounts of data, distributed among many machines. 
These databases are highly scalable and offer high 
query performance.

Examples: Google Bigtable (https://cloud.google.
com/bigtable/)

 ● Graph databases—Databases use graph structures 
and graph theory—study of graphs to model pair
wise relations between objects. A graph is a set 
of  nodes (which represent data entities, e.g., 
employees, accounts), which are connected by edges 
(depicting relationships between nodes). Graph 
databases, with use of relationships, are designed 
to allow simple and rapid retrieval of complex 
hierarchical structures that are difficult to model 
in relational systems.

Examples: Neo4J (www.neo4j.com), InfiniteGraph 
(www.objectivity.com/products/infinitegraph/)

 ● Document databases—In document databases 
data is stored in documents, and typically each docu
ment contains all information about the record and 
its associated data to avoid splitting the document 

into smaller key/value pairs. The semi‐structured 
documents are usually stored in formats like JSON 
(JavaScript Object Notation) or XML (Extensible 
Markup Language). Document databases are 
considered an advanced version of key‐value stores 
where nested values associated with each key are 
allowed.

Example: MongoDB (www.mongodb.com), Apache 
CouchDB (couchdb.apache.org)

17.2.5 Development Life Cycle

An important aspect of software engineering the devel
opment plan, which assures that the whole  process from 
design to implementation is performed correctly. The 
development plan is a collection of small steps, each 
focusing on a separate aspect of the process. Phases of 
database development are presented in Figure  17.7. 
Depicted schema can be applied to any database model, 
that is, hierarchical, network, or relational.

The design process is initiated by defining the require
ments of data collection and analysis. The mission state
ment and aims of the DBS are defined. This step helps 
describe precisely the purpose of the development and 
plan the following steps of the life cycle. Consecutively, 
database design starts and consists of three phases: 
conceptual design, logical design, and physical design. 
Conceptual (semantic) data model is derived from 
thorough data analysis. The aim of this phase is to gather 
information about the data in order to design an optimal 
database structure that fits the requirements of users. 
Semantic model provides information of formal data 
structure and existing constraints, irrespective of design 
approach, system, and software. In the logical database 
design phase, conceptual design is used to define which 
data model will be applied. Logical schema, the output of 
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Figure 17.6 Non‐SQL database types. (a) Key‐value 
stores—key is a unique attribute of the content (value). 
(b) Graph databases—storage of interconnected data 
represented by nodes and edges. (c) Column family 
stores—key‐value pair, where the key is mapped to a 
value that is a set of columns. (d) Document database—
data is stored in the form of multiple documents 
(e.g., JSON, XML), which contain more complex grouping 
of key‐value pairs.
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this step, describes all tables, primary and foreign keys, 
attributes, and constraints enforced by requirements. 
The most representative implementation of semantic 
model has to be chosen, taking into consideration various 
design criteria such as control of duplication, flexibility 
of change, efficiency, and usability. Based on the final 
logical schema, the physical database can be created 
within the respective DBMS. The subsequent implemen
tation steps vary with regard to the type of particular 
DBMS used, but in general involve specification of 
storage schema, security measures, and user roles. Once 
the database is created (all defined tables and constraints 
are implemented), data can be populated. This process 
can either be initiated by transfer of existing data or the 
use of applications for the database. Before the database 
can be released to public use, it needs testing in order to 
identify any errors and assure that it is compliant with 
the requirements. The final version should be under 
constant monitoring and maintenance process to ensure 
best performance [11].

17.2.6 Database Transactions, Structured 
Query Language (SQL)

A unit of work performed on a database is called a 
transaction. Transaction refers to a sequence of actions 

performed in logical order and represents any change in 
the database. The main purpose of transactions is to 
assure that any action performed on data is safe and will 
remain consistent in case of system failure. Additionally, 
transactions isolate programs accessing the database 
to avoid errors caused by concurrent processes. Tran
sactions are described by four main properties (acronym 
ACID) that assure their proper execution:

 ● Atomicity—Ensures that a single unit of work is either 
completed successfully or all changes are aborted and 
rolled back to the initial state

 ● Consistency—Ensures that any transaction will bring 
database from one state to another with respect to all 
rules and constraints stated in the definition

 ● Isolation—Controls the execution of concurrent 
transactions, assuring that the effects of an incomplete 
transaction might not affect another transaction

 ● Durability—Ensures that once a transaction has been 
committed, changes are stored permanently (even 
after database failure, power loss, etc.)

SQL is a standard programming language for accessing 
and manipulating databases. In RDB it is used to retrieve 
and update data in tables. Slightly different types of 
SQL versions exist, depending on the DBMS vendor. 
Most common types include:

 ● PL/SQL—Procedural Language/Structured Query 
Language by Oracle Corporation

 ● TSQL—Transact‐SQL (T‐SQL) by Microsoft and Sybase
 ● PL/pgSQL—Procedural Language/PostgreSQL by the 

PostgreSQL

In general, all versions have to be American National 
Standards Institute (ANSI) standard compliant and 
support major keywords such as SELECT, UPDATE, 
DELETE, INSERT, ALTER, and others. SQL commands 
can be divided into three functional groups: Data 
Definition Language (DDL), Data Manipulation 
Language (DML), and Data Control Language (DCL), 
respectively. DDL statements concern database schemas, 
creation of tables, and descriptions. DML keywords 
are the most common statements for data retrieval, 
deletion, or update. Lastly, DCL commands are used to 
set rights and permissions to database users.

17.2.7 Data Analysis and Visualization

The ultimate goal of development of the database, 
apart from the need of a central data repository, is to 
extract useful information from the data. Databases 
come with a number of powerful tools that support 
data analysis and visualization of the results, helping 
to gain valuable knowledge from big volumes of data. 

Establishing
requirements

Data
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Data analysis

Database design

Logical schema

Initial physical
schema

Implementation
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Released database
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Semantic data
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Figure 17.7 Database design process.
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In the business vocabulary, the set of techniques 
aiming at transformation of raw data into meaningful 
information is called business intelligence (BI). Analysis 
of the data may include simple SQL queries and statis
tical analysis, as well as complex multidimensional 
analysis and data mining (Knowledge Discovery in 
Databases (KDD)). To support the process there are 
multiple software tools available (open source and 
commercial), with the most common example of Excel 
spreadsheets. Moreover, for more sophisticated analysis, 
there is a possibility to use different programming lan
guages to perform analyses and calculations adjusted 
to the needs and requirements of the study. Database 
exploration and discovery is also possible through vis
ual presentation of data in the form of graphs, charts, 
tables, and so on [12]. Visual model outcome is often 
much more informative for human’s perception [13] 
and can provide ad hoc conclusions about the data 
quality or model performance.

Importantly, data analysis for scientific applications is 
far more complex as each time different research ques
tions have to be answered; thus there is no universal 
approach to tackle all the problems. Implementation of 
good scientific software is hard and requires in‐depth 
knowledge of the data and reasoning of the processes. 
There are different programming environments (often 
open source) that come with a number of libraries and 
packages for data manipulation and processing, some 
offering also visualization capabilities. Among the most 
commonly used are the commercially available Matlab and 
SAS and open‐source Octave, R, Python (with NumPy/
SciPy libraries) [14]. A non‐exhaustive list of available 
programming environments presented in Table 17.1.

17.3  Biological Databases

Growing number of biological databases is the natural 
consequence of the advent of high‐throughput tech
nologies and significant decrease of cost of such 
experiments. Biological databases not only serve as a 
data storage also, more importantly, help with data 
organization improving data retrieval, visualization, 
and analysis. Moreover, data repositories facilitate 
data sharing and exchange, which is crucial for scien
tific research [2]. Lastly, this form of storage allows for 
integration of information from various sources in an 
automated manner, giving an opportunity to model 
complex biological processes and mine for intrinsic 
knowledge.

Databases in research cover diverse scientific topics 
and might be classified based on many criteria. With 
regard to data coverage, comprehensive and special
ized databases can be distinguished. Comprehensive 
resources contain data of general interest, whereas 
specialized databases focus only on specific type of 
data (e.g., specific disease) or organism. Additionally, 
biological repositories can be divided with regard to 
level of biocuration, that is, primary databases con
taining raw data and secondary, containing processed 
information. Finally, databases can be characterized 
according to the type of biological information stored. 
Most general categories are DNA, RNA, protein, 
expression, pathway, disease, nomenclature, literature 
and standard, and ontology databases [2]. Examples of 
databases following this classification are presented in 
Table 17.2.

Table 17.1 List of available data analysis software for scientific applications.

Software Link Description

Commercial Matlab www.mathworks.com/
products/matlab/

Technical computing language and interactive environment for 
algorithm development, data visualization, data analysis, and simulation

SAS www.sas.com Software suite for advanced analytics, multivariate analyses, business 
intelligence, data management, and predictive analytics

SPSS www.ibm.com/
software/analytics/spss/

Software package used for statistical analysis, developed by IBM

Open 
source

R www.r‐project.org Programming language and software environment for statistical computing, 
data mining, and visualization

Octave www.gnu.org/software/
octave/

High‐level interpreted language, primarily intended for numerical 
computations, data manipulation, and visualization

Python www.python.org SciPy and NumPy libraries—software for mathematics, science, and 
engineering
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17.3.1 Development Life Cycle

Development of scientific databases is not straightfor
ward as design has to be adjusted to the type of biological 
data. Thus, the design process requires not only experi
ence in database design but also biological knowledge 
and well‐defined needs and expectations that the 
resource has to meet.

17.3.1.1 Data Extraction
Semantic searching is an integral part of data retrieval, 
collection, and curation. Especially in the field of biology 
and specifically in omics studies, data originate from 
different sources and in different formats and nomencla
ture is not standardized or harmonized. These drawbacks 
make it critical to search for data by contextual meaning 
rather than individual terms in order to extract the 
maximum of relevant information, regardless of the 
nomenclature. To this effect semantic searching includes 
different query options, from general to focused, as well 
as searching by concepts, terms, synonyms, and any 
variations on these themes.

In the same way, efficient data compilation requires 
proper infrastructure for effective data storage and 
management. Semantic Web (SW) technologies fulfill 
this requirement with a standardized framework and 
furthermore, allow widespread public open access on 
the World Wide Web. SW technologies employ a stand
ard data modeling language called Resource Description 
Framework (RDF), its own query language SPARQL 
Protocol and RDF Query Language (SPARQL), as well 
as its own schema language to represent knowledge and 
define concepts called Web Ontology Language (OWL). 
Semantic knowledge bases (KB) offer integrated solutions 
where the data is organized, harmonized, and interlinked 
and easy to use with the aforementioned framework 
for formulating new hypotheses [32].

17.3.1.2 Semantic Tools for ‐Omics
Expert Protein Analysis System (ExPASy) is a resource 
portal from the Swiss Institute of Bioinformatics (SIB), 
who also developed and maintained the UniProtKB/
Swiss‐Prot database. The ExPASy portal compiles many 
systems biology and ‐omics resources and tools, includ
ing Basic Local Alignment Search Tool (BLAST) for 
nucleic acid and protein sequence searching and Mascot 
for protein identification from mass spectrometry data, 
as well as the Systems Biology Research Tool (SBRT), an 
integrated and easy‐to‐use open‐source application 
program interface (API) capable of supporting various 
plug‐ins. In contrast to the ExPASy portal, which is 
merely a common entry point for resources developed 
and maintained by many different groups, SBRT is an 
integrated platform capable of performing over 35 differ
ent methods or functions for analyzing stoichiometric 
networks (e.g., identifying reaction pathways) across 
topics such as graph theory, algebra, geometry, and sta
tistics, with additional features available via process 
plug‐ins. This integrated platform can perform multi
ple computational processes controlled via a text‐based 
input file or command line and also interface with other 
external packages, such as Mathematica, R, GLPK, 
Xerces, and Metatool [33].

R statistical computing open‐source software imple
ments Bioconductor, a platform of over 900 packages for 
the bioinformatic handling and statistical analysis of high‐
throughput genomic data, including DNA, RNA, chroma
tin immunoprecipitation, three‐dimensional architecture 
of genomes using Hi‐C, methylome and ribosome profiling, 
as well as tools for microarray, proteomic, metabolomic, 
flow cytometry, and quantitative imaging. The highly 
integrative environment of Bioconductor within the R 
statistical software enables the user to create complex 
workflows with multiple inputs and data types, which 
can then be submitted as workflow vignettes to the 
Bioconductor user community, or alternatively the user 
can adapt an already publicly available Bioconductor 
workflow. A popular workflow is the “RNA‐seq workflow: 
gene‐level exploratory analysis and differential expres
sion,” which includes data input matrix preparation, 
exploratory analysis and visualization, differential expres
sion analysis, plotting results, annotating and exporting 
results, removing hidden batch effects, time course exper
iments, and session information for the whole workflow. 
Additional packages, such as SGSeq, which is used for 
prediction, quantification, and visualization of alternative 
transcript events from RNA‐seq data, can be adapted into 
the existing workflow for customization [34].

Bioconductor packages can also directly link with pub
licly available data sources or databases, such as the 
National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO), a public repository of 

Table 17.2 Types of biological databases.

Type of database Example

DNA GenBank [15], GeneCards [16]
RNA RNAcentral [17], miRBase [18]
Protein UniProt [19], Protein Data Bank (PDB) [20]
Expression Human Protein Atlas [21], TiGER [22]
Pathway Reactome [23], KEGG [24]
Disease MalaCards [25], CKDdb [26], peptiCKDdb 

[27], Nephroseq [28]
Literature PubMed [29]
Standard and 
ontologies

Gene Ontology [30], HGNC [31]
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microarray data. GEOquery (https://www.bioconductor.
org/packages/release/bioc/html/GEOquery.html) is a 
tool that links GEO and Bioconductor and allows the 
user to search for and download a particular GEO 
dataset and convert it to Bioconductor compatible 
 format. Another tool, GEOsubmission (https://www.
bioconductor.org/packages/release/bioc/html/
GEOsubmission.html), prepares microarray data for 
submission to GEO. In order to do a more complex data 
search by accessing the GEO metadata information for 
samples, platforms, and datasets, the users can utilize 
package GEOmetadb [35] or GeoSearch [36], which 
expands the search terms to find all gene names and their 
aliases and outputs a summary of search results with 
common biology keywords. Lastly, geoR (http://www.
leg.ufpr.br/geoR/) incorporates a set of functions for 
geostatistical analysis in various categories including 
data preparation, descriptive analysis, empirical vario
gram (data relation/correction with Euclidean distance), 
variogram results/plots/lines, nonparametric variogram 
fitting, profile likelihood, kriging, simulation of Gaussian 
random fields, and other functions including traditional, 
likelihood‐based, and Bayesian inference/prediction 
for Gaussian and transformed Gaussian models.

Cytoscape (www.cytoscape.org) is an open‐source 
integrated platform for analysis and visualization of 
complex network data by using various apps. 
Information from publications is integrated using 
Agilent Literature Search (http://apps.cytoscape.org/
apps/agilentliteraturesearch), which mines literature 
using semantic querying (multiple terms, aliases, con
cept lexicons, e.g., species) and user‐selected search 
engines. The molecule associations collected by this app 
can then be used to create interaction networks, or the 
literature results can be mapped to a de novo network to 
provide further support in the context of a biological 
process or disease. MiMIplugin (http://apps.cytoscape.
org/apps/mimiplugin) collects and merges data from 
protein interaction databases including Michigan 
Molecular Interactions (MiMI), BIND, DIP, HPRD, 
RefSeq, Swiss‐Prot, IPI, and CCSB‐HI1 along with 
molecular interactions and their attributes for network 
generation. The app is also integrated with other NCBI 
tools for literature information, document summary cre
ation, and pathway matching. Another network app, 
ConsensusPathDBplugin (http://apps.cytoscape.org/apps/
consensuspathdbplugin), attempts to resolve inconsist
encies between different databases at the level of complex 
protein–protein, genetic, metabolic, signaling, gene reg
ulatory, and drug–target interactions and biochemical 
pathways. In addition to generating non‐redundant and 
seamless consensus pathways from 32 public resources 
relative to Homo sapiens. The tool is also available for 
data from other species, such as yeast and mouse.

17.3.2 Existing Biological Repositories

17.3.2.1 Information Sources for ‐Omics
GeneCards (http://www.genecards.org/) is an integrated 
database of human genes that includes automatically 
mined genomics, proteomics, and transcriptomics 
information, as well as orthologies, disease relation
ships, single nucleotide polymorphisms (SNPs), gene 
expression, gene function, and service links for ordering 
assays and antibodies. The GeneCards database, origi
nated in 1997, is being developed and maintained by the 
Crown Human Genome Center at the Weizmann 
Institute of Science. As of 2015 it contains a total of 
152 704 genes, out of which 21 965 are protein coding, 
16 329 pseudogenes, 1 754 genetic loci, 134 gene clusters, 
and 5 473 uncategorized entries. Moreover, GeneCards 
is affiliated with other databases such as MalaCards 
(a human disease database), LifeMap (a discovery data
base), PathCards (a pathway unification database), and 
GeneLoc (a genome locator database). Analysis tools 
integrated into GeneCards include GeneAnalytics 
(a  gene set analyzer), VarElect (NGS phenotyper), 
GeneALaCart (a GeneCards batch query tool), and 
GenesLikeMe (a related genes finder). The GeneCards 
Suite of interlinked databases and analysis tools is one 
of the most comprehensive sources relative to genetics.

The NCBI (http://www.ncbi.nlm.nih.gov/) is a portal 
to a plethora of biomedical and genomics resources 
including literature, health, genomes, genes, proteins, 
and chemicals and encompasses widely used ‐omics data
bases, such as GEO and Online Mendelian Inheritance 
in Man (OMIM). GEO compiles microarray, next‐gen
eration sequencing, and other forms of high‐throughput 
functional genomics data from the research community 
in compliance with grants or journals for open access to 
the data. The data stored includes raw data, processed 
data, and descriptive metadata, all indexed, cross‐linked, 
and searchable. About 90% of the datasets comprise 
gene expression studies focusing on disease, development, 
evolution, immunity, ecology, toxicology, and metabo
lism. The rest of the datasets in GEO are functional 
genomics and epigenomics studies elucidating genome 
methylation, chromatin structure, genome copy number 
variations, and genome–protein interactions. Data 
explorers, analyzers, and visualizers are also available as 
extra features for GEO data discovery. Although OMIM 
is curated by McKusick–Nathans Institute of Genetic 
Medicine, the Johns Hopkins University School of 
Medicine, it is considered a phenotypic companion to the 
Human Genome Project, a National Institutes of Health 
(NIH) initiative like NCBI. OMIM is a catalog of human 
genes and genetic disorders, based on published literature, 
and therefore cross‐indexed with PubMed. The records 
include information on clinical features, inheritance, 
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population genetics, heterogeneity, genotype/phenotype 
correlations, cloning, gene structure, gene function, 
mapping, and so on, attempting to elucidate relationships 
between genetic variation and phenotypic expression.

The ExPASy gateway comprehensive searches can 
be performed in various scientific databases maintained 
and curated by SIB, such as Eukaryotic Promoter 
Database (EPD), miROrtho (the catalog of animal micro
RNA genes), MyHits (protein sequences and motifs), 
PROSITE (protein families and domains), Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
(protein interaction networks for systems biology), 
SWISS‐2DPAGE (2D gel database), SWISS‐MODEL 
Repository (three‐dimensional protein structure models), 
and UniProtKB/Swiss‐Prot (a curated protein sequence 
database providing a high level of up‐to‐date annotation). 
UniProtKB is one of the most comprehensive resources 
for protein information, encompassing data from the 
literature as well as verified computational analysis. 
For each sequence in UniProtKB/Swiss‐Prot, gene and 
species information is harmonized, and discrepancies 
between sequences are annotated for alternative splic
ing, natural variation, incorrect initiation sites, incorrect 
exon boundaries, frameshifts, and so on. Computational 
predictions, including posttranslational modifications, 
transmembrane domains and topology, signal peptides, 
domain identification, and protein family classification 
are manually evaluated. Automatically annotated entries 
are part of UniProtKB/TrEMBL and await manual cura
tion. UniRef, UniParc, Proteomes, and Supporting data 
including literature citations, taxonomy, subcellular 
locations, cross‐ref databases, diseases, and keywords 
are fully integrated in UniProtKB.

17.3.2.2 Renal Information Sources for ‐Omics
In nephrology, several databases have been developed to 
collect information for computational modeling, including 
repositories focused on one ‐omics type, such as pep
tiCKDdb and Nephroseq, and multi‐omics resources, 
such as the Chronic Kidney Disease database (CKDdb), 
the Kidney and Urinary Pathway Knowledge Base 
(KUPKB), and GeneKid.

The peptiCKDdb (www.peptiCKDdb.com) is a reposi
tory of mined peptidomics and proteomics datasets 
originating from scientific literature related to chronic 
kidney disease (CKD). It can serve as a knowledge base 
for scientists seeking confirmation of their findings, as 
well as a source of data for integrative analysis support
ing biomarker research in the field of renal pathology. 
This resource currently stores data from a total of 119 
publications. The main features include user‐friendly 
interface for fast and easy browsing of the records, mul
tiparametric search engine, results visualization, and 
data export features.

Nephroseq (www.nephroseq.org), as the name sug
gests, is a data mining engine of pre‐analyzed clinical and 
molecular transcriptomics datasets of kidney disease 
and its comorbidities from human and mouse studies. 
Currently, there are two datasets from renal gene expres
sion experiments constituting the analytical base of the 
resource. In addition to being a database with gene 
expression profiles for molecules of interest, this resource 
also integrates Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, predicted microRNA targets, and 
Human Protein Reference Database (HPRD) Interaction 
Sets and allows for co‐expression, outlier, heterogeneity, 
and concept analysis that enables meta‐analysis of gene 
expression trends.

The CKDdb (www.padb.chem.gla.ac.uk/ckddb/) stores 
microRNA, genomics, peptidomics, proteomics, and 
metabolomics information relevant to CKD, collected 
from over 300 studies in the literature and integrated 
into the Pan‐omics Analysis DataBase (PADB) using 
gene and protein clusters (CluSO) and mapping of 
orthologous genes (OMAP) between species. This 
resource integrates highly diverse omics data across 
 various species in one platform and allows for a system
atic evaluation of CKD‐relevant pathways using a systems 
biology approach.

The KUPKB (www.kupkb.org) compiles mRNA, 
miRNA, metabolite, and protein datasets from litera
ture as well as GEO relevant to kidney pathology and 
physiology; this information is implemented using SW 
technologies to standardize content published and 
shared on the Internet. Moreover, KUPKB is linked to 
additional resources, such as NCBI gene, UniProt, 
HomoloGene, and KEGG, allowing complex queries to 
return all the relevant linked information, across spe
cies and including biological pathways. Additionally, 
KUPKB is equipped with the network visualization 
tool, KUPNetViz, which allows for integration of exper
imental data from KUPKB (such as renal locations 
and diseases) and external resources (Gene Ontology, 
KEGG, miRNA data), providing a comprehensive and 
informative network view.

Lastly, GeneKid, a pipeline created for the SysKid 
consortium project, which aims to develop new diag
nostics and treatments for CKD, focuses on harmoniz
ing heterogeneous omics data by using the genes’ 
annotation network (“symbolization”) to build a unified 
omics network. The challenge of this approach is 
assigning all nonunique gene identifiers to one correct 
Human Genome Organisation (HUGO) symbol, made 
difficult by nomenclature variability between laboratories, 
especially for linking genes with cellular metabolites; to 
improve this linkage, symbolization is augmented using 
the Human Metabolome Database (HMDB) and 
DrugBank database.



Database Creation and Utility 297

17.3.3 Application in Research

17.3.3.1 Data Mining on Large Multi‐Omics 
Datasets
Omics data encompasses more than just genomics, 
transcriptomics, proteomics, peptidomics, and metabo
lomics; there are many other fields, such as epigenomics 
and phenomics, that focus on gene regulation and 
environmental interactions, respectively. The integra
tion of data from these fields will allow the molecular 
characterization of diseases and ultimately lead to per
sonalized medicine [37]. However, data mining large 
omics datasets is more than just a computational issue, 
because the real challenge is gaining biological insight 
from large‐scale high‐throughput experiments. This is 
because each omics does not function alone; genes, tran
scripts, proteins, metabolites, and so on are all part of an 
intricate network of interactions, and this interactome is 
dynamic in nature and responds to environmental stim
uli [38]. Therefore, even though each of these approaches 
can generate vast amounts of data, each omics is merely 
a component of the whole system and must be integrated 
in order to achieve a global perspective, especially 
when attempting to decipher mechanisms, leading to 
diseases.

Disease etiologies must be deciphered in comparison 
with a healthy interactome. Thus, specific biological pro
cesses, pathways, and interactions leading to disease can 
be identified, and possible therapeutic interventions can 
be inferred [39]. Omics data integration starts by compil
ing all the data by mining various databases, such as sci
entific literature, knowledge databases, and sequence 
and structural databases, as well as assigning functional, 
regulatory, dynamic, or metadata content. This is due to 
the complexity of the various omics data types, which 
prevents the collection, deposition, and linkage of all 
omics data in a common database, or even in databases 
sharing a common architecture. Standardization and 
universal linkage of all types of omics data into a single 
interlinked data structure is one of the main challenges 
of systems biology [40].

17.3.3.2 Multi‐Omics Tools for Researchers
The discovery of dysregulated processes or pathways in 
disease is the key to successful prediction of novel drug 
targets and treatments. In the last two decades, there has 
been an explosion of in silico tools for computational 
analysis and pathway integration of omics data [41], 
both commercially available, including Ingenuity 
Pathway Analysis (IPA) (http://www.ingenuity.com/) 
and MetaCore (http://lsresearch.thomsonreuters.com/), 
and freeware, such as Cytoscape (http://www.cytoscape.
org/) and InCroMAP (http://www.ra.cs.uni‐tuebingen.
de/software/InCroMAP/), as well as online web tools 

such as 3omics (http://3omics.cmdm.tw/) and IMPaLA 
(http://impala.molgen.mpg.de/). Although each tool 
may implement different methodological approaches 
(e.g., Cytoscape is made up of various plug‐ins imple
mented in a common platform, while 3omics is a web‐
accessible tool) and algorithms (e.g., each Cytoscape 
plug‐in has its own independent algorithm, while 3omics 
uses a text mining algorithm to merge literature data). 
However, the common characteristics of all integration 
tools are that they are based on or linked to an underly
ing database that stores information about known cellu
lar and signaling and biochemical pathways [42, 43].

While commercially available tools such as IPA and 
MetaCore have been developed with their own propri
etary databases, most freeware, such as Cytoscape 
and InCroMAP, utilize public databases in their 
underlying framework. The most known pathway 
databases include KEGG (http://www.genome.jp/
kegg/), WikiPathways (http://www.wikipathways.org/), 
and Reactome (http://www.reactome.org/). Disease‐
related pathway information from all of these databases 
can be accessed using the Cytoscape platform’s various 
applications. CyKEGGParser (http://apps.cytoscape.
org/apps/cykeggparser) is an application that not only 
accesses and visualizes KEGG pathway information but 
is also capable of merging, correcting, and editing 
pathways (tuning of protein–protein interactions 
within pathway maps). The WikiPathways (http://apps.
cytoscape.org/apps/wikipathways) application allows for 
importing, visualizing, querying, and merging of path
ways, along with generating customized networks. 
The ReactomeFIPlugIn (http://apps.cytoscape.org/apps/
reactomefiplugin) application contains functions for 
pathway enrichment and functional relationships for a 
set of genes, constructs customized networks based on 
complex queries, and performs automated or manual 
annotations. InCroMAP is a stand‐alone software capa
ble of performing analysis on mRNA, miRNA, DNA 
methylation, and protein modifications; however it 
only supports KEGG pathway information. 3omics is a 
web‐accessible data mining tool for integrating tran
scriptomics, proteomics, and metabolomics and can 
extrapolate missing omics data; it also only implements 
KEGG pathway data. However, IMPaLA, also an online 
tool, lacks graphical visualization but incorporates 
information from many databases, making it a very 
comprehensive tool.

17.3.3.3 Limitations of Multi‐Omics Tools
While tools such as IMPaLA aim to consolidate many 
different knowledge sources and databases into a com
prehensive model, a lot of redundancies and inconsisten
cies within the information are generated. This is due to 
the lack of standardization and harmonization of the 
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vast amount of information available for different omics 
and biological pathways [44]. Likewise, WikiPathways is 
a consensus database with manual community curation 
of pathways collected from literature as well as other 
primary source databases, such as KEGG and Reactome. 
Although these different databases collect the same 
information, they do not share a standard nomenclature 
and pathway classification system to avoid redundancies. 
For example, common names are by no means unique; 
the KEGG “ECM‐receptor interaction” (hsa04512) 
receives 163 hits in WikiPathways. However, this is the 
result of a simple pathway name query, where the words 
“receptor” and “interaction” are part of many other 
pathway names. A query containing only “ECM” yields 7 
hits; however, none of them is the “ECM‐receptor 
interaction” pathway from KEGG. Such inconsisten
cies highlight the necessity for standard comprehensive 
naming conventions; however, no such standard exists 
for biochemical pathways. This is due to the fact that as 
primary databases were created independently, develop
ers followed their own naming conventions, frequently 
using the names of ligands, receptors, main targets, and 
so on for the nomenclature. Frequently, the same path
ways identified in the literature received different com
mon names introducing ambiguity and challenges in 
curating the pathway information. While Gene Ontology 
(GO) terms were suggested as a solution to conflicting 
common names, they suffer from the same problem; 
KEGG and Reactome integrate their own ontologies, and 
standardization is a crucial topic among many data 
curation communities [45].

17.3.3.4 Future Outlook for Multi‐Omics
Computational power and capabilities are growing at a 
geometric rate; new tools are being developed, and data
bases are evolving new architectures and data structures. 
Starting with the basic concept of a node representing a 
one‐dimensional data point and a pathway linking the 
nodes in a two‐dimensional representation of the data 
points and their relationships, it follows that networks of 

interlinked pathways representing dynamic cellular func
tions must then be implemented as multidimensional 
data structures. Whatever the underlying structure, flex
ible data formats and compatibility can ensure access to 
information and accessibility for different platforms. 
However, the development of a novel and robust unified 
standard for annotation and nomenclature is the key for 
successful data integration [46, 47].

17.4  Conclusions

Development of databases has proven to be beneficial in 
all fields, from business to science, where data, and most 
importantly knowledge derived from it, is important. 
There are numerous approaches to database design; 
nevertheless, all of them aim at the same goal—to pro
vide a high level of data organization in order to facilitate 
storage, management, and analysis of the data.

Databases hold a great potential for research pur
poses and in the era of high‐throughput platforms are 
an essential tool to support the discovery process. 
Data repositories serve the research community by 
providing easy access to information with the possibility 
to answer a specific biological question through use of 
queries. Importantly, the collection of data in a search
able form greatly facilitates the process of literature 
mining, which can be very timeconsuming and requires 
detailed analysis of the manuscripts or supplements. 
Moreover, if a high level of organization and standardi
zation is achieved, then data can be easily mined or 
integrated, in search for additional information, which 
is not initially obvious. The number of biological data
bases is still growing, and new databases are being 
developed in order to make the best use of existing 
data, offering the possibility for new discoveries in 
the  field of research and bioinformatics. Numerous 
discoveries are due to the use of databases. Thus, 
databases are essential for current and future scien
tific research.
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18.1  Introduction

Kidneys are the setting of different biologic processes 
such as the fine regulation of fluids and electrolytes 
balance, the metabolism of toxins and drugs with tubular 
secretion of both active and inactive components, the 
synthesis of active hormones like Vitamin D by means of 
1‐α hydroxylation of 25‐OH Vitamin D and the degrada
tion of part of circulating insulin at proximal tubules [1]. 
However, to assess renal function, clinicians inevitably 
need to evaluate the glomerular filtration rate (GFR) [2], 
expressed in ml/minute. GFR represents the physiologi
cal process by measuring blood flow through the semi‐
permeable barrier of glomerular tufts that generate an 
ultrafiltrate. Its composition changes during the passage 
through the tubular segments and flows via the ureters 
to the bladder before being eliminated in the form of 
urine. Several factors influence the value of GFR. The 
maintenance of a stable systemic hemodynamic status 
guarantees an appropriate renal plasma flow and GFR. 
However, at the glomerular level, sophisticated pathways 
of vasoactive and hormonal molecules regulate single‐
nephron hemodynamic status acting on the afferent and 
efferent arteriolar vascular tone and protecting glomer
uli against sudden and/or periodic changes of circulating 
plasma volume [3–5]. The final goal is to maintain a stable 
GFR. Starling forces drive the ultrafiltrate formation, 
and are essentially represented by the balance between 
oncotic and hydrostatic pressures at the two sides of the 
semi‐permeable barrier. Kidneys filter 180 l of blood per 
day through a total of two millions of glomeruli which 
compose a very wide vascular surface area (1 m2) and 
receive a significant amount of blood as 20% of the 
cardiac output is destined to kidneys. A great number 
of variables as physical activity, pregnancy, and also 

pathological conditions like chronic heart failure, body 
fluid loss or overload, and chronic kidney disease (CKD), 
may act both on systemic and local hemodynamic 
balance. The effect of these factors may be reflected by 
changes of GFR. Furthermore, glomerular filtration is 
influenced by age, sex, ethnicity drugs, protein dietary 
intake, and its value needs to be correlated to body 
surface area in order to reduce interindividual variability. 
Healthy people have GFR higher than 100 ml/min and 
the average normal value is 120–130 ml/min [6].

18.2  The Evaluation of Glomerular 
Filtration Rate

The evaluation of GFR is at the moment the best clinical 
tool to measure renal function in the clinical setting. It is 
essential to reveal the presence of chronic kidney insuf
ficiency and to establish the severity of the disease, as the 
current guidelines define CKD as the presence of abnor
malities of kidney structure or function (GFR < 60 ml/
min/1.73 m2) [7]. GFR estimation is also necessary to 
monitor the decline of renal function over time, to per
form CKD prognosis, and to assess cardiovascular risk. 
Decisions about drug dosage and the eligibility for 
radiological examinations with contrast agents are also 
dependent on the degree of renal function. GFR can be 
measured indirectly (mGFR) by determining the clear
ance of exogenous markers administered at the moment 
of the evaluation; alternatively it can be estimated (eGFR) 
from serum levels of endogenous filtration markers 
(mainly creatinine). The development of techniques and 
equations to determine measured and estimated GFR 
was initiated at the first decades of the last century. Alving 
and Smith were among the pioneers who introduced the 
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use of exogenous substances to assess renal function 
[8–10] and their work led to the identification of inulin, 
a 5200 Da inert uncharged fructose polymer, as the 
ideal molecule. Since then, the evaluation of urinary and 
plasma clearance of inulin has become the gold standard 
to measure GFR indirectly. Other exogenous tracers 
such as iothalamate and iohexol have been tested [11–13] 
and have shown a good safety profile in patients during 
clearance measurements, with a performance comparable 
to that of inulin. For iohexol, urinary clearance is unnec
essary because the kinetic of the tracer is excellently 
represented by plasmatic clearance [14–16]. However, 
in routine clinical practice, clearance measurements 
require an inpatient setting and are not always easy to 
apply and comfortable for patients because repeated 
blood sampling and, for some markers, timed urine 
 collection are necessary. For these reasons, in 1970s, 
 clinicians set up the basis of the first equations for esti
mating GFR using endogenous markers [17]. In princi
ple, the plasmatic concentration of the ideal analyte in 
a steady state condition should correlate with the 
reciprocal of the GFR level, with no need for sequential 
blood and urine testing and with no interference from 
other excretion pathways [2]. However, serum levels of 
endogenous filtration marker are influenced by differ
ent variables independent from GFR: synthesis (from 
cells or dietary intake), extrarenal (intestinal or biliary 
metabolism) and renal elimination, tubular reabsorp
tion and secretion [18, 19]. All these processes cannot 
be measured directly; thus, the equations to estimate 
GFR use clinical measurable parameters to substitute 
unmeasurable variables.

Commonly used endogenous markers include low‐
molecular‐weight metabolites like urea and creatinine, 
and low‐molecular‐weight proteins such as cystatin C, 
β2‐microglobulin, and β‐trace protein. Creatinine is the 
most commonly used among markers; it is a breakdown 
product of muscle creatine phosphate freely filtered by 
glomeruli but also secreted by renal proximal tubules 
[20]. Several non‐GFR determinants affect serum creati
nine [18]. Age and sex influence the amount of total body 
muscle mass and, consequently, the level of creatinine 
turnover [21]. Several drugs antagonize molecular mech
anisms of creatinine tubular secretion (such as trimetho
prim and cimetidine) producing a decline of creatinine 
clearance and increase plasmatic concentration of the 
metabolite. This event does not truly affect the real GFR 
even if the final result is the rise of serum creatinine 
[20, 22]. Physical phenotype, prevalence of lean or fat 
body mass, belonging to different ethnicity (Asian, Black, 
Hispanic), body integrity, or amputation must be taken 
into account in the estimation of GFR based on creati
nine concentration. Finally, concomitant diseases such as 
cancer, lymphoproliferative disorders, heart disease, and 

also malnutrition and neuromuscular diseases influence 
creatinine turnover [21].

Independent from the selected marker, it is funda
mental to consider that the performance of the eGFR 
equations to reflect the ideal‐measured GFR declines 
considerably in non‐steady‐state conditions [18]. When 
acute reduction of GFR occurs, as in acute kidney injury, 
there is a lag time before eGFR alterations manifest and 
adequately reflect the magnitude of real GFR decline. 
This happens because the accumulation of the endoge
nous marker after an abrupt fall in renal excretion, to an 
extent that overcomes extrarenal metabolism, takes 
 several hours. This is also applicable when GFR rises: an 
increase in eGFR reflecting the GFR increase will be 
apparent after some time, when a new steady state is 
established. Cockroft and Gault formula that measures 
the creatinine clearance form serum and clinical param
eters that represent the first consistent attempt to define 
eGFR [17]. However, the formula has limitations as 
 creatinine clearance overestimates GFR because of the 
tubular secretion of creatinine. Moreover, there is no 
adjustment for clinical parameters in the equation (body 
surface area and height are not included) [23].The first 
significant step for establishing a widely accepted eGFR 
equation was made in 1999 when the Modification of 
Diet in Renal Disease (MDRD) Study equation was 
developed [24, 25]. The MDRD Study was a randomized 
trial dealing with the effect of low‐protein dietary intake 
and the reduction of blood pressure on progression of 
CKD. In a second phase, the MDRD formula has been 
updated with the introduction of standardized serum 
creatinine, the isotope dilution mass spectrometry 
(IDMS), according to the guidelines of the US task force 
of the National Kidney Disease Education Program 
(NKDEP), in order to abolish inaccuracies derived from 
interlaboratories variability [26]. Thus the original 
 formula was modified in 2006 as a 4‐variable equation 
with creatinine measurement standardized to IDMS. 
The 2006 MDRD equation shows greater precision and 
 correspondence to mGFR values compared to previous 
eGFR estimation methods [27]. However, the corre
spondence with mGFR declines at less‐compromised 
stages of renal function as it tends to underestimate the 
GFR in this subset of population. The Chronic Kidney 
Disease Epidemiology Collaboration (CKD‐EPI) research 
group has developed the CKD‐EPI estimation equation 
based on creatinine, validated in populations from 
 different studies. Among clinical and biochemical 
parameters evaluated, two diverse coefficients were 
assigned according to the level of serum creatinine. The 
CKD‐EPI equation produces a lesser bias for eGFR 
greater than 60 ml/min and has allowed the reclassifica
tion of the CKD stage for a consistent proportion of 
patients of the study populations [28, 29].
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The CKD‐EPI group has also investigated potential 
advantages of cystatin C over creatinine as filtration 
marker for eGFR. It is a low‐molecular‐weight serum 
protein freely filtered by the glomerulus and reabsorbed 
by tubular epithelium. Comparative analysis, however, 
has demonstrated similar accuracy between equations 
using the two different markers [30]. Better performance 
with higher accuracy was obtained from the combined 
formula CKD‐EPI based on standardized serum creati
nine and cystatin C assays (2012 CKD‐EPIcr‐cys), also in 
the elderly and among different sex and ethnic groups 
[31, 32]. Higher accuracy of the combined equation is 
derived mostly from greater precision.

Current guidelines recommend the use of a GFR‐
estimating equation based on creatinine for initial evalu
ation of renal function. When a more accurate definition 
is necessary (e.g., in case of titration of nephrotoxic 
agents), it is preferable to use eGFR based on serum cystatin 
or to perform mGFR with serum or urinary clearance 
of reference markers (as inulin, iohexol) if possible. It is 
always recommended to use the updated estimating 
equations: the 2009 CKD‐EPI for creatinine and the 2012 
CKD‐EPI for cystatin and creatinine–cystatin equations [7]. 
If eGFRcr in adults is 45–59 ml/min/1.73 m2 without any 
other sign of CKD, it is necessary to apply eGFRcr‐cys if 
there is need for diagnosis confirmation. In case of 
eGFRcr‐cys < 60 ml/min CKD is confirmed.

18.3  Causes of CKD

Many diseases may affect kidney function, both systemic 
and primary renal disorders. When the pathogenetic 
cause has limited duration the result can be a transient 
kidney insufficiency that recovers when the disease 
resolves, and it can take days or weeks. Otherwise, per
sistent disorders may permanently compromise renal 
function producing CKD, whose prevalence varies 
according to geographic areas. Hypertension and diabe
tes are the most frequent causes of CKD in western 
countries mainly because of diet and life style character
ized by elevated intake of salt and hydrogenated fats and 
very scant physical activity. However, to better charac
terize the causes of CKD, we can distinguish primary 
renal disorder from systemic diseases with secondary 
renal involvement.

 ● Primary renal disorders:
Glomerulonephritis: the inflammation of the filtering 

unit of kidney, the glomerulus, generally due to an 
immunological cause. Predisposing genetic loci 
may play a role in the development of these disor
ders especially when a second causative event 
occurs, such as viral or bacterial systemic infection 

(hepatitis B or C, syphilis, TBC). In other cases, glo
merulonephritis can be the result of a primary renal 
autoimmune disease with loss of immune tolerance 
toward molecules commonly recognized as “self.” 
Glomerulonephritis usually manifests with urinary 
alterations as hematuria and proteinuria, and some
times with hypertension and initial decline of GFR. 
However, chronic glomerular inflammation may 
alter substantially the structural integrity of the 
vascular tuft and produce a permanent impairment 
of renal function, potentially progressive over 
several years.

Genetic disorders: Among all causes, genetic disor
ders account for 15–20% of all CKD diagnoses, 
mostly presenting with early onset impairment of 
renal function. In the wide group of genetic disor
ders, congenital abnormalities of kidney and urinary 
tract (CAKUT syndromes), steroid resistant 
nephrotic syndromes, and ciliopathies are thought 
to be responsible for more than 70% of cases of CKD 
with genetic origin [33, 34]. Ciliopathies embrace 
many of known cystic disorders: autosomal dominant 
polycystic kidney disease type 1 and 2, autosomal 
recessive polycystic kidney disease, nephronophthi
sis type 1–9, medullary cystic disease, and Bardet–
Biedl syndrome. The pathogenesis of CAKUT 
syndromes lies on an abnormal nephrogenesis 
process during embryological life and may present 
with different phenotypes: kidney agenesis, renal 
hypodysplasia, and ureteropelvic junction obstruc
tion. Among glomerular diseases, causative muta
tions frequently involve structural glomerular 
proteins such as nephrin, podocin, α‐actinin‐4, or 
some of collagen subtypes which compose the glo
merular basal membrane as in the Alport syndrome 
(COL4A4 and COL4A5 genes). Dent syndrome is 
determined by a mutation of a chloride channel 
(CLCN5) expressed on the intracellular vesicles 
which mediate molecules trafficking to the cell sur
face. Dent syndrome causes a generalized dysfunc
tion of the proximal tubules with urinary wasting of 
substances normally reabsorbed and it is often associ
ated with severe nephrocalcinosis which may severely 
compromise renal function and lead to CKD.

Renal stone disease: Nephrolithiasis is a common 
renal disorder whose prevalence has increased 
worldwide during the last 20 years across sex, age, 
and race, principally because of metabolic factors 
(eating and drinking habits) [35]. Stone formers may 
experience recurrent acute episodes of nephro
lithiasis, especially in the presence of predisposing 
factors such as abnormalities of the urinary tract, 
infections (struvite calculi), hereditary disorders 
(as  polycystic kidney disease), hyperoxaluria, and 
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cystinuria. In some of these cases, the coexistence of 
diffuse nephrocalcinosis, the presence of massive 
stone deposition in the urinary tract, and the recur
rence of obstructive episodes may damage the renal 
parenchyma permanently and determine a certain 
degree of renal insufficiency.

Chronic kidney infections: Chronic pyelonephritis is 
often associated with abnormalities of the urinary 
system (such as vesicoureteral reflux, neurogenic 
bladder) that allow the urine to flow back toward 
kidneys; rarely it is caused by systemic infections or 
infective processes of the intra‐abdominal organs, 
that secondarily involve kidneys. Whatever the 
cause, chronic pyelonephritis may determine 
progressive loss of renal function with recurrent 
episodes of hyperpyrexia.

 ● Secondary renal disorders
Cardiovascular diseases: Hypertension is one of the 

most frequent causes of CKD, together with diabe
tes, in western countries. Atherosclerosis, smoking, 
dyslipidemia and high salt intake are recognized 
as the common predisposing factors. The genetic 
background also plays an important role, even 
though not all the genetic loci that contribute to the 
development of the disease have been identified. 
High blood pressure alters the integrity of the arte
rial wall producing stiffening and thickening of 
blood vessels. These alterations also involve renal 
circulation and the final effect is a diffuse nephro‐
angiosclerosis and the impairment of the finely 
tuned glomerular circulation. Over time, these 
functional alterations lead to structural alterations 
represented by the disruption of the glomerular 
filtering barriers. Diabetes also markedly contrib
utes to vascular dysfunction because of alteration of 
carbohydrates and lipid metabolism. In this setting, 
circulating and locally generated products of 
advanced glycosylation improperly react with the 
normal proteic component of the arterial wall. 
This event inevitably predisposes to endothelial 
dysfunction and inflammation which compromises 
vascular integrity. Chronic heart failure is another 
leading cause of CKD, especially in the elderly [36]. 
Chronic renal hypoperfusion manifests because of 
depressed cardiac ejection fraction and reduced 
effective circulating volume that are the pathoge
netic mechanisms at the basis of renal insufficiency. 
The renal artery stenosis, especially when bilateral, 
is responsible for secondary hypertension resistant 
to multidrug therapy. In the youth it is frequently 
caused by fibromuscular dysplasia while in the 
elderly it is generally due to severe atherosclerosis. 
The effect is a chronic consistent reduction of renal 
plasma flow that produces an ischemic injury with 

overactivation of compensatory neurohormonal 
mechanisms (RAAS system). Over time, the severe 
hypertension and the ischemic persistent damage 
result in chronic kidney insufficiency.

Autoimmune disorders: The autoimmune diseases 
are the setting of the systemic inappropriate reac
tion of the immunological system against molecules 
normally recognized as “self.” The result is a chronic 
and clinically meaningful, uncontrolled inflamma
tory response which may involve every organ and 
tissue [37, 38]. The phenotypic presentation may 
vary largely and in case of renal manifestations of 
the disease, it is usual to observe alterations of 
urinary sediment with proteinuria and/or hematu
ria. A certain degree of GFR decline is frequently 
observed already at the onset of the renal involve
ment, and in some cases renal function can be 
permanently impaired with patients manifesting 
CKD. Rheumatoid arthritis, cryoglobulinemia, LES, 
thyroiditis, and vasculitis are some of the autoim
mune disorders that frequently present with renal 
involvement. In the kidney, the immune‐mediated 
damage can be determined by a direct cytotoxic 
effect or the generation of immune complexes (IC) 
composed of an immunoglobulin and an antigen. 
In the latter case, the IC can aggregate “in situ” in 
the glomeruli or in the systemic circulation, and 
thereafter settle in the kidney.

Tubule‐interstitial nephropathies: This heteroge
neous group of diseases embraces different causa
tive agents such as infections; toxic agents like 
antibiotics, salicylates, chemotherapy drugs, 
lymphoproliferative diseases, nephrocalcinosis, 
gout, heavy metals; and chemical substances like 
paraquat, herbicides [39]. The tubules and the 
peritubular interstitium constitute an essential 
functional unit, and the damage of this sophisti
cated system translates into the loss of all related 
reabsorbitive and metabolic pathways, together 
with the disruption of the mechanisms that 
guarantee the ability to modulate urine tonicity. 
The renal impairment can be mediated by diverse 
pathogenic mechanisms: an exaggerated oxidative 
stress, the activation of a concomitant immuno
logical response aimed to remove the toxic agent, 
and a direct interference with biological systems 
devoted to the synthesis of energetic molecules 
(ATP). All these processes may have deleterious 
effects on renal hemodynamics and on the integ
rity of the glomerular barrier. According to the 
duration of exposure to causative agents and to 
the extent of renal damage, this group of tubule‐ 
interstitial nephropathies may result in chronic 
kidney insufficiency.
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Amyloidosis: It is a severe disease characterized by 
the systemic extracellular accumulation of a proteic, 
low‐molecular–weight, insoluble substance, the 
amyloid that cannot be cleared by the scavenger 
cells of the immune system nor metabolized by any 
enzymatic pathway. Thus, the amyloid accumulates 
and can be found in every organ and system. Several 
subtypes of amyloidosis are known, according to the 
abnormal protein, for example, the amyloidosis AA 
typical of chronic inflammatory diseases (rheuma
toid arthritis, bowel inflammatory disorders), 
amyloidosis AL associated with overproduction of 
altered immunoglobulins in lymphoproliferative 
diseases, and amyloidosis ATTR caused by accumu
lation of transthyretin. In the renal amyloidosis, the 
mesangial space is completely filled with the protein 
fibril deposits that are also found on the wall of 
arterioles and glomerular capillaries [40]. These 
protein fibrils appear bright green to a polarized 
light microscope, after Red Congo staining. Both 
the glomerular hemodynamic and the integrity of 
filtering barrier are inevitably compromised and the 
final event is the organ failure.

For these reasons, a complete clinical–pathological 
assessment of these patients is crucial to determine their 
prognosis and to employ the proper therapeutic regi
men, also to reduce the incidence of ESRD and renal 
failure.

18.3.1 Histological Classification of CKD

Renal biopsy is an “invasive” procedure, with possible 
risk of complications. Thus, its evaluation should be 
performed in centers with recognized nephropatho
logical expertise and supported by all methodologies 
(LM, IF, EM, Immunohistochemistry), essential for a 
correct diagnosis. The value of performing a renal 
biopsy in a patient with suspected glomerular disease is 
twofold. First, of course, it allows establishing a diag
nosis of a specific disease or category of disease, 
although in some cases this may be largely apparent 
from the patient’s clinical history and serologic data. 
This frequently happens in case of systemic condi
tions, such as systemic lupus erythematosus (SLE) that 
often involve the kidney. The second, and perhaps 
more useful for the clinician, is to provide prognostic 
information regarding the likely clinical course of the 
patient, and the likelihood of improving this prognosis 
with therapeutic intervention, most notably immuno
suppressive therapy. For many glomerular diseases, 
although their identification on renal biopsy is gener
ally straightforward, their histologic appearance on 
biopsy, much like their clinical presentation, can vary 

greatly. This histologic appearance represents a snap
shot of prior and ongoing events within the kidney, 
and has been shown in studies performed over several 
decades to be correlated to some extent with both the 
clinical presentation and evolution, including response 
to therapeutic intervention and likelihood of progres
sion to end‐stage renal disease (ESRD) [41–45]. It is 
for this reason that morphologic classification systems 
of several different glomerular diseases have been pro
posed, particularly those with the greatest degree of 
morphologic heterogeneity, including lupus nephritis 
(LN) [46–50], IgA nephropathy (IgAN) [51–55], and 
ANCA‐associated vasculitis [56–58]. However, the 
value of these classification systems remains to be 
definitively established. This value is dependent on a 
number of different parameters. First, the validity of 
any disease classification system is based on the criteria 
of reproducibility (measured by the k value) and preci
sion (which is the s.d. of variation), which ensure that a 
classification is widely applicable by pathologists 
around the world, with acceptably low intraobserver 
and interobserver variation, and necessarily implicates 
a level of simplicity that allows the classification to be 
employed within the context of routine clinical prac
tice. Second and most important is the ability of the 
classification to provide prognostic information regard
ing the likelihood of disease progression, above and 
beyond the available clinical data at the time of biopsy 
and during follow‐up, and/or to provide information 
useful in identifying those patients who are likely to 
respond to certain therapeutic interventions. Third, 
morphologic classification is a dynamic process, because 
periodic discoveries are made that add to our knowl
edge of etiology or pathogenesis, identify new markers 
of prognosis and/or therapeutic responsiveness, and 
identify new therapies. Thus, a widely applicable histo
logic classification system should truly be a working 
classification capable of undergoing modification in 
response to new knowledge without a significant loss of 
precision or ease of utilization. An example of the latter 
is the Banff working classification for renal allograft 
pathology, which over the past two decades has under
gone key modifications in response to generation of 
new knowledge, such as the increased recognition of 
the importance of antibody‐mediated rejection. Clinical 
Renal Syndromes are relatively few:

 ● Asymptomatic proteinuria
 ● Asymptomatic hematuria
 ● Nephrotic syndrome
 ● Nephritic syndrome
 ● Rapidly progressive renal failure
 ● Acute renal failure
 ● Chronic renal failure
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Also, glomerular cells are relatively few, as depicted in 
the cartoon in Figure 18.1:

 ● Mesangial
 ● Endothelial
 ● Visceral epithelial (Podocytes)
 ● Parietal epithelial

Conversely the number of totally different types of 
nephritis is extremely large and every year new entities 
are described.

Disease that typically cause the nephrotic syndrome

Focal segmental glomerulosclerosis (all variants)
Idiopathic membranous glomerulopathy
Minimal change glomerulopathy
Diabetic glomerulosclerosis
Type I membranoproliferative glomerulonephritis
Idiopathic mesangioproliferative glomerulonephritis
Amyloidosis
C1q nephropathy
Fibrillary glomerulonephritis
Monoclonal immunoglobulin deposition disease
Type II membranoproliferative glomerulonephritis

Pre‐eclampsia/eclampsia
Immunotactoid glomerulopathy
C3 nephropathy
Collagenofibrotic glomerulopathy

Disease that typically cause hematuria and nephritis

LN
IgA nephropathy
Idiopathic IC proliferative glomerulonephritis
Pauci‐immune ANCA‐associated vasculitis
Postinfectious acute diffuse proliferative glomerulonephritis
Thin basement‐membrane lesion
Antiglomerular basement membrane antibody 

glomerulonephritis
Alport disease

Diseases other than glomerulonephritis that typically 
cause acute renal failure

Thrombotic microangiopathy (all types)
Acute tubulointerstitial nephritis
Acute interstitial nephritis (IgG4 related)
Acute tubular necrosis
Atheroembolization
Light chain cast nephropathy
Cortical necrosis

Diseases other than those already listed that typically 
manifest as chronic renal failure

Arterionephrosclerosis
Chronic sclerosing glomerulonephritis
ESRD not otherwise specified
Chronic tubulointerstitial nephritis
Miscellaneous other diseases
Adequate tissue with nonspecific abnormalities
No pathologic lesion identified

Moreover, the lesions associated to a single nephritis 
can be extremely variable in both characteristics and 
intensity, requiring a proper classification. Some examples 
are reported in Tables 18.1–18.3 and Figure 18.2.

For all these reasons, a correct diagnostic evaluation 
of renal biopsy needs nephropathological expertise 
supported by all methodologies. To stress this point, 

GBM

PO

M

E

MM

Figure 18.1 In this cartoon, the schematic structure of a normal 
glomerulus can be appreciated. The capillary stalk is composed of 
mesangial cells (M) from which the branching of capillary lumen 
starts. The capillary wall is composed, from the inside to the 
outside, by fenestrated endothelial cells (E), the glomerular 
basement membrane (GBM), and from the foot processes of 
podocytes (PO).

Table 18.1 International Society of Nephrology/Renal Pathology 
Society (ISN/RPS) 2003 classification of lupus nephritis.

Class I Minimal mesangial lupus nephritis
Class II Mesangial proliferative lupus nephritis
Class III Focal lupus nephritis
Class IV Diffuse lupus nephritis
Class V Membranous lupus nephritis
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some striking examples of the main histological lesions 
are presented in Figures 18.3–18.12, in which four 
 different diseases are depicted.

All these examples confirm that the evaluation of 
renal biopsy should be performed in centers with 
 recognized nephropathological expertise and supported 

Table 18.2 Classification scheme for ANCA‐associated glomerulonephritis.

Class Inclusion criteriaa

Focal ≥50% normal glomeruli
Crescentic ≥50% glomeruli with cellular crescents
Mixed <50% normal, <50% crescentic, <50% globally sclerotic glomeruli
Sclerotic ≥50% globally sclerotic glomeruli

a Pauci‐immune staining pattern on immunofluorescence microscopy (IM) and ≥1 glomerulus with necrotizing 
or crescentic glomerulonephritis on light microscopy (LM) are required for inclusion in all four classes.

Table 18.3 Glomerular classification of DN.

Class Description Inclusion criteria

I Mild or nonspecific LM changes and 
EM‐proven GBM thickening

Biopsy does not meet any of the criteria mentioned below for class II, III, or IV
GBM > 395 nm in female and >430 nm in male individuals of 9 years of age and oldera

IIa Mild mesangial expansion Biopsy does not meet criteria for class III or IV
Mild mesangial expansion in >25% of the observed mesangium

IIb Severe mesangial expansion Biopsy does not meet criteria for class III or IV
Severe mesangial expansion in >25% of the observed mesangium

III Nodular sclerosis (Kimmelstiel–Wilson 
lesion)

Biopsy does not meet criteria for class IV
At least one convincing Kimmelstiel–Wilson lesion

IV Advanced diabetic glomerulosclerosis Global glomerular sclerosis in >50% of glomeruli
Lesion from classes I through III

LM, light microscopy.
a On the basis of direct measurement of GBM width by EM, these individual cutoff levels may be considered indicative when other GBM 
measurements are used.

MPGN

Positive lgs
+/– C3

lg-mediated
(including cryoglobulins)

Dysproteinemia Autoimmune
diseases

Infections

Complement-mediated

Dysregulation of the
AP cascade

DDD C3G

Negative lgs
+ C3

Figure 18.2 MPGN—a simple classification.

Endocapillary hypercellularity
Definition: Increase of mesangial cells, endothelial cells,
infiltrating leukocytes causing narrowing of the 
glomerular capillary lumina. 

Figure 18.3 Definition of endocapillary hypercellularity.
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by various methodologies (LM, IF, EM, Immunohisto
chemistry), essential for a correct diagnosis. Moreover, 
it is necessary to establish a strict clinico‐pathological 
correlation.

18.4  Assessment of Disease 
Progression and Response 
to Therapy for the Individual: 
Interval Renal Biopsy

Repeating the renal biopsy in individual patients is not 
practiced widely. Although disease classifications are 
useful at a population level, it is harder to demonstrate 
that they are of value in providing clinically meaningful 
prognostic information for the individual. Given that 

serum creatinine is a poor marker of renal function 
[59–61], this is best assessed by interval biopsy to monitor 
both disease progression and response to therapy. This is 
most practiced in LN and in renal transplantation, 
although it is assuming a wider role in other diseases 
such as ANCA vasculitis.

18.5  Recent Advances: Pathology 
at the Molecular Level

In recent years, molecular biology research has moved 
on from studying single genes, their transcripts (messenger 
RNA (mRNA)), or proteins to study groups of mole
cules within a given domain in parallel with microarray 
technology [62]. In addition, there has been a growing 

(a)

(c) (d)

(b)

Figure 18.4 In figure a particular pattern of glomerular injury is represented, known as “endocapillary hypercellularity,” as the main 
manifestation of four different glomerular diseases. In Figure 18.3 there is the definition of endocapillary hypercellularity. Figure 18.4 
shows the light microscopy images of four glomeruli with a similar endocapillary hypercellularity but affected by different pathology 
((a), (b), (d) stained with trichrome stain, (c) stained with Hematoxylin and Eosin, ×20).
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interest in the role of microRNAs in kidney homeostasis 
and disease [63]. MicroRNAs are endogenous, short 
noncoding lengths of RNA that control the expression of 
many genes. The microRNAs may be detected by a num
ber of techniques including microarray technology and 
quantitative PCR. The hope is that such “omics” 
approaches will serve as a molecular microscope focused 
on new ways of examining renal biopsy tissue and help 
elucidate disease mechanisms and identify novel bio
markers that will aid diagnosis, prognosis, and treatment 
[64, 65]. Microarray techniques can be preferred over 
conventional pathology because of their ability to iden
tify and quantify thousands of transcripts at once and to 
measure early and rapid changes in disease processes 
before the resulting pathological lesions are detectable. 
However, microarrays cannot give information on ana
tomical relationships and the source of a particular tran
script. Nevertheless, it is likely that these molecular 

markers together with histology will aid in the diagnostic 
precision of the kidney biopsy. The employment of dif
ferent molecular techniques in this field are necessary 
for the development of new noninvasive biomarkers—
such as urine proteomics chips—that need to be vali
dated against the biopsy as a gold standard alongside the 
clinical data [66]. Despite the advances that have been 
made over the past few years within the field of molecu
lar characterization of the renal biopsy, there have been 
few clinically relevant correlates. Along with the identifi
cation of soluble urokinase plasminogen activator recep
tor, the enquiry into the molecular pathogenesis of FSGS 
has become more feasible with techniques such as laser 
capture microdissection (LCM), which allows the inves
tigation of the glomerular gene expression profiles of 
patients with primary FSGS using a microarray of mRNA 
isolated from formalin‐fixed renal biopsies [67]. LCM 
and mass spectrometry has also shown itself to be a 

Sparse subephitelial deposits of C3

C3

C3

C1q IgM

Mesangioparietal deposits of C3

Mesangioparietal deposits of C1q Parietal deposits of IgM

(a) (b)

(c) (d)

Figure 18.5 In this figure a particular pattern of glomerular injury is represented, known as “endocapillary hypercellularity,” as the main 
manifestation of four different glomerular diseases. The same glomeruli was stained with immunofluorescence technique for different 
antisera. In (a) there are sparse subepithelial deposits of C3, in (b) mesangioparietal deposits of C3, in (c) mesangioparietal deposits of 
C1q, and in (d) parietal deposits of IgM.
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valuable proteomic tool, allowing the characterization 
of rarer forms of renal amyloidosis from renal biopsy 
[68] These include those associated with deposition 
of  fibrinogen a‐chain, apolipoprotein A‐1 and A‐IV, 
transthyretin, and gelsolin. Such precise phenotyping 
should allow a better genetic counseling and disease‐
specific treatments to be implemented. LCM and mass 

spectrometry is also useful in determining the type of 
immunoglobulins and complement factors in IC and 
complement‐mediated glomerulonephritis, respectively 
[69]. Finally, newer stains for IgG subtypes have allowed 
the identification of novel monoclonal forms of prolif
erative GN [70] and IgG4‐associated autoimmune 
interstitial nephritis [71].

Final diagnosis

• A: Acute postinfectious glomerulonephritis

• B: Primary membranoproliferative glomerulonephritis 

• C: Lupus nephritis (Class IV-G diffuse global ) 

• D: Cryoglobulinemic glomerulonephritis 

Figure 18.7 In this figure a particular pattern of glomerular injury 
is represented, known as “endocapillary hypercellularity,” as the 
main manifestation of four different glomerular diseases. The 
diagnosis for each case is reported.

Nodular patterns

Definition: Marked and diffuse mesangial matrix 
enlargement with nodular appearance with no or few 
mesangial cells proliferation  

Figure 18.8 In this figure a particular pattern of glomerular injury 
is represented, called “nodular,” as the main manifestation of four 
different glomerular diseases. There is the definition of nodular 
pattern.

Hysolated subepithelial deposit (Hump) Double contour

Wire loop Structured cilindric deposits

(a) (b)

(d)(c)

Figure 18.6 In this figure a particular pattern of glomerular injury is represented, known as “endocapillary hypercellularity,” as the main 
manifestation of four different glomerular diseases. It depicts the electron microscopy feature of each case. In (a) the presence of 
subepithelial deposits, in (b) the double contour aspect of basement membrane, in (c) the so‐called wire loops, and (d) reveal the 
formation of structured cilindric deposits.
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18.6  Digital Pathology

The interpretation of images of tissues and cells at a 
resolution higher than the naked human eye is the 
core of pathology. For a long time the microscope has 
been the only available instrumentation to this aim, 
over centuries providing live images at increasing res
olution through ever‐improving optics [72]. During 
the last decades, significant technical advances were 
implemented in optical pathology [73, 74], such as the 
introduction of digital cameras producing still images 
and microscope‐mounted video cameras that allow 
live examination of slides (dynamic images). These 
still or dynamic images can be transferred by the 
means of network connections to remote sites to be 
assessed by another pathologist, a process commonly 

called telepathology [75, 76]. This has found applica
tions such as teleconsultation and frozen section diag
nosis for the intraoperative diagnosis. Approximately 
a decade ago, further improvements of these tech
niques resulted in the creation of digital slide scanners 
[77]. These slide scanners produce whole slide images 
(WSI, also called digital or virtual slides) that combine 
the advantages of images from live cameras (whole 
slide access) and digital cameras (high resolution). 
WSI are explored using an image viewer, which  enables 
the examination of digital slides in a manner compara
ble to the use of a conventional microscope in three 
aspects. First, WSI can be explored at different magni
fications, with the additional advantage of in‐between 
magnifications, if provided by the viewer software. 
Secondly, navigation of the slides in each direction 

(a) (b)

(c) (d)

Figure 18.9 In this figure a particular pattern of glomerular injury is represented, called “nodular,” as the main manifestation of four 
different glomerular diseases. The light microscopy images of four glomeruli with a similar nodular pattern but affected by different 
pathology ((a) stained with PAS; (b), (c), and (d) stained with trichrome stain ×20).



Subendothelial deposits(a) No electron dense deposits (b)

Fibrillary deposits (d)Fine granular subendothelial deposits (c)

Figure 18.11 In this figure a particular pattern of glomerular injury is represented, called “nodular,” as the main manifestation of four different 
glomerular diseases. Depicts the electron microscopy feature of each case. In (a) the presence of subendothelial deposits, in (b) the absence of 
immunodeposits in the GBM, in (c) the finely granular subendothelial deposits, and (d) reveal the formation of fibrillary deposits.

Subend. depos. lobular appearance

C3

IgG

lambda

Linear depos. of IgG along GBM 

Mespar depos. of Lambda light chaine Negative  

(a) (b)

(c) (d)

Figure 18.10 In this figure a particular pattern of glomerular injury is represented, called “nodular,” as the main manifestation of four 
different glomerular diseases. The same glomeruli is stained with immunofluorescence technique for different antisera. In (a) there are 
continuous subendothelial deposits with lobular appearance of C3, in (b) linear deposits of IgG along the glomerular basement 
membrane (GBM), in (c) mesangioparietal deposits of lambda light chain, and in (d) the negativity to any antiserum tested.
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is possible. Thirdly, some scanners allow scanning more 
than one focus plane, thereby even allowing focusing 
up and down [78–80]. Furthermore, WSI have several 
advantages over conventional slides: Image viewers 
are able to show an overview image together with 
the higher‐power view, resulting in better orientation 
within the slide when viewing at higher magnification 
and more easy navigation to other regions of interest. 
Image viewers can display several slides side by side, 
so the examiner can compare structural details 
between slides or different stains of the same tissue 
area. WSI can be made available instantaneously to 
multiple examiners from all over the world through 

the internet without the need for a microscope. 
Focusing is carried out during scanning, requiring less 
user interaction. The quality of WSI is constant over 
time; it can be used directly for automated image anal
ysis and morphometry and it can also be integrated 
within the electronic patient records, together with 
other images. Figure 18.13 shows a screenshot of a 
WSI as it is seen with an image viewer.

18.7  Conclusions

A renal biopsy is a relatively safe procedure with a well‐
defined risk profile allowing patients and clinicians to 
have a complete view of the issue and decide whether 
performing one or not. This is particularly important, 
since it represents an irreplaceable part of the diagnostic 
process, providing also prognostic and mechanistic 
insights. It is a rich source of information and it is 
likely that it will deliver specific molecular and cellu
lar patterns of disease that will enable targeted therapy 
in the future. Renal biopsies also facilitate “bedside‐to‐
bench” research that further defines the mechanisms 
and pathogenesis of progressive renal injury, with the 
potential of new therapies.
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19.1  The Evolving Concept 
of Chronic Kidney Disease

Chronic kidney disease (CKD) is now defined, according 
to the widely implemented Kidney Disease: Improving 
Global Outcomes (KDIGO) guideline, as abnormalities 
of kidney structure or function, present for more than 
3 months, with implications for health [1]. The guideline 
further provides a list of specific criteria that allows the 
diagnosis of CKD when present for more than 3 months. 
Importantly, just one criterion is required to diagnose 
CKD. These criteria include markers of kidney damage, 
such as pathological albuminuria (>30 mg/g creatinine), 
urine sediment abnormalities, electrolyte and other 
abnormalities due to tubular disorders, abnormalities 
detected by histology, and structural abnormalities 
detected by imaging or history of kidney transplantation. 
Alternatively, CKD may be diagnosed solely based on the 
presence of a decreased estimated glomerular filtration 
rate (eGFR <60 ml/min/1.73 m2), although physicians 
should be very well aware that eGFR is estimating muscle 
mass from age and sex data and thus, may be misleading 
when patients have higher or lower muscle mass than 
expected by these two parameters. KDIGO goes on to 
recommend the categorization of CKD according to 
cause, GFR, and albuminuria, which may be better 
remembered by using the “CGA” acronym. Thus, we 
should emphasize that every CKD patient should be 
diagnosed with a cause for CKD, as discussed below. 
In addition, a G category for GFR and an A category for 
albuminuria should be provided as follows: Albuminuria 
A1, urinary albumin creatinine ratio (UACR) <30 mg/g; 
A2, UACR 30–300 mg/g; A3, UACR >300 mg/g. GFR: 
G1, eGFR >90 ml/min/1.73 m2; G2, eGFR 89–60 ml/
min/1.73 m2; G3a, eGFR 59–45 ml/min/1.73 m2; G3b, 

eGFR 44–30 ml/min/1.73 m2; G4, eGFR 29–15 ml/
min/1.73 m2; G5, eGFR <15 ml/min/1.73 m2. Albuminuria 
categories A2–A3 or GFR categories G3a–G5 are, by 
themselves, equivalent to a diagnosis of CKD. A key 
inference of this categorization is that albuminuria 
should be assessed whenever CKD is suspected. This 
is not the case now for many physicians outside 
 nephrology and thus, CKD is underdiagnosed [2, 3]. 
Underdiagnoses of early stages of CKD, characterized 
by pathological albuminuria and preserved global 
 kidney function (to the extent that eGFR provides a 
measure of this), deprives the patient of undergoing 
evaluation for a cause that can be treated early and also 
of the possibility to start early prevention of CKD com
plications, including cardiovascular mortality and 
CKD progression [4–7].

The current concept of CKD, which does not require a 
decreased kidney function, encompasses a wider popula
tion than prior definition of kidney disease and is an 
advance over the concept of chronic kidney insufficiency 
held in the eighties and early nineties (Figure 19.1). Back 
then, patients were only referred to the nephrologist 
when they were young and serum creatinine was above 
normal limits, meaning than GFR was below 50–60 ml/
min or if the patient presented symptoms of kidney 
disease. Both are late manifestations of kidney injury. 
The situation was even worse in the sixties, when neph
rologists treated “uremic syndrome,” that is, very late 
manifestations of kidney failure.

In our view, the concept of CKD is still evolving. The 
recent realization that systemic inflammation leads to 
decreased kidney expression of klotho, a kidney‐generated 
hormone with antiaging, vascular protective, and 
nephroprotective properties, suggests that kidney injury 
starts much earlier than previously thought [8–12]. 
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In this regard, klotho deficiency may underlie the connec
tion between pathological albuminuria and kidney 
disease progression or cardiovascular mortality when 
renal function (assessed by GFR) is still preserved [13].

19.2  A Growing Epidemic

The most important risk factor for CKD is old age. 
While the prevalence of CKD in the general adult 
 population hovers around 10% [2], it is much higher in 
the elderly (Figure  19.2). Thus, around two‐thirds of 
persons aged 80 or above have CKD [3]. In this regard, 
humankind may be divided into two groups: those that 
have CKD and those that will have CKD, if they live 

long enough. Moreover, there is a discrepancy between 
the prevalence of known CKD among the elderly and 
the real prevalence of CKD (what has been termed 
“occult” CKD). For some authors this is no major issue, 
since they believe that CKD in the elderly is part of the 
“physiological” decrease in GFR with aging. However, it 
is difficult to consider a “physiological” decrease in GFR 
that is associated with more than doubling of the risk of 
all‐cause death (Figure 19.3) [14]. Taking into account 
that at that age the baseline risk of death is already 
around 60/1000 patient years, doubling the risk is asso
ciated with a much greater increase in absolute death 
rate than greater fold‐changes in death risk at younger 
ages. This is linked with another thought: CKD in the 
elderly does not occur suddenly; it is frequently a slowly 
progressive process. Thus, screening programs at 
younger ages (we would suggest at age 50 and every few 
years thereafter) may identify patients at earlier stages 
of the disease, thus allowing early intervention. 
Moreover, there is plenty of room for improvement in 
the care of elderly patients with CKD (the margin for 
improvement in mortality is around 80 deaths/1000 
patient years). Thus, this growing segment of the popu
lation should be the focus of intensive research and 
pilot kidney health programs. By contrast, current 
guidelines suggest that the bulk of elderly patients with 
CKD should be managed by primary care physicians, 
according to current state‐of‐the‐art Medicine [15]. 
This attitude will only perpetuate the high mortality of 
elderly CKD patients. Lack of referral to Nephrology 
will deprive them of an in‐depth study in search of a 
treatable etiology and of the latest management strate
gies for CKD, while depriving the nephrologists of a 
population base for further research into the contribu
tors to the high mortality, in order to develop novel 
therapeutic approaches.

1960s: uremic syndrome

1980s: chronic kidney insufficiency

2000s: chronic kidney disease

2020s: maladaptive kidney response
to systemic inflammation?

Figure 19.1 The evolving concept of chronic kidney disease (CKD).

Diagnosed CKD

4.6% 7.2% 9.4%

37%
48% 60%

Undiagnosed CKD

65–74 years 75–79 years ≥80 years

Figure 19.2 CKD: an aging‐associated disease  
(Source: Drawn using data from Ref. [3]).
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19.3  Increasing Mortality 
from Chronic Kidney Disease

The existence of a higher mortality cannot be dissociated 
from the concept of CKD, since the eGFR and albuminu
ria thresholds that define CKD were chosen based on the 

risk for CKD progression to end‐stage kidney disease 
(ESRD), chronic kidney failure (CKF) in KDIGO nomen
clature; and also based on the risk for all‐cause and 
cardiovascular mortality [1]. This increased mortality 
and CKD progression risk is what the expression “with 
implications for health” in the KDIGO definition of CKD 
refers to. In this regard, recent epidemiological data on 
the global impact of CKD on mortality are worrisome 
and demand action.

On January 15, 2015, The Lancet published the most 
recent iteration of the Global Burden of Disease study 
(GBD2013) [16]. Successive iterations of the study are 
aimed at updating data and at improving the quality of 
the data. GDB2013 data show that in terms of median 
percentage increase in rank 1990–2013 for years of life 
lost (YLL), CKD was the fastest growing nontransmis
sible cause of death, growing faster than other well‐
known and well‐publicized causes of death such as 
diabetes and several heart diseases (Figure 19.4). Only 
HIV infection, a transmissible form of death, grew faster 
in this period.

The prior GBD2010 report found that CKD was among 
the top three fastest growing main causes of death world
wide: the absolute number of deaths from CKD increased 
by 82% from 1990 to 2010 [17]. Age‐standardized death 
rates from CKD increased by 15% in this period, while 
rates for most diseases fell, including other nontransmis
sible diseases such as major vascular diseases, chronic 
pulmonary disorders, most forms of cancer, and liver cir
rhosis [17]. This means that for most nontransmissible 
causes of death, the global increment in the number of 
deaths is due to ageing of the population, while for CKD 
both ageing of the population and increased age‐adjusted 
deaths were contributing. It is possible that reducing 
death rates from other diseases allows persons to live 
long enough to develop CKD. In this regard, despite 
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general advances in patient care, mortality of CKF 
patients remains 10–100‐fold higher than in the age‐
matched general population [18]. The higher mortality 
of CKF patients cannot be pinpointed to a single cause 
and is evident for both cardiovascular and noncardio
vascular causes. A key concept is that both causes of 
death (cardiovascular and noncardiovascular) are hetero
geneous. Thus, CKF is associated with an increased risk 
of dying from very different cardiovascular causes, 
such as atherosclerosis‐related cardiovascular disease, 
arrhythmia, and pulmonary embolism and the patho
genesis and therapy of these entities differs. In some 
cases, Nephrology has lagged behind other specialties. 
Hemodialysis is now the most frequent cause of cathe
ter‐related bacteremia in the United States, after new 
standards of care have dramatically decreased catheter‐
related bacteremia in the intensive care unit [19].

Another issue is that, while much emphasis has 
been placed on the relative increase in risk of death 
(fold‐increase over age‐matched controls), the demo
graphic characteristics of the dialysis population with a 
predominance of elderly individuals, make the aged 
primary victims in terms of excess absolute number of 
deaths over the general population. This concept should 
be emphasized, since observational studies suggest that a 
nihilistic approach to therapy in elderly patients might 
contribute to the increased death rate. That is, lack of 
therapeutic intervention of very diverse types (from anti
diabetic therapy to beta‐blockers or phosphate binders) 
is associated with increased risk of death in CKF [18]. 
However, clinical trials are needed to prove a cause–
effect relationship.

By far the greatest contributor to CKF mortality world
wide is lack of access to renal replacement therapy. There 
are not enough resources worldwide to provide dialysis 
or transplantation to 3 200 000 persons in need every 
year: there are only resources to provide new renal 
replacement therapy to around 440 000 persons every 
year [20]. Limited access to renal replacement therapy is 
also a problem in Europe, not only in Asia, Africa, and 
Latin America [21–23]. Inequalities between European 
citizens in access to renal transplantation are notorious. 
In addition, the incidence and prevalence of renal 
replacement therapy in Greece, Belgium (French‐ or 
Dutch‐speaking), or Portugal is higher than in other 
European countries and almost double compared to 
neighboring Netherlands or Spain. In lower‐income 
European countries, a low renal replacement therapy 
incidence may represent lack of access to needed health
care (e.g., Montenegro 26 pmp, eightfold lower than in 
Belgium). However, differences between high‐income 
countries remain unexplained. Given that the working 
age population peaked worldwide in 2012, it is unlikely 

that a shrinking working population will develop the 
resources to treat the ever‐growing aging population at 
highest risk of CKF. Emphasis should be made on early 
diagnosis, mainly early etiologic diagnosis, and early 
therapy of CKD, preferably etiology‐based therapy, to 
prevent progression, as well as in developing new con
cepts for renal replacement therapy that may be more 
widely applied, perhaps by means of tissue engineering.

19.4  The Issue of Cause 
and Etiologic Therapy

There is a dearth of etiology‐based therapy in CKD as 
well as of tools for the noninvasive assignment of etiology. 
Moreover, nonspecific therapy for CKD has seen little 
innovation in recent decades [24].

Therapy for diabetic kidney disease (DKD) is still 
based on drugs first shown to decrease proteinuria in 
this condition in the mid‐eighties [25]. Multiple clinical 
trials have failed to identify novel therapeutic approaches 
to be used in daily clinical practice as an add‐on to 
renin–angiotensin system blockade to improve out
comes [26, 27]. Today, DKD remains a clinical diagnosis 
and renal biopsies are rarely performed. Disease hetero
geneity may have contributed to negative trials and 
newer, noninvasive biomarkers of diagnosis and disease 
stage are sorely needed.

Hypertensive kidney disease is the second‐most 
frequent cause of CKF in the United States and in at 
least some European countries [24]. However, many now 
doubt that hypertensive kidney disease even exists [28]. 
In the United States, hypertensive kidney disease is 
diagnosed mainly in African Americans. However, 
recent data point to a genetic basis for CKD in African 
Americans: a genetic variant in the ApoL1 gene that 
confers resistance to infection by Trypanosoma brucei 
[29, 30]. These genetic variants confer sensitivity to DKD 
and HIV nephropathy. It is highly likely that APOL1‐
related kidney injury has been misdiagnosed as hyper
tensive nephropathy for decades. The therapeutic 
implications of this finding are potentially huge, since if 
hypertension is a consequence, rather than the cause of 
kidney disease, the therapeutic approach should directly 
address kidney injury rather than blood pressure. There 
is similar confusion regarding the prevalence of hyper
tensive nephropathy in Europe [31]. The adjusted inci
dent rates of RRT per million population for hypertensive 
nephropathy ranged from 38.8 in Iceland to 4.2 in Finland 
and 4.2 in Scotland. In European countries that reported 
the existence of nonhypertensive renal vascular disease 
as a cause of RRT, the ratio of hypertensive to nonhyper
tensive vascular disease as a cause of RRT ranged from 
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0.5 in Croatia and Austria (reflecting a predominance of 
nonhypertensive vascular causes) to 32 in Norway 
(reflecting a preponderance of hypertensive vascular 
causes of CKF). Are these differences real? Or given the 
absence of specific biomarkers and histological features, 
should the term hypertensive nephropathy be inter
preted as an educated way of referring to CKD of 
unknown origin? In this regard, a pathogenic therapeu
tic approach cannot be prescribed if the cause of the 
nephropathy is unclear or even explicitly unknown, 
which is the case for 2–60% of RRT patients in different 
European countries.

Glomerulonephritis, interstitial nephropathies, and 
cystic diseases are also major causes of CKF. Current 
understanding of glomerular disease is still not enough 
to provide specific pathogenic therapy. Glomerulo
nephritides are still treated with either nonspecific 
proteinuria lowering medication or nonspecific immune 
suppressants. In this regard, glomerulonephritides are 
still classified based on morphological criteria that date 
back to the seventies. This most probably represents an 
oversimplification that throws into the same morpho
logical basket different conditions in terms of pathogenesis, 
severity, and progression potential that may require very 
different therapeutic approaches. A molecular classifi
cation, similar to that used for some malignancies, may 
allow a better assessment for pathogenesis, staging, and 
therapy selection for personalized medicine.

There is also a lack of understanding of the etiology 
and pathogenesis of most primary chronic tubulointer
stitial nephropathies that contribute to the scarcity of 
biomarkers and specific diagnostic criteria and therapy.

It is yet unknown whether general management of 
CKD may result in improved outcomes for autosomal 
dominant polycystic kidney disease (ADPKD) in terms 
of preservation of renal function [32]. The recent 
approval of tolvaptan for the treatment of ADPKD in 
Japan and in Europe may provide the stimulus for further 
research into the phenotypic heterogeneity of ADPKD 
and lead to the identification of noninvasive biomarkers 
that guide the indication and follow‐up of therapy [33].

19.5  Unmet Medical Needs: 
Biomarkers and Therapy

The major unmet medical needs in Nephrology and 
suggested actions have been recently reviewed [24]. 
Development of novel diagnostic, risk stratification, and 
individualization tools to personalize therapeutic 
approaches is sorely needed.

Accurate, sensitive, specific, and noninvasive diagnos
tics tests should allow the identification of the etiology of 

CKD both early in the course of the disease and when 
patients seek medical care at a later stage. The creation 
of a cohort of young adults without prior known kidney 
disease with sequential clinical and analytical follow‐up 
and sequential biobanking may provide the materials 
that allow the identification of early markers of kidney 
disease.

A molecular or pathophysiological classification of 
kidney diseases and specifically glomerulonephritis is 
needed to complement or even replace the current 
morphological or clinicopathological ones. This should 
identify specific molecular signatures and targets and 
predict progression and response to therapy in order 
to guide the indication and monitoring of specific 
 therapeutic approaches. Systems biology approaches 
applied to blood, urine, or kidney tissue in humans or 
experimental systems hold promise for such classifi
cation or identification of components of the classifi
cation [34–39].

Imaging techniques should advance in order to allow 
repetitive, noninvasive monitoring of kidney inflamma
tion and fibrosis and assessment of diverse kidney func
tions in a dynamic manner that allows characterization 
of active versus chronic lesions and progressing versus 
stable chronic lesions.

Novel preventive and therapeutic approaches should 
be developed based on etiologic and pathophysiological 
insights. Nephrology needs novel therapeutic approaches 
for unmet needs and these can only be developed by a 
precise and detailed understanding of pathophysiologi
cal events, the evaluation of preclinical models relevant 
to the human situation, and the improved design of 
lower‐cost clinical trials.

The importance of representative animal models can
not be overemphasized [40–43]. In the absence of 
adequate animal models, we are left with testing novel 
potential therapeutic approaches directly in humans, 
exposing those pioneers to unknown risks. Conversely, 
inadequate animal models lead to equivocal hypothesis, 
destined to fail when tested in clinical trials.

The bedside‐to‐bench interaction should intervene at 
every step of clinical development. As an example, 
enzyme replacement therapy (ERT) for Fabry disease 
was expected to solve the enzymatic defect and prevent 
progression of this proteinuric nephropathy. However, 
ERT failed to prevent progression once nephropathy was 
present [44], raising the need to better understand the 
molecular mediators of tissue injury. This led to the 
identification of lyso‐Gb3, a glycolipid that accumulates 
in Fabry disease but is not normalized by ERT, as a pro
moter of fibrosis, a hallmark of the disease, in podocytes 
[45–47]. This knowledge led to the characterization of 
inhibitors of lyso‐Gb3 actions on podocytes, including 
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vitamin D receptor activators and inhibitors of TGFBeta1 
and Notch signaling [45–47].

Eventually, these advances should be validated in clini
cal trials. Clinical trial design optimization is required in 
Nephrology, following a series of big misses. Furthermore, 
the number of randomized controlled trials published in 
Nephrology from 1966 to 2002 was 50–90% lower than 
in every other medical specialty [48]. Still in 2014, a sys
tematic review of Clinicaltrials.gov disclosed that only 
<3% of trials were classified as Nephrology [49].

A major issue in Nephrology RCTs is the definition 
of surrogate end‐points that allow the design of ade
quately powered trials that are feasible in terms of 
sample size and length of follow‐up. The emphasis on 
hard end‐points is problematic for many kidney 
 diseases with a natural history measured in decades: 
advanced cases must be enrolled in order to get suffi
cient events, but advanced cases may be less respon
sive to therapy, especially to etiologic therapy, given 
that a sizable amount of renal mass may have already 
been lost. In this regard, the qualification of novel bio
markers that may be used as surrogate end‐points 
should also be facilitated [38].

19.6  Conclusions

CKD is a highly prevalent and growing problem which 
leads to both CKF requiring renal replacement therapy 
and to premature mortality. The GBD study has 

observed that CKD is among the fastest growing causes 
of premature death worldwide. This is not  surprising, 
given the chronic underfunding of both the research 
effort and population‐level screening programs and 
interventions. As a consequence, we lack tools for early 
noninvasive diagnosis of CKD, for  predicting progres
sion in nonalbuminuric CKD and for disease staging. 
This, associated to insufficient knowledge of pathophys
iology and scarcity of RCTs, has led to very few thera
peutic innovations in recent decades. Only major 
funding efforts by private and public investors, together 
with a global rethinking of the strategy to tackle the 
CKD epidemic and to provide novel modes of renal 
function replacement, may eventually control the CKD 
epidemic in the same way that progress is being made to 
prevent and treat  cardiovascular disease and cancer. In 
this regard, disadvantaged populations are particularly 
prone to CKD [50, 51].
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20.1  Introduction

Chronic kidney disease (CKD) is widely recognized as 
having a multifactorial origin with both acquired and 
inherited risk factors, and poses a major health and 
financial burden in modern societies. Taking into 
account the last two decades, the number of CKD‐related 
deaths has risen by 82.3%, which is the third largest 
increase among the top 25 leading causes of death world-
wide [1]. Furthermore, the health costs associated with 
CKD morbidity as the treatment of end‐stage renal 
disease (ESRD) in many developed countries can easily 
ascend to 3% of their internal healthcare budget [2].

Understanding the molecular basis underlying onset 
and progression of multifactorial diseases such as CKD 
requires an interdisciplinary combination of existing 
fundamental knowledge with new data obtained from 
several omics platforms. Thereby, we can foresee that 
Systems Biology approaches are required in order to 
tackle the biological complexity that characterizes kidney 
diseases.

20.2  Data‐Driven Approaches 
and Multiomics Data Integration

Systems biology requires comprehensive data at all 
molecular levels. Hence using a data‐driven approach 
based on differential molecular expression profiles a 
 disorder and/or disorder progression stages could be a 
promising approach to find potential body fluid‐accessible 
biomarkers and therapeutic targets. Nevertheless, har-
monizing single‐level omics data obtained from different 
studies and mining the increasing volume of data across 
databases in an efficient way is still a big challenge [3].

With the advent of high‐throughput technologies, 
their application in the biomedical field was a foreseen 
logical step. However, until recently, integration of 
multiomic data was not a common approach. Therefore, 
we briefly present a potential workflow (Figure 20.1) to 
handle multilevel ‘omic data that could lead to new 
research questions and/or clinical applications.

The application of high‐throughput omic platforms 
leads to the generation of large datasets (e.g., spot 
intensities, spectral data) that are commonly stored in 
local databases. Then, the data undergo several steps 
of cleaning, filtering, normalization, reduction, and 
other preprocessing steps that are dependent of their 
intrinsic properties. Thereafter, data are mapped to 
several (ideally) external database repositories in order 
to ensure future reuse and as well to allow the use of a 
wide range of analysis tools that normally require dif-
ferent molecular identifiers. This molecular informa-
tion can be then integrated in a further stage by means 
of a meta‐analysis or by cross‐normalization of data 
from different acquisition platforms. A data integration 
approach can be used in order to develop models than 
can have a topological origin, that is, connectivity 
between nodes in a tridimensional network. An alter-
native is to recreate the cell environment and dynam-
ics by describing the interactions on a qualitative and 
quantitative manner and add the underlying data for 
connectivity; for example, protein–protein interactions 
(PPIs), molecular co‐occurrence, ontologies, enzy-
matic reactions for metabolites, and so on. Another 
approach relies merely on a statistical assessment, 
which tries to deconvolute the representation of fea-
tures and variables by mathematical methods and thus 
requires input of biological context after the analysis. 
The state‐of‐art model would consider all of these three 
components simultaneously: network topology, molecular 
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interactions, and statistical criteria in order to provide 
the most robust representation of changes associated 
with a disease state. Moreover, every new model needs 
to be corroborated, either by adding new data to the 
previous model and then test how it responds, or addi-
tionally with validation of the features that support the 
model (experimental validation: immunohistochemistry, 
qRT‐PCR, luciferase reporter assay, ELISA, etc.). This 
is an iterative process leading to the creation of a model 
and involves several cycles of adding new data and test-
ing its validity again. The model can then serve as a 
clinical tool for patient stratification or it can be applied 
in research for generating new hypotheses [4].

In this chapter, we are going to focus on and describe 
the application of standalone and web‐based tools used 
in pathway(s) visualization and the development of dis-
ease models (Table 20.1) based on data acquired by sev-
eral omics technologies. Finally, we are going to present 
CKD as a case study in order to illustrate the develop-
ment of a disease model in a stepwise way, from single 
models to fully integrative and combinatorial models.

20.2.1 Database Resources

The ongoing impressive growth of the amount of scien-
tific data, caused by rapid technological improvements 
and common usage of high‐throughput technologies, 
created the need for effective data handling and analysis. 
Together with increased capabilities of generating, 
collecting, storing, and managing information, data 
mining is becoming an indispensable tool in research. 
The employment of database systems into the research 
workflow, resulted in easier information retrieval and 
management, and hence empowered the development 
of more comprehensive data analysis techniques that 
enhances knowledge extraction. This is particularly 
important in life sciences, given the high complexity and 
multidimensionality of biological data and the growing 
trend toward integrative analysis and modeling [10].

In nephrology, several databases (Table  20.2) have 
been developed to collect information for computational 
modeling, including the Chronic Kidney Disease database 
(CKDdb), the Kidney and Urinary Pathway Knowledge 
Base (KUPKB), GeneKid, and Nephroseq (formerly known 

Table 20.1 Model development in several disease/conditions and omics platforms.

Disease/condition Organism ‘omic platform Type of model Data source Model validation Reference

AKI Mouse Proteomics de novo pathway Generated plus literature Immunohistochemistry [5]
Diabetic 
nephropathy

Human Multiomics Protein interaction 
network

omics studies, patent text 
and clinical trials

[6]

Muscle Invasive 
Bladder Cancer

Human Transcriptomics Protein interaction 
network

gene2pubmed [7]

CKD Human — Logic 
programming

Clinical data [8]

DM‐associated 
vascular disease

Mouse Proteomics de novo pathway Generated Immunohistochemistry [9]

High-throughput
technologies

‘Omic dataTop

Epigenomics

Genomics

Transcriptomics

Peptidomics

Proteomics

Metabolomics

Down

Data
curation

Analysis by single or
polycombinations

Model
development

Topological, network based

Interaction pathway

Statistical model

Clinical
implementation

Clinical trials

Biomarker
panel

Rational drug
design

Hypotheses generation

Iterative

Model
validation

Clinical

ResearchOutcome

db

Meta-analysis

Figure 20.1 Purposed workflow for a data‐driven approach in biomarker discovery, starting from data acquisition till clinical 
implementation. db, database.
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as Nephromine). CKDdb stores microRNA, genomics, 
peptidomics, proteomics, and metabolomics informa-
tion relevant to CKD, collected from over 300 studies in 
the literature and integrated into the Pan‐omics Analysis 
DataBase (PADB) using gene and protein clusters 
(CluSO) and mapping of orthologous genes (OMAP) 
between species. This resource integrates highly diverse 
omics data across various species in one platform and 
allows for a systematic evaluation of CKD‐relevant 
pathways using a systems biology approach. KUPKB 
compiles mRNA, miRNA, metabolite and protein data-
sets from literature, as well as Gene Expression Omnibus 
(GEO) relevant to kidney pathology and physiology; 
this information is implemented using Semantic Web 
technologies, a protocol to standardize content pub-
lished and shared on the Internet. Moreover, KUPKB is 
linked to additional resources, such as NCBI gene, 
UniProt, Homologene, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG), allowing complex queries to 
return all the relevant linked information, across species 
and including biological pathways. GeneKid, a pipeline 
created for the SysKid consortium project, which aims to 
develop new diagnostics and treatments for CKD, 
focuses on harmonizing heterogeneous omics data by 
using the genes’ annotation network (“symbolization”) to 

build a unified omics network. The challenge of this 
approach is assigning all nonunique gene identifiers to 
one correct HUGO gene nomenclature committee 
(HGNC) symbol, due to nomenclature variability 
between laboratories, especially for linking genes with 
cellular metabolites. In order to improve this linkage, 
metabolite identities are retrieved using the Human 
Metabolome Database (HMDB) and DrugBank database. 
Lastly, Nephroseq is a data‐mining engine of preana-
lyzed clinical and molecular transcriptomics datasets of 
kidney disease and its co‐morbidities from human and 
mouse studies. In addition to being a database with gene 
expression profiles for molecules of interest, this resource 
also integrates KEGG pathways, predicted microRNA 
targets, Human Protein Reference Database (HPRD) 
interaction sets, and allows for co‐expression, outlier 
detection, and concept analysis that permits meta‐analy-
sis of gene expression trends. But while these data 
sources provide public access to various omics datasets 
and bioinformatics mining tools, none fully integrates 
the whole landscape of omics disciplines into a compre-
hensive, dynamic, and visual model of cellular biochemistry. 
Genecards (http://www.genecards.org/) is an integrated 
database of human genes that includes automatically mined 
genomic, proteomic, and transcriptomic information, in 

Table 20.2 Databases within the scope of CKD or of general scope that can be filtered by conditions and ‘omics platforms based 
on expression profiles.

Name Organism ‘omic platform Data source Description URL

CKD‐related
CKDdb Multispecies Multiomics Publications Clustered, differential 

expression
www.padb.org/ckddb

KUPKB Multispecies Multiomics Publications Differential expression www.kupkb.org
Nephroseq Multispecies Transcriptomics GEO Differential expression www.nephroseq.org
PeptiCKDdb Human Proteomics Publications Differential expression www.peptickddb.com
RGED Human Transcriptomics GEO Differential expression http://rged.wall‐eva.net
PKDB Human SNP analysis Publications Gene variants for ADPKD http://pkdb.pkdcure.org

General scope
GEO profiles Multispecies Gene expression User submission Differential expression www.ncbi.nlm.nih.gov/

geoprofiles
EBI expression 
atlas

Multispecies Transcriptomics User submission Differential and baseline 
expression

www.ebi.ac.uk/gxa

MOPED Multispecies Transcriptomics 
and proteomics

User submission 
and GEO

Differential expression www.proteinspire.org/MOPED

UPdb Human Proteomic 
fingerprint

Own data and 
literature

Peak profiling www.padb.org/updb/updb.html

LSSR—Large 
Scale Screening 
Resource

Multispecies Proteomics Publications Differential expression www.padb.org/lssr

PRIDE Multispecies Proteomics User submission Differential expression www.ebi.ac.uk/pride/archive
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addition to gene orthologues, disease–disease relation-
ships, single nucleotide polymorphisms (SNPs), gene 
expression, gene function, and providing web links for 
ordering assays and antibodies. The GeneCards data-
base, created in 1997, is being updated and managed 
by the Crown Human Genome Center at the Weizmann 
Institute of Science in Israel. Entrez Gene (http://www.
ncbi.nih.gov/entrez/) is the National Center for 
Biotechnology Information (NCBI) database for genetic 
data, including nomenclature, map location, gene prod-
ucts, and their attributes; markers; phenotypes; and 
links to citations, sequences, variation details, maps, 
expression, homologs, protein domains, and external 
databases. This database houses the genomes that have 
been completely sequenced or that are of interest to 
the research community and are scheduled for intense 
sequence analysis. The content of Entrez Gene repre-
sents the result of the effort of both biocuration and 
automated data integration from NCBI’s Reference 
Sequence project (RefSeq), from collaborating model 
organism databases, and from many other databases 
available from NCBI. OMIM is the acronym for the 
Online Mendelian Inheritance in Man (http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?db=OMIM). This data-
base is a catalogue of human genes and genetic disor-
ders. The National Center for Biotechnology Information 
(NCBI) has developed the online interface for this data-
base, which is administered by Dr Victor A. McKusick 
and his colleagues at Johns Hopkins. The database 

contains textual information and references, connections 
to the bibliographic medical database MEDLINE and to 
sequence records hosted in the NCBI Entrez system, 
and links to additional related resources at NCBI 
and  elsewhere. Disease Genes Database (http://www.
proteinlounge.com/epath3d/eprotein-overview.asp) is a 
repository of disease‐causing genes and their respective 
diseases. The database is linked to the Protein Lounge 
Pathway Database and Protein Database with additional 
information on each particular gene of interest. The con-
tent of the database includes disease—gene searches, gene 
sequence information, gene protein products, gene family 
information, pathway information for the genes, gene sig-
nal transduction, and related article information. Disease 
Centered Central Mutation Databases is a consortium of 
disease‐causing genetic databases, such as the Asthma 
genetic database, the repertory of Familial Mediterranean 
Fever (FMF) and Hereditary Inflammatory Disorders 
Mutations database, and the Keio Mutation Databases using 
Mutation View for the analysis of eye, heart, ear, brain, 
and  cancer disease‐causing genes (http://www.hgvs.org/
disease-centered-central-mutation-databases).

20.2.2 Software Tools and Solutions

The number of Bioinformatics tools associated with omics 
and disease analysis is vast; thus here we only present the 
ones that are more user friendly and generate end results 
allowing a meaningful biological interpretation (Table 20.3).

Table 20.3 Overall view of standalone and web‐based tools to assist in pathway(s) visualization and in the development of disease models.

Name Type License (+) aspects (−) aspects URL

Cytoscape Network generation Free Hundreds of 
applications available

Cytoscape-version 
dependent apps

http://www.cytoscape.org

PathVisio Pathway construction Free Statistics associated 
with pathways

Unable to handle 
metabolites and genes/
proteins simultaneously

www.pathvisio.org

KEGG 
mapper

Pathway mapping Free Simultaneously 
search and coloring 
features

Without statistical 
output;
Errors on IDs matching

www.genome.jp/kegg/
mapper.html

VisANT Integrative visual 
data‐mining of pathways

Free Visualization of 
dynamic flux 
processes

Mainly focused on 
metabolic networks

http://visant.bu.edu

Ingenuity 
IPA

Integration of 
multiomics

Commercial User-friendly, no 
special skills 
required

Lack of reproducibility. 
No trace of the underlying 
databases used

www.ingenuity.com/
products/ipa

MetaCore Data‐mining and 
pathway analysis

Commercial User-friendly, no 
special skills 
required

No public details of how 
it works

https://portal.genego.com

3omics Integration of human 
transcriptomic, proteomic, 
and metabolomic data

Free Literature-based 
imputation of 
missing molecular 
elements

Phenotypic analysis 
missing

http://3omics.cmdm.tw
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Many modern high‐throughput technologies lead to 
the generation of large‐scale and complex datasets, 
including PPIs (e.g., Yeast two‐hybrid, Y2H, screening), 
protein–DNA interactions (Chromatin Immuno-
precipitation, ChIP, Assays), kinase–substrate interac-
tions (e.g., protein microarrays) [11], qualitative and 
quantitative genetic interactions (e.g., RNA interference, 
RNAi, high‐throughput screening) [12], gene co‐expres-
sion, and so on [13] The “Big Data” problem can be 
solved by the development of Bioinformatics tools that 
are able to handle these large datasets in order to reduce 
their complexity to a level that enables rational inter-
pretation and could provide new biological insights. 
Cytoscape is an open‐source software tool running in 
the Java programming environment and is capable to 
assemble large‐scale datasets into biological networks, 
in such a way that allows simultaneous integration, visu-
alization, and analysis of interacting molecular compo-
nents with associated expression data into a combined 
conceptual framework [14]. The Cytoscape platform 
offers several applications (301 applications available 
on November 19, 2016) for a diverse array of uses and 
analysis types. A summary description and assessment 
of some of these applications can be additionally seen in 
a review by Saito and collaborators [13].

20.2.2.1 Gene Ontology (GO)  
and Pathway‐Term Enrichment
To overcome the challenge of providing biological meaning 
and context when dealing with, for example, large‐scale 
gene data from high‐throughput experiments, many 
ontology sources exist in order to capture biological 
information in a meaningful way. The Gene Ontology 
(GO) consortium [15] aims to capture the increasing 
knowledge on gene function in a controlled vocabulary 
applicable to a wide range of organisms. Even though it is 
designated as GO, it represents genes and gene product 
attributes on matters of their associated biological pro-
cesses (BP), cellular components (CC), and molecular 
functions (MF). Between the terms there is a hierarchical 
relationship (parent–child). Due to the complexity of 
hierarchy structure, the terms can be in several different 
levels. The specificity of the terms varies along the tree: 
from very general terms (in first levels of GO) to very 
specific. For a complete view on the studied process, 
several ontology sources should be consulted in order to 
integrate their complementary information. The amount 
of information associated with each source, each indi-
vidual gene, is overwhelming and renders the analysis of 
the relationship between genes and between terms very 
difficult to represent and elucidate. Also, for closely 
related terms, a high degree of redundancy of their asso-
ciated genes exists. In order to perform an improved GO 
analysis, the ClueGO application [16] for Cytoscape was 

developed and allows visualization and integration of 
nonredundant biological terms for large clusters of genes 
in a functionally grouped network. Alongside with the 
analysis of a single gene set list, that is, cluster, ClueGO is 
able to perform comparison of several clusters, illustrating 
the specificity and also the common aspects of their 
functionality by allowing comparison between datasets. 
From the ontology sources used, the terms are selected 
by different filter criteria. Related terms which share 
similar associated genes can be combined in order to 
reduce redundancy [16].

ClueGO is used for the integration and visualization of 
GO and pathway terms sourced from KEGG [17], 
WikiPathways [18], and Reactome [19]. The resultant 
ClueGO network is established based on kappa statistics 
(chance‐corrected measures of agreement), in which the 
kappa coefficient (ranging 0–1) shows the concordance 
on how any given gene and/or gene product pairs share 
similar annotations of terms [16, 20]. The visualization 
of the generated network is driven by the selection of 
the kappa coefficient, in which a high coefficient leads 
to the connections only among closely related terms 
with significant overlap in associated gene products. On 
the other hand, a lower coefficient will allow visualizing 
the connections between less related terms. There are 
several analysis parameters (GO terms/pathway selec-
tion, levels of GO tree interval, kappa score network con-
nectivity, among other statistical and grouping options) 
in ClueGO. Therefore, achieving a compromise between 
the adjustment of these parameters with the associated 
empirical knowledge of the user regarding his samples/
input dataset will promote an enhanced exploration of 
this software tool. In addition, the functionality of this 
application can be expanded by joint analysis with the 
CluePedia application that offers additional information 
on pathways of interest to the user [21].

20.2.2.2 Disease–Gene Associations
The conclusion of the Human Genome Project (HGP) 
led to an unprecedented increase of studies related to 
uncovering the role of genetics in human disorders [22]. 
This event translated in a disparate growth in the  number 
of publications and on the other side a limited and 
slow‐paced biocuration of these newly discovered 
 evidences. Currently, the DisGeNET database [23, 24] 
makes the effort to unify biomedical literature evi-
dence from gene–disease associations, by matching in 
first instance diseases, conditions, and phenotypes 
using a dictionary mapping from the Medical Subjects 
Headings (MeSH) hierarchy for disease classification 
and by the use of the Unified Medical Language System 
(UMLS) metathesaurus [23]. The DisGeNET database 
collects supportive evidence from several public 
resources such as the Online Mendelian Inheritance in 
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Man (OMIM, https://www.ncbi.nlm.nih.gov/omim), the 
Comparative Toxicogenomics Database (CTD, http://
ctdbase.org), Pharmacogenomics Knowledge Base 
(PharmGKB, https://www.pharmgkb.org), the Literature‐
derived Human Gene–Disease Network (LHGDN, 
http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html), 
UniProt/SwissProt, and by gathering text‐mining infor-
mation from the literature in order to rank gene–disease 
associations based on initial queries.

The Cytoscape application with the same database 
denomination—DisGeNET [24] can be used to query 
and analyze a network representation of human gene–
disease associations. The application uses the underlying 
data from the DisGeNET database for the integration of 
gene–disease associations from several biomedical data-
base resources and the generated network can be either 
displayed as gene‐centric or disease‐centric. The explo-
ration of the different data sources and types of associa-
tions available in this application as an initial exploratory 
analysis can be helpful in the elucidation of complex 
human diseases with genetic context. Thus, this applica-
tion can be further used to assist in the prediction of 
unknown gene–disease associations, and in this way 
infer good candidate genes in advance of experimental 
analysis [22].

20.2.2.3 Resolving Molecular Interactions (Protein–Protein 
Interaction, Metabolite–Reaction–Protein–Gene)
Physical interaction networks can show how a set of 
molecules bind to each other, thereby potentially 
revealing a functional association such as cascades in 
metabolic and signaling or of cellular structure and 
ultimately underpin the complex interplay between 
healthy and disease phenotypes [25]. Thus, in this section 
we propose some databases and respective application 
tools for the analysis of PPIs as well as those associated 
with metabolic reactions.

The STRING database [26] available at http://string‐
db.org collects molecular information to cover both 
known and predicted PPIs, which are inferred by physi-
cal and functional interactions. The database source data 
for molecular interactions relies mainly on primary 
interaction databases (e.g., IntAct [27], BioGRID, [28]), 
automatic extraction of information by text mining, from 
co‐expression and high‐throughput experiments, and as 
well derived from computational prediction. The current 
database version 10.0 contains 26 217 572 interactions 
with a confidence score greater than 0.9 for 9 643 763 
proteins from 2 031 organisms. Moreover, the Cytoscape 
version of STRING is more amenable for creating or 
expanding existing networks within the Cytoscape 
framework.

GeneMANIA [29] available as a Cytoscape application 
and as an online version (http://www.genemania.org) 

[30] can be used to assist in gap‐identification and 
gap‐fill approaches due to its capability to predict gene 
function as a quick routine. This application tool identi-
fies the most related genes to a query gene input using a 
guilt‐by‐association approach. Thus, it predicts protein 
function by assessing PPIs between the query protein 
and proteins with well‐established functions [31]. The 
app uses a large database of functional interaction net-
works, indexing 2152 association networks containing 
537 599 442 interactions mapped to 166 084 genes from 
nine organisms (online version on November 2016). 
The GeneMania app tool performs multiple searches 
across several publicly available databases and dissects 
many large‐scale datasets in order to find relationship 
between genes regarding, for example, PPI networks, 
gene co‐expression and co‐localization data, shared 
protein domains, gene–gene interactions, pathway data, 
and prediction of functional associations [29]. In case of 
analysis of large gene set lists, due to a policy of memory 
preallocation for each user in the online version, there is 
a limitation on the number of input genes; therefore, we 
recommend the Cytoscape‐based application instead.

The MetScape 3 application [32] for Cytoscape offers 
the possibility to perform a combined network analysis 
of metabolomic and gene expression profiling datasets. 
Since, it runs under the Cytoscape environment, selec-
tion of sub‐networks and their respective visualization 
and application of custom layouts is possible and as well 
as the entire network functionalities, such as merging 
networks from diverse sources. The list of metabolites 
should have the KEGG compound IDs and genes the 
NCBI Entrez Gene IDs in order to generate the metabolic 
networks. Optionally, for narrowing down the analysis in 
case of dealing with large‐scale datasets, a concept file 
can be uploaded into the app enclosing information 
regarding gene set enrichment analysis (GSEA) of gene 
expression data. The MetScape app integrates data 
sourced originally from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [17] and from the Edinburgh 
human metabolic network (EHMN) [33].

20.2.2.4 Transcription Factor(TF)‐Driven Modules 
and microRNA–Target Regulation
Transcription factor (TF) is a molecule that controls the 
activity of a gene by determining whether the gene’s 
DNA is transcribed into RNA [34]. A compendium on 
nonredundant TF and TF binding sites can be found at 
JASPAR [35] (http://jaspar.genereg.net/). The number 
of human TF ranges from 1500 to 2600, depending on 
source and stringency [34, 36]. Direct analysis of regu-
lated events by TFs is valuable and might shed light on 
hidden elements that conventional pathway analysis 
cannot reveal. However, many TF binding sites and thus 
the corresponding regulated genes are hypothetical since 
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these predictions are not validated by experimental data. 
Therefore, network analysis involving TF elements has 
to be assessed carefully. microRNAs (miRs) exert post-
transcriptional regulation of gene expression by binding 
to the 3′‐untranslated regions (3′‐UTR) of specific 
messenger RNAs (mRNAs) [37] and lead to their degra-
dation and translation repression. Thus, several miRNAs 
regulate gene expression and their role should be scruti-
nized in the context of disease onset and progression.

The CyTargetLinker application [38] for Cytoscape 
extends biological networks by adding interactions 
associated with regulatory elements such as TF–target, 
miRNA–target, or drug–target. The regulatory interaction 
information is sourced from several public databases 
such as ENCODE (including both distal and proximal 
TF data) and TFe for TF–target data; MicroCosm and 
TargetScan for predicted miRNA–target data; miRTar-
Base and miRecords for validated miRNA–target data; 
DrugBank for drug–target interaction data. Then, the 
multisource regulatory data is converted to a supported 
format for Cytoscape in order to create Regulatory 
Interaction Networks (RegINs). The software tool in 
order to perform the linkage to regulatory information 
requires that the network aimed to be extended, contains 
in the network attributes preferably molecular identifiers 
pointing to Ensembl [39], NCBI gene [40], UniProt [41], 
miRBase [42], and DrugBank [43] accession numbers.

Through the use of the CluePedia [21] application for 
Cytoscape, the user can perform miR analysis, matching 
target genes by selecting different database sources, and 
then setting the threshold accuracy for each of them. 
The user can as well add its own list of candidate genes 
and interrogate the application for gene/miRNA enrich-
ments. It generates an miRNA–target network that can 
be reused afterward for inline integration with ClueGO in 
order to uncover associated GO and pathway terms [21].

On the other hand, an online software tool for miR 
analysis is the DIANA‐miRPath v3.0 [44] that allows 
both single and as well as integrative miR analysis of 
experimental data. Association with GO and pathway 
terms and its visualization, for example, in KEGG is also 
possible based on its newly incorporated reverse search 
module feature [44].

20.2.2.5 Pathway Visualization and Mapping
Humans are more amenable to detect differences across 
data comparisons if these are represented in a concrete 
form such as shapes and colors. Thereby, the translation 
of abstract data into diagrams that allows visual repre-
sentation of the detailed steps of BP and concepts is a 
powerful tool to better understand and disseminate 
knowledge [45, 46]. We only discuss in more detail the 
tools for pathway biological data visualization that are 
widely used. A review and comparison of the main tools 

used for visualization and analysis of high‐throughput 
omics molecular data acquisition by exploring networks 
and pathways was performed recently [47].

20.2.2.5.1 PathVisio Mapping
PathVisio [45, 46] is a standalone Java‐based software 
application that allows creation, edition, and visualiza-
tion of pathways, and ultimately leads to the inference of 
relevant pathways based on the results of a permutation 
test using an archive of pre‐existent pathways. The appli-
cation uses the pathway maps from WikiPathways [18] 
and Reactome [19] collections and is able to handle 
several gene, protein, and metabolite database identifiers 
as inputs, which are then cross‐mapped through the 
BridgeDb [48] framework.

20.2.2.5.2 KEGG Mapper
The KEGG [17] is an integrated database resource of 
biological systems that integrates genomic, chemical, 
and systemic functional information. The database has 
several web‐based tools for the analysis of the genome 
and metagenome sequences such as BlastKOALA and 
GhostKOALA, which perform automatic assignments of 
functions at the molecular level to genes using KEGG 
orthology (KO) [49]. In addition, analysis of data result-
ing from other high‐throughput omics technologies can 
be performed, if the user holds a list of molecules of 
interest. Firstly, the list with external molecular identifi-
ers needs to be converted to internal KEGG identifiers 
using the convert ID tool available in KEEG that is able to 
handle UniProt and NCBI‐geneIDs identifiers. The data 
is then mapped into a collection of curated pathways, 
covering metabolism, genetic information processing, 
environmental information processing, cellular processes, 
organismal systems, human disease, and drug develop-
ment using one of the subset tools from KEGG mapper. 
The result is a list with an associated number of pathway 
hits based on the user input, subsequent to the selection of 
the pathway(s) of interest the user can color code (KEGG 
Search&Color Pathway utility) the molecules within for 
the purpose of representing deregulated molecules in a 
pathway across a differential expression dataset.

20.2.2.6 Data Harmonization: Merging and Mapping
The majority of analysis tools require database‐specific 
accession numbers. This means that unique IDs have to be 
converted to other accession numbers compatible with 
specific databases. The UniProt database contains a feature 
to map IDs to other databases (Retrieve/ID mapping, 
http://www.uniprot.org/uploadlists) and BioMart (http://
www.biomart.org) can also be used for ID conversion.

Multiomics datasets might not only contain protein 
and gene data, but also expression profiles of chemical 
 compounds. While it is easy and straightforward to 
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 combine protein/DNA/RNA expression data using com-
mon IDs, this is not the case for chemical compounds 
such as metabolites. However, this kind of data can be 
integrated by using “guilt by association,” or in other 
words, exploiting that metabolites are usually generated 
by enzymes, and a change in metabolites can reflect a 
change in the protein/gene pattern. Nevertheless, this is 
an uncommon technique since it involves currently a 
manual search to identify the potential proteins, and has 
some inherent pitfalls such as uncertainty for which 
enzyme/isoform is responsible for the metabolic change. 
In addition, the same compound could also be used/gen-
erated by several proteins. Therefore, metabolic datasets 
are often treated as separate entities in multiomics stud-
ies, analyzed independently, and integrated only at the 
level of final outcomes/outputs. In order to integrate 
metabolomic data by mapping to proteins/genes, it is 
possible to apply the assumption that a downregulation 
is associated with a downregulation of upstream events, 
whereas an upregulation can be due to a downregulation 
of a  downstream event.

20.2.3 Computational Drug Discovery

Computational drug discovery methods are based on 
bioinformatics and computational biology, which deal 
with the application of computer technology in the 
management of biological information and the modeling 
of BP. These approaches are essential for the elucidation 
of the molecular basis of human diseases and the identi-
fication of novel targets for drug discovery. The integra-
tion of data generated by various methods is performed 
by bioinformatics approaches and has created the 
 discipline of systems biology. Systems biology might 
revolutionize the practice of medicine with respect to 
preventative and personalized health care by analyzing 
diseases using a “graphical network model.” The models 
developed using systems biology aim to mathematically 
or quantitatively describe the differences between dis-
ease‐perturbed protein and gene regulatory networks 
from healthy networks by using multiple temporal and 
spatial parameters of pathway markers. By studying the 
relationships and interactions between various parts of a 
biological system (e.g., metabolic pathways, organelles, 
cells, physiological systems, organisms) by using gene‐
knockout animal models and environmental variables in 
experiments, an overall model of the whole system can 
be developed and analyzed. Moreover, a goal of a systems 
biology modeling approach is to define the dynamic 
behavior of a biological system for the purpose of 
 predicting new components, network links, and their 
behaviors within the system following a perturbation 
event, and comparing the changes in mRNA and protein 
expressions with the standard “healthy” model for 

 disease molecular marker identification. The disease 
molecular markers (such as proteins produced as a 
result of cancer‐specific genes) that are identified using 
this comprehensive systems approach can then become 
templates for disease diagnosis and disease status deter-
mination and vaccine or drug design [50].

20.2.3.1 High‐Throughput Virtual Screening (HTVS)
At the heart of drug discovery is High‐Throughput 
Virtual Screening (HTVS), a rapid computational method 
of evaluating millions of compounds against a specific 
molecular target, for the purpose of ranking the top com-
pounds that may be good potential inhibitors or protein–
protein binding disruptors. HTVS is a rapid protocol for 
molecular docking; molecular docking is a computational 
technique used for predicting whether one molecule will 
bind to another. The structure of the target molecule is 
needed to perform a docking, usually resolved by the use 
of X‐ray crystallography, or not so regularly, nuclear 
magnetic resonance (NMR) spectroscopy and electron 
microscopy. If the three‐dimensional structure of the 
receptor is unavailable, computational methods, such as 
homology modeling, help predict the structure, using 
existing structural templates. A similarity search for the 
primary sequence information of the receptor finds the 
best templates with experimental structural information. 
The structural template is used to provide the backbone 
conformation for the receptor, and the residues mapped 
to this scaffold. The docking software tool requires the 
protein structure (e.g., PDB: Protein Data Bank archive, 
http://www.wwpdb.org) and a library collection with 
putative ligands (e.g., ZINC database, http://zinc.docking.
org). The interdependencies between the search algo-
rithm and the scoring function impacts directly in the 
rate of success of the software.

Most docking software solutions such as the Auto-
Dock4 [51] uses a scoring function or a semi‐empirical 
force field to search through a conformational landscape 
of a ligand in order to calculate the free energy of binding 
to a target site of a macromolecule. The scoring function 
approach based on the estimation of the molecular 
mechanics force fields has stable configurations as input 
and yields a coefficient score representative of the prob-
ability that the binding interaction is favorable, which is 
supported by a low configuration energy. The other 
approach is based on protein–ligand interaction data 
from large databases, such as the Protein Data Bank 
(PDB) archive [52], which evaluates the fit of the config-
urations according to statistical potential.

20.2.3.2 Advantages and Limitations of HTVS
Experimental and computational methods in drug dis-
covery are highly complementary; experimental HTS of 
millions of compounds is expensive and time‐consuming 
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and both the in vitro and the in vivo screening assays can 
generate false positives and false negatives because in 
HTS, the fast speed at which the compounds are tested 
causes misclassification of the compound due to faulty 
assays (false negatives) as inhibition is falsely observed 
or missed. False positives are generated due to the 
compounds’ interference with the assay’s properties, or 
inhibition of poor selectivity. These compounds tend 
to be over represented in the HTS hit list. Various 
experimental assays which rapidly but indirectly probe 
compound binding interactions are excellent triage 
assays in the search for ideal drug molecules; however, 
this process continues with ligand optimization for high 
potency and selectivity, and efficient synthesis. Therefore, 
there is a great advantage in elucidating the mechanism 
of binding and the mode of binding in the receptor 
binding site. A possible experimental method to verify 
the inhibition of the target is to obtain an X‐ray struc-
ture of the complex, with the ligand bound to the target. 
An NMR structure is another possibility; however, it 
can be applied usually to proteins with MW < 30 kDa. 
The Fluorescence Resonance Energy Transfer (FRET) 
method might also be used to monitor protein–ligand 
interactions by fluorescence change. These experimental 
methods are time‐consuming and therefore limited to 
the best candidates. Therefore, in order to minimize the 
size of the chemical libraries involved in experimental 
screening and validation, computational methods are 
essential to rank top chemicals for screening, serving as 
a rapid and cost‐effective triage protocol.

On the other hand, in order to rapidly and accurately 
evaluate millions of molecules, HTVS protocols need to 
balance performance and speed. This is a function of 
the algorithm which runs the scoring function, as well 
as the power of the supercomputer that is running the 
calculation. The scoring function of molecular docking 
programs takes a stable configuration as input and 
returns a number indicating the likelihood that the 
specific configuration represents a favorable binding 
interaction. In order to increase speed, frequently scor-
ing functions sacrifice flexibility of the receptor such 
that enough binding modes are evaluated for the best 
complex conformations. Most scoring functions are 
physics‐based molecular mechanics force fields that 
estimate the energy of the configuration; however, they 
are semi‐empirical which means that they still have 
parameters derived from training sets and these param-
eters of the scoring function should be carefully adjusted, 
and thresholds evaluated to optimize the correlation values. 
Also, these parameters have a substantial influence on 
accurate rankings of highly diverse compound libraries; 
the variability within the drug‐candidate compounds, or 
their drug‐likeness profiles might differ so much that 
there is no visible correlation. In summary, there is no 

standard and ideal HTVS protocol to handle all drug 
discovery approaches; therefore, HTVS protocols need 
to be adapted and the software customized to the 
 specific drug discovery project.

20.3  Chronic Kidney Disease (CKD) 
Case Study

The etiology of CKD is not always known in the first 
instance of the patient diagnosis. However, any condi-
tion, disorder, disease, or chronically administered drug 
that promotes injuries to blood vessels or other primary 
kidney structures can potentially act as a risk factor for 
the development of kidney disease. Thereby the most 
prominent causes of CKD are diabetes and hypertension 
[53]. Nevertheless, other renal co‐morbidities and asso-
ciated risk factors such as acute kidney failure (AKI) and 
glomerulonephritis (GN) can lead to kidney damage and 
consequently to CKD [54].

In order to collect evidence on the molecular traits 
related with CKD, we retrieved gene associations of 
four selected renal disorders using the DisGeNET [23] 
database that integrates gene–disease information 
resulting from text‐mining the literature and several 
database resources. Our search (on November 2016) 
within the DisGeNET database resulted in 186 mole-
cule associations with Chronic Kidney Insufficiency 
(CRI), 606 molecule associations with Diabetic 
Nephropathy (DN), 176 molecule associations with 
Acute Kidney Failure (AKI), and 186 molecule associa-
tions with Glomerulonephritis (GN) (Figure  20.2 and 
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Figure 20.2 Molecular overlap of genes/proteins and microRNAs 
in CRI: Chronic Renal Insufficiency, DN: Diabetic Nephropathy, AKI: 
Acute Kidney Failure, and GN: Glomerulonephritis. Venn diagram 
generated in http://bioinfogp.cnb.csic.es/tools/venny/.
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Table  20.4). Based on data queries of the four clinical 
conditions, we found 18 overlapping genes: IGF1, HGF, 
CCL2, VEGFA, SOS1, IL1B, APOE, PPARG, AGT, IL6, 
TLR4, PARP1, REN, AGTR1, ACE, ALB, CXCL8, and 
TNF (Figure 20.2 and Table 20.4). Using these genes as 
input we can uncover relevant BP and pathways by dis-
playing networks associated with physical molecular 
interactions, gene co‐expression, and consolidated 
molecular pathways with the web‐tool version of 
GeneMania (Figure  20.3). This resulted in a diverse 
array of pathways that appear to be linked with the four 
disorders, briefly the NOD‐like receptor signaling 
(CCL2, IL6, IL8, IL1B, and TNF), the toll‐like receptor 
signaling (TLR4, IL6, IL8, IL1B, and TNF), the renin–
angiotensin system (REN, AGTR1, ACE, and AGT) 
and the cytokine–cytokine receptor interaction 
(VEGFA, HGF, CCL2, IL6, IL8, IL1B, and TNF). The 
network weighting was based on the GO BP that 
seems to point to the association with the inflamma-
tory response (CCL2, IL6, IL8, IL1B, TNF, TLR4, 
APOE, AGT, and AGTR1), one of the three common 
pillars of disease pathogenesis alongside with 
 oxidation and coagulation processes. Although such 

characterizations are simplistic, it is remarkable how 
many conditions appear to involve disturbances of 
these three disease pillars involved at some point in 
the continuum that characterizes their pathogenesis 
(Figure 20.3). Taken together, this confirms and high-
lights the recognized involvement of the innate 
immune system and as well the role of the renin–
angiotensin system associated to progressive renal 
damage. Moreover, cumulative experimental evidence 
seems to support the involvement of both canonical 
and noncanonical NOD‐like receptor and Toll‐like 
receptor signaling pathways in the innate response 
pattern recognition by receptor activation and thereby 
it is associated with kidney inflammatory response in 
AKI and as well with CKD progression [55].

In order to investigate the expression of these mole-
cules in a disease state we used multiomics datasets 
sourced from the iMode‐CKD (URL: http://www.
imodeckd.org/) consortium regarding the FP7 project 
“Clinical and system ‐omics for the identification of the 
Molecular Determinants of established Chronic Kidney 
Disease” and if it is available we provide the link to the 
original publication. The datasets and the respective 

Table 20.4 Overlap of the associated genes in four related kidney diseases (CRI, Chronic Kidney Insufficiency; DN, Diabetic Nephropathy; 
AKI, Acute Kidney Failure; GN, Glomerulonephritis) using data sourced from DisGeNET.

Diseases Total Molecular elements

“AKI,” “CRI,” “DN,” 
and “GN”

18 ACE, IGF1, SOS1, APOE, AGT, PPARG, CXCL8, TLR4, TNF, IL1B, REN, AGTR1, ALB, VEGFA, 
CCL2, HGF, IL6, PARP1

AKI, “CRI,” and “DN” 15 HMOX1, NLRP3, FABP1, KL, HP, VCAN, TP53, HNF1B, CAT, BMP7, KLK1, BMP2, LCN2, EPO, 
FGF23

AKI, “CRI,” and “GN”  3 CRP, ABCB1, IL17A
AKI, “DN,” and “GN” 10 MMP2, EDN1, PPARA, IL10, BCL2, CFH, HLA‐DRB1, MPO, IL18, DCN
CRI, “DN,” and “GN” 12 PON1, TNFRSF11B, MYH9, NOS3, SERPINE1, VCAM1, CCL5, IL1A, ESR1, TGFB1, AGTR2, 

MMP9
AKI and “CRI”  8 SLC33A1, ATF3, CXCL12, CYP3A5, CSRP1, ATM, ADRB2, PPIAP10
AKI and “DN” 28 DECR1, CXCR4, CYBA, PTEN, MBL2, SOD1, HYOU1, MUC1, PIK3CB, SLC22A6, EDNRA, IGF1R, 

HSPA4, HIF1A, SELE, ADAMTS13, SLC22A8, MIR210, SLPI, ADAM10, TIMP2, NOX4, GPX4, TLR2, 
CDKN2A, MIR21, PNPLA2, HMGB1

AKI and “GN”  3 ELANE, IFNG, CFB
CRI and “DN” 47 NR3C2, XDH, KDR, FLT1, SOD2, LEP, GJA1, GSTM1, MTHFR, GFPT2, NPHS2, CDKN1B, MOK, 

CLU, AKR1B1, TRPC6, IL6R, CST3, NANOS3, VASH1, PTH, GLP1R, NFE2L2, MTOR, ATP6AP2, 
HFE, AOC3, RAPGEF5, INSR, DIANPH, UMOD, TCF7L2, AHSG, GH1, SIRT1, IRS2, LMNA, 
APOL1, KEAP1, HAVCR1, CYP24A1, GSTT1, GABPA, CTGF, UCP2, S100A9, DRD1

CRI and “GN”  8 MEFV, CFHR5, NGF, CD59, COL4A3, NOV, P2RX7, ANXA5
DN and “GN” 31 INS, MMP3, AXL, MAPK1, FOXP3, SELL, FAS, SMAD1, ICAM1, LTBP1, NPHS1, FN1, IL1RN, 

PLG, WT1, SELP, STAT3, ADM, CD2AP, SPP1, MIF, NFKB1, ITGB3, BECN1, ANKRD1, GAS6, 
JUN, TIMP1, IGAN1, STAT1, EPHX2

Source: Adapted from Bauer‐Mehren et al. [23] and Pinero et al. [24].
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acquisition omics platforms, cohort sizes, and group 
modifiers are summarized in Table 20.5. The molecu-
lar data used for a further integrative systems biology 
analysis from each omic platform is described in 
Table 20.6.

20.3.1 Dataspace Description: Demographics 
and Omics Platforms Information

20.3.2 Dataspace Description: No. of Associated 
Molecules Per Omics Platform

Since the iMode‐CKD project in the Ghent study evalu-
ates CKD progression by comparing stable (eGFR %slope/
year > −1.5% and <1.5%) patients with progressing 
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Figure 20.3 Molecular network associations of the 18 overlapping molecules from the four selected kidney disorders. The search 
parameters in the online based tool GeneMania were: organism Homo sapiens; Genes input: IGF1, HGF, CCL2, VEGFA, SOS1, IL1B, APOE, 
PPARG, AGT, IL6, TLR4, PARP1, REN, AGTR1, ACE, ALB, IL8, and TNF; Network weighting was based on the Biological process. GeneMania 
online application version 3.5.0.

Table 20.5 Patients with CKD stages II–IV were analyzed.

Clinical information

Cohort No. stable No. progressors Fluid source Platform

GHENT  32 32 Urine PRO
204 23 MET
N/A N/A MIR

Patients were frequency matched for age, sex, baseline eGFR and 
CKD stage. Stable: eGFR %slope/year > −1.5% and <1.5%; progressors: 
eGFR %slope/year >5% and <30%.

Table 20.6 Instance counting of the associated number of features 
per high‐throughput acquisition omic technologies (PRO, 
proteomics; MET, metabolomics; MIR, microRNA transcriptomics) 
after applying each of the statistical criteria thresholds.

Reg. trend

Initial Final Adj.Pvalue FC Up Down

PRO 344 142 <0.05 1.5 34 108
MET 47 47 N/A N/A N/A N/A
MIR 62 20 <0.05 2 17 3

N/A, not applicable; Reg. trend, regulation trend representing 
molecular expression directionality; Adj.Pvalue, adjusted p‐value after 
correction for multiple testing.
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(eGFR %slope/year >5% and <30%) patients, we  compared 
the expression in disease of the 20 most deregulated mole-
cules from the proteomics platform with datasets from 
 several related kidney diseases sourced from the literature 
available in the CKDdb (Figure  20.4). The expression 
 profile of the urinary proteins derived of the Ghent study 
seems to be associated with a vast range of kidney disor-
ders. A group of proteins seems to be consistently upregu-
lated in progressors: vitamin D‐binding protein (GC), 
alpha‐1‐antitrypsin (A1A, SERPINA1), hemopexin (HPX), 
serotransferrin (TF), transthyretin (TTR), anti thrombin‐III 
(AT3, SERPINC1), apolipoprotein A‐I (APOA1), and 
alpha‐2‐macroglobulin (A2M) and they are associated with 
the complement and coagulation cascades (Figure 20.4).

20.3.3 Data Reduction by Principal 
Component Analysis (PCA)

We carried out dimensionality reduction through Principal 
Component Analysis (PCA) (Figures 20.5 and 20.6) using 

Multibase, an Excel add‐in program to enable filtering 
(e.g., outlier’s removal), rearrangement or removal of 
samples based on patterns of molecular expression across 
all the omics datasets. After plotting samples (Figure 20.5) 
and the variables (loadings) (Figure  20.6), we removed 
inconsistent datasets comparisons. We can observe that 
the dataset derived from the Ghent study from the 
iMode‐CKD project and projected on PC1 presents a 
high contrast when compared with diabetes (including 
diabetic nephropathy datasets), literature‐based datasets 
(pulled from the CKDdb database, http://padb.org/
ckddb) that is projected on PC2 (Figure 20.5). This differ-
ence is mainly due to contrasting regulation in the signal‐
regulatory protein beta‐1 (SIRPB1), Ig kappa chain C 
region (IGK, IGKC), prostatic acid phosphatase (ACPP), 
carboxypeptidase N subunit 2 (CPN2), antithrombin‐III 
(AT3, SERPINC1), cadherin‐2 (CDH2), immunoglobulin 
superfamily member 8 (IGSF8), CD9 antigen (CD9), nec-
tin‐1 (PVRL1, NECTIN1), haptoglobin (HP), and leucine‐
rich alpha‐2‐glycoprotein (LRG1) (Figure 20.6).
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Figure 20.4 The 20 most deregulated proteins from the Ghent study are compared across several published studies related with chronic 
kidney disease. The Heatmap displays the hierarchical clustering by average linkage of the Euclidean distances. Morpheus web‐tool 
available at https://software.broadinstitute.org/morpheus. The datasets comparisons were pulled from CKDdb (http://www.padb.org/
ckddb/). The prefix “Exp” is related with the PubMed ID of the experimental study.
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20.3.4 Gene Ontology (GO) and  
Pathway‐Term Clustering

After applying data thresholding (p‐value < 0.05 and 
Fold‐change ≥ 1.5) across the entire dataspace, the 
Cytoscape application ClueGO v.2.2.5 was used to 

identify the associated BP and MF (Table 20.7), taking 
into account overexpressed and underexpressed 
molecules from the CKD comparisons between pro-
gressors and stable patients from the Ghent iMode‐
CKD study (Figure 20.7).
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Figure 20.5 Variables (disorders) view of the Principal Component analysis (PCA) analysis. Both PC1 and PC2 explain 33.9% of the cumulative data 
variation. Two main clusters are formed the Chronic Renal Insufficiency (CRI) highlighted in the box on the PC1 and the Diabetes cluster on PC2.
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Figure 20.6 Loadings (molecules) view of the 
Principal Component analysis (PCA) analysis 
with the top 11 molecules more accountable 
for discriminating within samples.



   Table 20.7    Gene ontology ( GO ,  BP , biological process;  MF , molecular function, performed in the Cytoscape  ClueGO    [16]   app.   

GOTerm

Term PValue corrected 
with Bonferroni 
step‐down

Group PValue 
corrected with 
Bonferroni step‐down

% associated 
genes Cluster Genes cluster 1 Genes cluster 2

% genes 
cluster 1

% genes 
cluster 2

No. of 
genes    

 BP   
Platelet degranulation 17.0E−15 35.0E−18 13.91 Specific for 

cluster 1
[A1BG, A2M, AHSG, 
ALB, APOA1, ORM1, 
ORM2, SERPINA1, 
SERPINA3, TF]

[CD9, CLEC3B, EGF, FGA, 
ISLR, SERPINF2]

62.50 37.50 16  

Acute inflammatory 
response

610.0E−12 35.0E−18 8.86 Specific for 
cluster 1

[A2M, AHSG, HP, 
ORM1, ORM2, 
SERPINA1, SERPINA3, 
SERPINC1, VTN]

[DEFB1, EPHB6, IL6ST, PRCP, 
SERPINF2]

64.29 35.71 14  

Negative regulation of 
coagulation

6.5E−6 7.0E−6 12.28 Specific for 
cluster 2

[VTN] [APOE, CEL, FGA, PROCR, 
SERPINF2, THBD]

14.29 85.71 7  

Acute‐phase response 7.8E−6 35.0E−18 11.86 Specific for 
cluster 1

[AHSG, HP, ORM1, 
ORM2, SERPINA1, 
SERPINA3]

[SERPINF2] 85.71 14.29 7  

Glycosaminoglycan 
catabolic process

13.0E−6 110.0E−6 10.94 Specific for 
cluster 2

[ACAN, CSPG4, GLB1, HEXA, 
HYAL1, PGLYRP1, SDC4]

0.00 100.00 7  

Collagen metabolic 
process

49.0E−6 33.0E−6 7.08 Specific for 
cluster 2

[CEL, COL15A1, COL18A1, 
COL6A1, PDGFRB, RETN, 
SERPINF2, TINAGL1]

0.00 100.00 8  

Negative regulation of 
cell activation

84.0E−6 25.0E−6 5.49 Specific for 
cluster 2

[APOE, AXL, CD300A, CD84, 
CLEC4G, HAVCR2, PGLYRP1, 
THBD, TNFRSF14]

0.00 100.00 9  

 MF   

GOTerm

Term PValue corrected 
with Bonferroni 
step down

Group PValue 
corrected with 
Bonferroni step down

% associated 
genes Cluster Genes cluster 1 Genes cluster 2

%Genes 
cluster 1

%Genes 
cluster 2

Nr. 
Genes  

Serine‐type 
endopeptidase inhibitor 
activity

1.2E−9 1.0E−9 11.11 None 
specific 
cluster

[A2M, AGT, 
SERPINA1, SERPINA3, 
SERPINA7, SERPINC1]

[PEBP1, SERPINA5, SERPINF2, 
SPINT1, SPINT2]

54.55 45.45 11  

Hydrolase activity, acting 
on glycosyl bonds

53.0E−6 53.0E−6 5.56 Specific for 
cluster 2

[AMY2A, AMY2B, GLB1, HEXA, 
HYAL1, MAN1A1, NEU1]

0.00 100.00 7  

Hydrolase activity, 
hydrolyzing O‐glycosyl 
compounds

31.0E−6 53.0E−6 7.14 Specific for 
cluster 2

[AMY2A, AMY2B, GLB1, HEXA, 
HYAL1, MAN1A1, NEU1]

0.00 100.00 7  

Growth factor binding 38.0E−6 28.0E−6 5.93 Specific for 
cluster 2

[A2M, NGFR] [ACVR1B, COL6A1, IGFBP7, 
IL6ST, PDGFRB, VASN]

25.00 75.00 8

  Cluster 1 contains upregulated (FC ≥ 1.5 and  p  value < 0.05) proteins and cluster 2 downregulated (FC ≥ 1.5 and  p  value < 0.05) proteins.  
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In general, the GO and pathway‐term analysis resulted 
in more significant (p‐value corrected Bonferroni step‐
down) functional groups with processes and pathways 
inactivated due to a downregulation of the associated 
molecules (Table 20.7).

The most significant GO term associated with the BP 
was the acute inflammatory response, and it was acti-
vated with all the genes belonging to cluster 1 (Table 20.7); 
A2M, AHSG, HP, ORM1, ORM2, SERPINA1, SERPINA3, 
SERPINC1, and VTN increased in expression. The process 
of granule secretion by the platelet (platelet degranulation) 
involved A1BG, A2M, AHSG, ALB, APOA1, ORM1, 
ORM2, SERPINA1, and SERPINA3; TF was also found 
triggered by the overexpression of the associated genes. 
Concomitantly, the acute‐phase response process was 
found activated with the genes belonging to cluster 1 
(AHSG, HP, ORM1, ORM2, SERPINA1, and SERPINA3) 
being increased in expression. In contrast, the glycosa-
minoglycan catabolic process was inactivated with the 
genes belonging to cluster 2 (ACAN, CSPG4, GLB1, 
HEXA, HYAL1, PGLYRP1, and SDC4) being decreased 
in expression. Moreover, by the analysis of the GO MF, it 
was determined that most of the downregulated proteins 
involved in glycosaminoglycan catabolism are enzymes 
(glycosidases) (Table 20.7).

20.3.5 Interactome Analysis: PPIs 
and Regulatory Interactions

20.3.5.1 Protein–Protein Interactions (PPIs)
Based on the assumption that proteins do not exert their 
functions in isolation, and that they are able to form 
functional clusters by, for example PPIs, it is possible to 
predict relevant BP/signaling pathways and deregulated 
functional modules in disease states.

Therefore, we performed PPI’s network analysis using 
the Cytoscape GeneMania app (Figure  20.8). This 
resulted in 51 network nodes distributed in 8 functional 
network clusters (Figure  20.8), in which the cluster 1 
has albumin (ALB) driving the interconnectivity of 
the nodes within the network and can be referred as a 
network hub.

Isolated nodes and small clusters (with less than two 
molecules bonding) were removed in order to highlight 
only relevant network features. Globally, the cluster 1 
contains 32 nodes with a similar number of up‐ and 
downregulated molecules. The clusters 2 and 3 contain 
globally 5 and 4 nodes, respectively, that present in 
overall a downregulation trend. Clusters 4–8 form only 
clusters of two proteins and in its majority show decreased 
level of expression (Figure 20.8). The most upregulated 
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molecules within the displayed network (Figure 20.8) are 
proteins hemopexin (HPX), transthyretin (TTR), apoli-
poprotein A‐I (APOA1), and the upstream regulatory 
elements miR‐34c‐5p and the miR‐34b‐3p.

20.3.5.2 Regulatory Interactions
Network analysis with regulatory interactions was per-
formed using the CyTargetLinker [38] app for Cytoscape 
in order to uncover miRNA–target, TF–target, or drug–
target interactions and then the generated network was 
merged with the former handling PPIs (Figure  20.8). 
For establishing the upstream interactions, regulatory 
data derived from the Regulatory Interaction Networks 
(RegINs) was used. Based on the essential role of miRNAs 
as posttranscriptional regulators of gene expression, we 
can presume that molecules affected by the same 
upstream factors are expected to display a similar expres-
sion regulation pattern. Thus, similarly modulated genes 
might be affected by the same upstream events.

Here, it was possible to pinpoint potential upstream 
regulators and their targets for the comparison of pro-
gressors with stable patients (Figure 20.8). Focusing on 
the cluster 1, the expression of kallikrein‐1 (KLK1), 
plasma serine protease inhibitor (SERPINA5), siali-
dase‐1 (NEU1), and beta‐galactosidase (GLB1) are regu-
lated by miR‐34c‐5p and miR‐34b‐3p, respectively. The 
C‐type lectin domain family 4 member G (CLEC4G) and 
resistin (RETN) expression are upstream regulated by 
miR‐145‐5p; the tumor necrosis factor receptor super-
family member 14 (TNFRSF14) expression is being regu-
lated by miR‐449b‐5p. Regarding the cluster 3, expression 
of cadherin‐2 (CDH2) and the receptor‐type tyrosine‐
protein phosphatase gamma (PTPRG) are both regulated 
by the miR‐369‐3p (Figure 20.8).

20.3.6 Interactome Analysis: Metabolic Reactions

The following data were used as input in the MetScape 
[32] Cytoscape application: the NCBI gene IDs, the 
metabolites KEGG IDs, and a file containing information 
regarding the gene set enrichment analysis (GSEA) from 
gene expression data. After selection of the suitable sta-
tistical and fold‐change (FC) thresholds, here metabo-
lite FC ≥ 1.1 and gene/protein FC ≥ 1.5 and for both an 
overall p‐value < 0.05 we can visualize metabolic network 
associating, for example, a complete view over gene–
enzyme–reaction–metabolite (Figure  20.9). In this 
example, with data sourced from the iMode‐CKD pro-
ject (Ghent study) we can observe the representation of 
decreased urinary levels of the putative gamma‐gluta-
myltranspeptidase 3 (GGT3, GGT3P) (Figure  20.9a), 
platelet‐derived growth factor receptor beta (PDGFRB), 
ephrin type‐B receptor 6 (EPHB6), receptor‐type tyros-
ine‐protein phosphatase gamma (PTPRG) (Figure 20.9b), 

prostatic acid phosphatase (ACPP), lysosomal acid phos-
phatase (ACP2) (Figure 20.9c), activin receptor type‐1B 
(ACVR1B) (Figure 20.9d) and increased levels of cerulo-
plasmin (CP) (Figure  20.9e). In the subnetwork meta-
bolic cluster (Figure  20.9a), we can observe decreased 
levels of the enzyme gamma‐glutamyltransferase (EC 
2.3.2.2) encoded by CGT3 and the earlier is known by its 
transferase activity, being able to transfer gamma‐glutamyl 
functional groups from donor molecules to acceptors. 
Here, gamma‐glutamyltransferase is involved in the 
reactions R01687 and RE1473 (KEGG reactions data-
base, http://www.genome.jp/kegg/reaction) having taurine 
and l‐alanine (showing decreased levels in patients of 
the CKD progressors group, when compared to the 
stable group) as acceptors of gamma‐glutamyl functional 
groups, forming 5‐l‐glutamyl‐taurine and gamma‐l‐
glutamyl‐l‐alanine, respectively (Figure 20.9a). Published 
studies report an association of decreased concentration 
for urinary l‐alanine and taurine compounds in patients 
with primary focal segmental glomerulosclerosis (FSGS) 
[56, 57] and a decrease of urinary taurine in patients with 
advanced‐stage of CKD [58].

20.4  Final Remarks

Integration of multidimensional data derived from omics 
profiles at a systems level with the currently available 
bioinformatics tools and database resources is not straight-
forward. It is challenging to correlate variations of the 
metabolite concentration with deregulated protein levels 
inferred from transcriptomics or proteomics data. It is 
also necessary to consider the epigenetic regulation of 
gene expression, elements associated with transcription 
regulation, posttranslational modifications (PTMs), and 
the interplay of protein degradation mediated by proteases 
and the ubiquitin–proteasome pathway. Thus, it would be 
possible to improve the current knowledge on the cross‐
talk between the molecular/cellular environments and the 
disease pathophysiology by a systems‐level approach.
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21.1  Introduction

Bladder cancer (BC) is ranked second for incidence 
and mortality among cancers of the genitourinary 
 system. Approximately 75% of patients experience non–
muscle‐invasive BC (NMIBC, cancer cells are confined 
to mucosa or submucosa) at the time of diagnosis, 
whereas the remaining 25% of cases exhibit muscle‐
invasive disease (MIBC, cancer cells have spread into 
muscle layer) [1]. Patients suffering from NMIBC have 
a high probability of disease recurrence and progres-
sion, with the probability of recurrence within 5 years’ 
time to range from 31 to 78% and the probability of 
progression within 5 years’ time to range from 0.8 to 
45%, respectively [2]. Muscle invasion and metastasis 
result in poor prognosis, with reported 5‐year survival 
rates to be between 46 and 63% for MIBC and decreas-
ing to 15% for metastasized cancer cases (Table 21.1). 
The increased mortality as cancer progresses is attrib-
uted to the limited treatment options that are currently 
available, as also illustrated in Table  21.1. The treat-
ment of choice for MIBC is total bladder resection, 
also known as radical cystectomy (RC), whereas for 
NMIBC transurethral resection of bladder tumor 
(TURBT) is applied, combined with either intravesical 
Bacillus Calmette–Guerin (BCG) or chemotherapy 
(mitomycin C, epirubicin, doxorubicin) instillation 
according to its risk profile. However, approximately 
40% of BC patients are frequently not responsive to 
BCG therapy, as defined by the detection of muscle 

invasive disease, high‐grade papillary tumors, and/or 
CIS lesions (carcinoma in situ), or by the presence of 
serious side effects that would impede treatment [3]. 
However, patients that progress to MIBC after BCG 
frequently show poorer prognosis than those with 
 primary diagnosed stage‐matched MIBC (with the 
3 years’ disease‐specific survival rate to be reported at 
37% in comparison to 67%) [4, 5]. Upon BCG failure, 
RC or palliative TURBT are the preferred options [3]. 
In addition to surgical intervention, several potentially 
useful drugs are being applied, targeting different 
molecular pathways. In clinical trials for drugs, find-
ings for predicting treatment response have been 
found to be inconsistent, indicating for the most part 
significant but moderate, patient benefit [6–9]. There 
is accumulating evidence indicating that the high 
 heterogeneity of bladder tumors may significantly 
affect the efficacy of the tested drugs. In an effort to 
improve on patient outcome, extensive research has 
been undertaken to address early detection of incident 
and recurrent disease along with earlier and more per-
sonalized therapeutic intervention guided by the 
tumor’s molecular profile.

In this chapter, a comprehensive description of the BC 
pathology along with the associated clinical challenges is 
provided. Driven by the clinical needs and considering 
the high disease heterogeneity, the research progress 
made over the last years, focusing on the application of 
state‐of‐the art ‐omics approaches and systems medicine 
is summarized.
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21.2  Bladder Cancer Pathology 
and Clinical Needs

21.2.1 Epidemiological Facts 
and Histological Classification

BC is the most common malignancy of the urinary 
tract, the ninth most commonly diagnosed cancer 
worldwide, and the fifth most common in Western 
countries [10]. According to the data of cancer incidence 
and mortality estimates for 2012, there is an estimation 
of 429 000 newly diagnosed BC cases and 165 000 BC‐
related deaths in 2012 worldwide [10]. The age‐stand-
ardized disease rate is highest in northern America, 
European countries, and northern Africa, whereas it is 
lowest in middle Africa, South America, and South and 
East Asia [11]. In Europe, BC is the fifth most common 
cancer with age‐standardized rates of 14.4 per 100 000 
cases, in both sexes [12]. Importantly, as life expectancy 
is increasing in Europe, the annual incidence of BC is 
projected to reach 164 500 by 2030 [13]. Although BC is 
more commonly seen in males with a median male‐to‐
female ratio of 3.05 (incidence rates of 26.9 for men and 
5.3 for women per 100.000 EU cases [12]), females, 
especially younger ones, are more frequently diagnosed 
with advanced stage BC when compared to males in the 
same age group [14].

Smoking is the main risk factor, which accounts for 
approximately half of all BC cases [15]. Other risk factors 
include the exposure to polycyclic aromatic hydrocar-
bons, aromatic amines, and chlorinated hydrocarbons, 
which are often used in dye, metal, and petroleum indus-
tries [15].

BC is also categorized into two morphological sub-
types: (i) flat and (ii) papillary carcinomas. Flat carcino-
mas (carcinoma in situ (CIS)) appear as a flat lesion that 
is limited to the inner layer of the bladder lining (transi-
tional epithelium), whereas the structure of the papillary 
tumors resemble a “cauliflower” (i.e., projection of the 
transitional epithelium into the lumen of the bladder). In 
the absence of timely treatment, both these lesions can 
result in the development of muscle‐invasive disease.

Currently, the treatment choice is based on the 
assessment of the tumor stage using The Tumor‐Node‐
Metastasis (TNM) classification system. The following 
factors are considered: (i) size of the tumor and level of 
infiltration into bladder wall (T, tumor, with the range 
from T0 to T4; for patients with NMIBC—stages Ta, 
CIS, T1 and for patients with muscle‐invasive diseases—
stages T2, T3, T4), (ii) number of affected lymph nodes 
(N, nodes), and (iii) presence of metastasis to other parts 
of the body (M, metastasis).

21.2.2 Current Diagnostic Means

In order to diagnose BC, patients are subjected to both 
cystoscopy and voided urinary cytology. Cystoscopy is 
applied for the visual examination of the interior of 
the bladder. One variant of this approach is fluores-
cence‐guided cystoscopy (called blue light cystoscopy). 
Collection of the tissue specimens is performed during 
a subsequent TURBT. Based on the histopathological 
examination of the collected tissue specimens, the extent 
of tumor invasion and tumor grade are assessed. Overall, 
patients with BC, especially those with low‐grade tumors 
(characterized as well‐differentiated) have a more favorable 

Table 21.1 Current treatment modalities across the bladder cancer disease development and progression.

Nonmuscle‐invasive Muscle‐invasive Metastatic

Stage Ta/CIS T1 T2 T3/T4 M+
Survival 
(5 years)

98% 88% 63% 46% 15%

Treatment Transurethral resection 
(TURBT) ± intravesical

Radical cystectomy Palliative therapy

BCG or chemotherapy 
(Mitomycin C, epirubicin, 
doxorubicin)

±Chemotheraphy 
(methotrexate, vinblastine, 
adriamycin and epirubicin, 
or cisplatin + gemcitabine)

Cystectomy (partial/
radical)

TURBT ± chemotherapy 
+ radiotherapy

Chemotherapy

Clinical 
trials

Anti‐PD‐L1 Anti‐PD‐L1 Anti‐PD‐L1, anti‐CTLA‐4, 
anti‐FGFR, cell‐cycle 
checkpoint inhibitors

CIS, carcinoma in situ; CTLA‐4, cytotoxic T‐lymphocyte‐associated protein 4; FGFR, fibroblast growth factor receptor; PD‐L1, programmed 
death‐ligand 1; TURBT, transurethral resection of the bladder tumor.
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disease outcome; while patients with high‐grade tumors 
(undifferentiated growths) have poor prognosis and their 
tumors are likely to spread beyond the bladder wall. 
However, due to the invasive nature of the examination, 
patient compliance is usually limited. Of note, detection 
of flat tumors is considered challenging, even for 
highly competent urologists. Moreover, regarding the 
biopsy results, the correct examination of the tissue is 
highly dependent on the experience of the pathologist. 
Usually, cystoscopic examination is assisted by voided 
urinary cytology analysis (i.e., assessment of the cells in 
urine samples). Recently, some noninvasive urinary tests 
have been developed as an alternative. Tumor size and 
the extent of the spread of the tumor cells into the body 
(lymph nodes and distant organs) is determined using 
imaging techniques. Intravenous or retrograde pyelog-
raphy is initially applied. Specifically, retrograde pye-
lography is performed in cases of suspected allergy to 
venous contrast agents. However, CIS is very frequently 
not detectable when using these tools, requiring further 
confirmation with endoscopic biopsy. To date, computed 
tomography (CT) urogram and abdominal CT (when 
combined with needle biopsy) appears to be the optimal 
approach to assess the cancer dissemination to nearby 
and distant organs. Along these lines, abdominal and 
pelvic magnetic resonance imaging (MRI) is an alterna-
tive solution. In the case of advanced stage disease, lung 
metastasis can be assessed by using chest radiography, 
while bone metastasis may be detected with bone 
scintigraphy.

21.2.3 Treatment Options

The selection of the optimal treatment scheme depends 
on the type of the tumor, its clinico‐pathological charac-
teristics (stage, grade, foci number, and the level of tumor 
infiltration into the bladder wall), as well as presence of 
metastasis and the general health condition of a patient. 
In the case of NMIBC, TURBT is the first‐line treatment 
option. TURBT relies on the removal of tumor during 
cystoscopy by a resectoscope. When muscle‐invasive 
disease is diagnosed, patients are treated with RC 
together with the dissection of lymph nodes, based on 
the level of tumor infiltration to nearby structures and 
organs. The available adjuvant intravesical therapies 
include immunotherapy and chemotherapy. Specifically, 
patients suffering from early‐stage BC that undergo 
TURBT are frequently treated with intravesical immu-
notherapy with BCG. Moreover, adjuvant intravesical 
chemotherapy using mitomycin C, epirubicin, or doxo-
rubicin can be also considered. In the case of patients 
with advanced BC, systemic (intravenous) administra-
tion of chemotherapeutic agents is required. In addi-
tion, neoadjuvant treatment is preferable prior to RC. 

Clinical trials in patients with node‐negative MIBC (N0) 
demonstrated a benefit associated to the use of MVAC 
chemotherapy (MVAC abbreviation stands for the drugs 
applied in treatment of BC: Methotrexate, Vinblastine, 
Doxorubicin, and Cisplatin) or gemcitabine and cisplatin 
prior to RC, in comparison to those who underwent RC 
alone [16]. For treatment prediction to neoadjuvant 
therapy prior to RC, gene expression profiles have been 
already assessed for their predictive ability [17, 18]. When 
managing patients with recurrent cancer, surgery (with 
or without chemotherapy and targeted therapy with bio-
logic agents) or combination chemotherapy is advised.

21.2.4 Recurrence and Progression

High recurrence and progression rates place a heavy 
burden on patients with BC. Currently, the risk of recur-
rence and progression for patients with NMIBC is based 
on the system established by the European Organization 
for Research and Treatment of Cancer Genito‐Urinary 
Cancer Group (EORTC–GUCG) [2]. This includes a scor-
ing system and the risk tables, established based on the 
analysis of 2596 patients diagnosed with NMIBC (stages 
Ta and T1). The scoring system accounts for several 
factors including: (i) number of tumors, (ii) tumor size, 
(iii) prior recurrence rate, (iv) tumor stage, (v) grade, and 
(vi) presence of concurrent CIS. The final score is then 
used to assign the patient to a specific category and allows 
to calculate the probability of recurrence and progression 
at 1 year and 5 years [2]. According to the EORTC system, 
NMIBC is categorized into three risk groups including 
low‐, intermediate‐ and high‐risk. Low‐risk tumors have 
characteristics of primary and solitary tumors with Ta 
stage, low‐grade (or grade (G)1) and size <3 cm without 
concomitant CIS. Tumors with any of the characteristics 
of T1 stage, high‐grade (or G3), concomitant CIS or 
multiple, recurrent and large (>3 cm) Ta G1–G2 tumors 
are categorized as high‐risk. Intermediate‐risk tumors 
consist of all tumors that are not defined in these two cat-
egories. Currently, specific treatment recommendations 
have been defined for these three groups [3]. Patients clas-
sified to the low‐risk group are characterized by a reduced 
risk of disease progression and a low to moderate risk of 
recurrence, whereas patients that fall into the intermedi-
ate‐ and high‐risk group have an increased risk for disease 
recurrence and a moderate to high risk for progression to 
MIBC. Based on the current treatment options, patients 
belonging to the low‐risk group have good prognosis, 
whereas patients with intermediate‐ and high‐risk NMIBC 
have less‐favorable prognosis [3].

In addition, understaging of 35–62% Ta/T1 tumors 
based upon a large cystectomy series is reported [19–21]. 
Other studies indicate that second TURBT identifies 
that 24–49% of T2 tumors had been diagnosed initially 
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as non–muscle‐invasive tumors [22, 23]. Progression to 
MIBC significantly decreases cancer‐specific survival 
(CSS). In a review of 19 trials and 3088 patients, CSS 
after progression to MIBC from NMIBC was 35% after a 
median follow‐up of 48–123 months, which was signifi-
cantly worse compared to that of patients with MIBC 
without a history of NMIBC [5].

21.2.5 Molecular Classification

Insufficiency of the current scoring systems that are 
solely based on clinical and pathological variables may 
be in part attributed to the intrinsic heterogeneity of 
BC at the molecular level. Molecular research has 
revealed two genetically distinct pathways, based on 
which BC develops into the papillary and flat/nonpapil-
lary forms [24, 25]. The papillary BC form histologically 
refers to the NMIBC cases that develop via urothelial 
hyperplasia and are associated with disruption on the 
PI3K‐AKT‐mTOR pathway and additional mutations in 
the FGFR3 and HRAS genes [26]. On the contrary, 
aggressive nonpapillary MIBC disease can be devel-
oped via flat dysplasia and CIS. MIBC tumors, derived 
from CIS, are characterized by genetic alterations in 
tumor suppressor genes that regulate cell cycle and 
apoptosis (TP53, CDKN2A, CCND1, CDKN1B and 
RB1) [26]. This genetic characterization in part explains 
the BC heterogeneity and the different evolution of 
the two BC types tumor [25]. However, recent omics 

studies support additional classification of BC tumors 
within the MIBC and NMIBC types [27–29].

21.2.6 Biomarkers for Bladder Cancer

Up to date, white light cystoscopy and voided urinary 
cytology consist of the typical diagnostic and monitoring 
means in BC. Apart from being an invasive procedure, 
cystoscopy frequently misses high‐risk CIS tumors. In a 
meta‐analysis performed by Mowatt et al. [30] in a total 
of 27 studies including 2949 patients, sensitivity of 
white light cystoscopy was reported to be 71% (49–93%, 
95% CI) while specificity was 72% (47–96%, 95% CI). 
Sensitivity levels are pronounced for detecting less 
aggressive low‐risk tumors (95%), while it decreases for 
more aggressive high‐risk tumors (67%). Another option, 
so called photodynamic diagnostic (PDD), was also eval-
uated as an alternative to increase the tumor detection, 
and indeed exhibits increased sensitivity of 93% (80–100%, 
95% CI) but decreased specificity of 57% (36–79%, 95% 
CI). In the case of the cytological examination, an average 
sensitivity of 44% and specificity of 99% were reported in 
the meta‐analysis by Mowatt et al. [30].

In an effort to reduce the number of cystoscopies, 
noninvasive biomarkers have been proposed as an alter-
native. An overview of biomarker classification system 
along with the examples of Food and Drug Administration 
(FDA)‐approved biomarker‐based assays available for 
BC are outlined in Box 21.1.

Box 21.1 Biomarker Classification

Definition:

 ● Biomarker—Single feature associated with specific con-
dition, detectable in biological fluids or tissues.

 ● Biomarker profile—Combination of individual markers 
by an established algorithm providing with the output 
associated with the specific condition.

Type of  biomarkers and  examples approved for  clinical 
application:

 ● Early detection—Utilized for evaluation of the patients 
susceptible to risk factors or exhibiting some disease 
symptoms.
Approved for clinical application: BladderChek (Matritech, 
Newton, MA)

 ● Diagnostic biomarker—Applicable for detection and 
identification of particular type of cancer.
Approved for clinical application: BTA stat, BTA TRAK, 
NMP22, Immunocyt, UroVision

 ● Prognostic biomarker—Used for prediction of the 
course of disease including recurrence or progression.
Approved for clinical application: N/A

 ● Predictive biomarker—Evaluation of response to 
treatment before starting therapy. Enables patient 
 categorization into responders and nonresponders. To 
the best of our knowledge, this type of biomarker is 
not currently in use.
Approved for clinical application: N/A

 ● Surrogate endpoint—Replace a clinical endpoint and 
measurement of clinical benefits and harms.
Approved for clinical application: N/A

Type of biomarkers measurements:

 ● Binary—Evaluation of specific condition based on their 
presence or absence; for example, positive/negative.

 ● Categorical—Assessment of specific condition based on 
defined categories; for example, low/medium/high 
immunoreactivity (IHC‐based studies).

 ● Quantitative—Categorize the specific condition based 
on the precise expression level of the protein (applicable 
in measurements in body fluids).

 ● Multidimensional—Examination of specific condition 
based on the molecular signature; for example, proteomic 
signature or peptide profile.
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For almost 20 years now, several urinary‐based 
biomarker tests have been approved by the FDA. These 
include (i) immunoassays to detect urinary proteins such 
as BC‐associated antigen (BTA TRAK, BTA stat) and 
nuclear matrix protein NMP22 (ELISA and point of care 
test), (ii) immunocytofluorescence‐based test, namely 
ImmunoCyt, and (iii) fluorescence in situ hybridization 
based assay (UroVysion assay). The intended use of the 
biomarkers is, according to the FDA, for either diagnosis 
or monitoring recurrence, always in conjunction with 
standard diagnostic procedures. The performance of 
each test, as summarized in the meta‐analysis of 71 stud-
ies (3321 patients), indicate the highest sensitivity for 
ImmunoCyt assay [30]. However, urine cytology achieves 
the highest specificity levels. In particular, the ImmunoCyt 
assay was characterized by a sensitivity of 84% (77–91%; 
95% CI) and a specificity of 75% (68–83%; 95% CI). FISH 
test presented with a sensitivity and specificity of 76% 
(65–84%; 95% CI) and 85% (78–92%; 95% CI), respec-
tively, whereas for NMP22 the sensitivity was estimated 
at 68% (62–74%; 95% CI) and the specificity at 79% (74–
84%; 95% CI) [30]. Although the performance of these 
biomarkers is not adequate to replace cystoscopy, a 
combination of the biomarkers resulted in an improved 
sensitivity value. Combination of cytology and NMP22 
resulted in 63% sensitivity and 84% specificity, compared 
to 48% sensitivity and 86% specificity of cytology alone 
[31]. For high‐grade tumors, the sensitivity was reported 
to be 94%, while for low‐grade tumors it was 31%. 
Combination of cytology and BTA stat on the other 
hand had 73% sensitivity (with 91% sensitivity reported 
for high‐grade and 42% for low‐grade) [31]. Finally, cytol-
ogy when applied with ImmunoCyt resulted in 65% sensi-
tivity and 78% specificity (90% sensitivity was reported 
for high‐grade and 50% for low‐grade) [31]. Even though 
these tests were approved by the FDA, their incorpora-
tion into the clinical management of BC is still pending, 
indicating that there is room for improvement. There is a 
growing number of studies supporting the use of molecu-
lar markers to screen patients with low‐risk disease and 
predict tumor progression in high‐risk patients. In addi-
tion, biomarkers can also serve as a companion/comple-
mentary tool to guide the therapeutic decision‐making 
through discrimination of the patients to those that are 
likely to respond to a therapy and nonresponders. In 
 conclusion, noninvasive biomarkers could be used as a 
companion test to currently available means for disease 
diagnosis or follow‐up (detection of disease recurrence 
and/or progression).

21.2.7 Considerations on Patient Management

In a recent paper evaluating the economic burden of BC 
in Europe, it was estimated that the associated healthcare 
costs for BC reached €2.87 billion in 2012, accounting for 

5% of the total cancer health expenditure [32]. This 
number increased to €4.9 billion when productivity 
losses (due to morbidity and mortality) and informal care 
costs were also considered. Particularly, NMIBC is 
becoming a very expensive disease to manage, as NMIBC 
patients undergo life‐long surveillance. Cystoscopies and 
TURBT procedures together constitute 53% of all BC‐
related costs in Northern European countries [33], while 
it has been estimated that monitoring of patients with 
BC covers for approximately 75% of postdiagnostic costs 
(i.e., surgery‐related complications, annual examina-
tions, diagnostic and laboratory testing). Moreover, the 
overall treatment costs increase upon disease progression. 
Specifically, the costs associated with the management of 
MIBC patients are three times higher in comparison to 
patients with NMIBC. Therefore, timely diagnosis of 
primary and recurrent cancer followed by earlier inter-
vention are both crucial factors for decreasing the risk 
of progression and subsequently reducing the BC‐asso-
ciated costs.

21.2.8 Defining the Disease‐Associated 
Clinical Needs

The intrinsic clinical features of BC, high recurrence, 
and progression rates mandate continuous patient 
monitoring. Considering the drawbacks of the current 
diagnostic and monitoring procedures, new biomarker 
tests are needed for timely diagnosis and/or surveil-
lance. Also, as BC progresses, it becomes increasingly 
difficult to treat, as the therapeutic options are limited 
or the patients present with increased variability in 
their response. The high disease heterogeneity is 
therefore responsible for the limited response to cur-
rent treatments. Means to stratify patients for drug 
development as well as monitoring tools to predict the 
response to  therapy is the new research and clinical 
focus in BC. In each case, the clinically valid biomark-
ers apart from targeting a specific clinical context of 
use, should clearly demonstrate an added value over 
the stage‐of‐the‐art. The clinical needs for BC as well 
as several targeted clinical contexts are summarized 
in Figure 21.1.

21.3  Systems Medicine in Bladder Cancer

Systems medicine refers to cross‐disciplinary and inno-
vative approaches that emphasize the translational value 
of research (i.e., combination of clinical applicability and 
biological relevance of findings) (Figure 21.2). Through 
the analysis of ‐omics datasets by using systems biology 
approaches, researchers aim to analyze BC at the molec-
ular level, and particularly to decipher molecular key 
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elements implicated in BC invasion. The concept gener-
ally refers to the combination/cross‐correlation of high 
dimensional ‐omics (genomics/transcriptomics/prot-
eomics, etc.) datasets and their interpretation by appro-
priately powered bioinformatics software and tools. 
Based on this knowledge, the desired aim is to tailor 
therapeutic approaches for BC by: (i) generating specific 
disease models and indicating novel potential drug 
 targets and (ii) rendering risk profiles for treatment 
response. Moreover, based on the multilevel integration 
of the ‐omics results, more accurate diagnostic and/or 
prognostic biomarkers are expected to be established in 
order to support disease diagnosis and monitoring of 
recurrence, as well as patient stratification to assist clini-
cal trials for appropriate drug testing and development.

The ‐omics datasets in combination with computational 
systems biology methodologies can provide information 
about the molecular changes occurring in BC and iden-
tify molecular targets at an individual level. Over the 
last 5 years, after the first genetic sequencing of BC 
tumor specimens [34], there has been rapid increase in 
data derived from whole genome sequencing [35], exome 
BC sequencing [36], and transcriptomics data [28]. 
Importantly, regarding the field of proteomics, devel-
opments in mass spectrometry instrumentation and 
bioinformatics software now enable high‐throughput 
proteomics analysis [37]. To better exemplify the possi-
bilities offered by the ‐omics technologies as well as their 
implication on the management of BC patients, most 
representative studies published over the last 5 years are 
presented. The literature review criteria are presented in 
Table 21.2. Studies were shortlisted based on the number 
of citations (at least 10 citations per year), with an excep-
tion for studies published in 2016.

21.3.1 Omics Datasets for Biomarker Research

The main research applications are summarized below, 
categorized based on their intended clinical context of 
use in: (i) diagnostic biomarkers for disease detection/
monitoring, (ii) prognostic signatures, (iii) predictive 
molecular profiles, and (iv) features for molecular 
subclassification.

21.3.1.1 Diagnostic Biomarkers for Disease 
Detection/Monitoring
To date, numerous studies have been conducted to 
develop noninvasive biomarker‐based test to improve on 
the diagnosis of primary and recurrent/relapsed BC. 
Application of both proteomics and genomics profiling 
have been advocated. Regarding the proteomics advances 
in the BC field, recently, high‐resolution capillary elec-
trophoresis coupled to mass spectrometry (CE‐MS) was 
applied to investigate the urinary proteome profile of BC 

patients and urological controls (total n = 1357) [38]. 
Two multimarker panels were established using support 
vector machine algorithms, aiming at detection of 
primary (n = 721) and relapsed BC (n = 636). A biomarker 
panel to detect the primary disease was comprised of 116 
differentially excreted peptides between patients with 
primary BC and urological controls, while a biomarker 
panel targeting to identify recurrent disease, included 
106 differentially excreted peptides between patients 
with relapsed BC and patients negative for recurrence 
(disease free interval of at least 1 year). Upon validation 
in the independent cohort (total n = 481), an accuracy of 
87 and 75% was reported for detecting primary and 
relapsed BC. For the former panel, sensitivity of 91% and 
specificity of 68% were achieved, while for the latter 
panel sensitivity of 87% and specificity of 51% were 
obtained. Importantly, combination of urinary biomark-
ers with cytology increased the accuracy for detecting 
disease relapse (87%) [38]. In another study, Chen et al. 
performed a targeted proteomics analysis using LC‐
MRM/MS, aiming at the validation of previously discov-
ered biomarkers for BC [39]. Protein concentration was 
measured in 156 urine samples collected from patients 
with BC, hernia, and urinary tract infection/hematuria. 
Emphasis was placed on the investigation of 63 proteins 

Table 21.2 Overview of the literature review including the search 
criteria and the results obtained.

Search criteria

Search 
engine

Web of Science

Resources Web of Science Core Collection
Search 
terms

Topic: (“omic*” or “proteom*” or “transcriptom*” 
or “genom*” or “metabolom”* or “signature*” or 
“systems biology” or “systems medicine”) AND 
Topic: (“bladder ca*” or “urothelial ca*” or 
“transitional cell*”) AND Topic: (“drug” or 
“therap*” or “biomarker*” or “predict*” or “dignos*” 
or “prognos*”)

Time span 2012–2016

Results

Year
No. 
manuscripts

No. original 
articles

No. articles 
(citation threshold)

2012 119  86 14 (>40×)
2013 149 112 16 (>30×)
2014 176 140 27 (>20×)
2015 202 154 12 (>10×)
2016 146 120 N/A

*Denotes that the end of the word can vary so that the search is broad.
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that are usually detected in plasma samples. Urinary levels 
of 12 proteins were found to be increased in patients 
with BC in comparison to both control groups, indicat-
ing the potential diagnostic utility. As a result of this 
study, a six‐biomarker based panel was established and 
allowed for discrimination between patients with BC and 
noncancerous control (diagnostic accuracy of 81%) [39].

In parallel, numerous biomarker‐based panels have 
already been established using gene expression profiling 
datasets of urine and tissue samples. The performance of 
four‐gene expression signatures was validated in the 
course of a multicenter, prospective blinded study [40]. 
A total of 789 urine samples were collected, out of which 
525 were successfully analyzed using TaqMan gene 
expression arrays. All four panels exhibited a good 
diagnostic performance in the range of 90–92%. The 
highest diagnostic accuracy was obtained for the two‐
gene–based signature (namely GS_D2; AUC of 0.918, 
sensitivity of 81.48% and specificity of 91.26%). Of note, 
the diagnostic accuracy was associated with the size of 
the tumor (p = 0.008), while the number of tumors had 
no impact on the diagnostic accuracy [40]. In another 
study, as published by van der Heijden et al., 21 tumor 
samples from patients with progressive and nonprogres-
sive T1G3 BC were analyzed using Illumina microarrays, 
aiming at the development of a gene signature to identify 
BC patients with a high risk of progression [41]. A total 
of 1294 genes were found to be differentially expressed 
between patients with nonprogressive and progressive 
BC. Ninety‐four of these features were subsequently 
 validated in the independent set of samples using qPCR 
(n = 75), confirming the differential expression of 15 
genes. A five‐gene–based signature enabled to discrim-
inate between patients with progressive disease from 
nonprogressive BC with an AUC of 0.83 (sensitivity of 
79%, specificity of 86%) [41].

Interestingly, a growing number of evidence is now 
collected to also support the diagnostic value of micro-
RNA in the context of BC. Recently, in a meta‐analysis by 
Zheng et al. [42], the potential of microRNA to diagnose 
MIBC was evaluated. In this meta‐analysis, a total of 
10 studies were assessed (total n = 989) [42]. Urinary 
(miR‐124), blood (e.g., miR‐200b, miR‐541, miR‐566, 
miR‐543, miR‐544, and others), and tissue (e.g., miR‐100, 
miR‐125b, miR‐199b, miR‐222, and others) microRNAs 
were investigated. Random‐effect model was applied to 
assess the diagnostic performance of single and multiple 
miRNAs among the studies included in the meta‐analysis. 
Forest plot analysis was performed to assess the mean 
values of the sensitivity and specificity per sub‐group 
and study. Furthermore, a summary receiver operator 
characteristic (SROC) curve was conducted and resulted 
in a pooled AUC value of 0.80, with estimated overall 
sensitivity of 78% and overall specificity of 77% [42]. 

The results from the meta‐analysis supported the 
 further validation of the use of microRNAs for MIBC 
diagnosis.

Another analysis of urinary microRNA in a cohort of 
131 patients (81/50 patients in discovery/validation set), 
aiming to improve the detection of BC recurrence was 
performed [43]. Based on the literature review, 12 micro-
RNAs were selected for further investigation. Highest 
differentiation potential between patients with the his-
tory of BC (no recurrence at cystoscopy) and patients 
with BC was reported for the set of six biomarkers (i.e., 
miR16, miR200c, miR205, miR21, miR221, and miR34a), 
with an AUC of 0.85 [43]. Subsequent validation in an 
independent set of samples (n = 50) yielded a sensitivity 
of 88% and specificity of 48% [43], with the highest per-
formance reported for pT1 stage (AUC of 0.92) and the 
lowest when aiming at detection of low‐volume tumor 
(AUC of 0.69). Preliminary analysis revealed that using 
the established panel, the number of performed cystos-
copies could be reduced by 30%. Thus, the urinary 
miRNA profiling gives an opportunity to reduce the 
morbidity and costs associated with management of BC 
patients during follow‐up. However, these findings 
require prospective validation in a bigger cohort [43].

21.3.1.2 Prognostic Signatures
To improve the current clinical and pathological prog-
nostic biomarkers for BC progression, different ‐omic 
methodologies have been already employed, based on 
either tissue datasets or those derived from systemic bio-
logical fluids (e.g., urine, and plasma). Genomic screen-
ing for prognostic factors related to genetic mutation 
and copy number alterations was performed in a study 
by Kim et al. in 2015 [44]. Next‐generation sequencing 
was performed in tissue and matched blood samples 
obtained from 109 BC patients who underwent RC. 
Mutations in genes associated with chromatin remode-
ling were revealed in 83% of the cases, while genes regu-
lating cell cycle were also identified with mutations in a 
percentage of 46%. In addition, TP53 mutation and 
mutations in the PI3K/AKT pathway were present in 57 
and 35% of the patients, respectively. PI3K/AKT pathway 
included, among others, mutations in PIK3CA, PTEN, 
AKT1, and TSC1. Importantly, complete clinical and 
pathological follow‐up data were available for 89 patients, 
enabling the prognostic assessment of the mutation sta-
tus for high‐grade BC tumors. PIK3CA mutation was 
significantly correlated with better recurrence‐free sur-
vival (Hazard ratio (HR) = 0.39; p = 0.032) after adjusting 
for stage and lymph‐node metastasis status. Moreover, 
mutations in cyclin‐dependent kinase inhibitor 2A 
(CDKN2A) reported decreased recurrence‐free and 
cancer‐specific survival (HR = 5.76; p < 0.001 and 
HR = 2.94; p = 0.029, respectively).
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In an effort to address the genotyping profile in 
relation to the BC prognosis, in another study including 
a total of 822 NMIBC patients [45], genotyping of bio-
logical material derived from plasma (or saliva whenever 
plasma was not available) was performed. In this study, 
screening of 1679 single‐nucleotide polymorphisms 
(SNPs) was conducted for 251 corresponding genes. 
These genes were associated with inflammatory pro-
cesses. In this study, the time until the first recurrence, as 
well as the time for progression, were investigated using 
the group of NMIBC patients with a median follow‐up of 
80.4 months. Based on the above assessment the combi-
nation of three SNPs (TNIP1, CD5, JAK3) in a multima-
rker model, as established based on Bayes A and Bayesian 
Lasso statistical algorithms, showed a better prognostic 
probability (posterior probability >90%) than any single 
SNP (assessed by Cox regression analysis). In parallel, 
CD3G SNP was significantly associated with disease 
progression, as indicated by an HR value of 2.69 (adjusted 
p = 0.023). Although the superiority of the multimarker 
modeling is proven in this study, additional validation is 
requested to prove the validity of the prognostic features, 
particularly because of the rather decreased number of 
the progression events in the investigated cohort [45].

The concept of cross‐correlation of the available 
datasets to establish prognostic signatures was explored 
in the study by Riester et al. in 2012 [46], by employing a 
combination of microarray datasets. Originally, microar-
ray analysis was performed in 93 frozen bladder tumors 
derived from patients guided for RC—with the clear 
majority having advanced BC (n = 78 MIBC, n = 15 
NMIBC). The data were further correlated with 49 gene 
signatures, previously published in 6 studies, including a 
total of 578 patients. The combination of the prognostic 
gene signature led to the establishment of a 20‐gene 
signature by using support vector machine algorithms. 
The prognostic signature was cross‐validated in the 
previously published datasets and the prognostic perfor-
mance was further compared for proving added value 
for prediction of the overall survival, over a previously 
validated nomogram consisting of clinical and patho-
logic variables, as published by the International Bladder 
Cancer Network (IBCN) consortium [46]. Among the 
rest, the 20‐gene signature consisted of apolipoprotein B, 
transcription factors like ATF3, FADD, JUNB, kinases 
MAP3K1 and MAP2K1, profilin‐1, platelet derived 
growth factor C, and chemokine CCL5. Upon valida-
tion in the publicly available datasets, it significantly 
improved the prediction of overall survival (mean 
ΔC = 0.14, p < 0.001), but also when compared with the 
IBCN survival nomogram, it improved on its performance 
(ΔC = 0.08, p < 0.005). Nevertheless, the results, although 
promising, need to be prospectively validated in an 
appropriate clinical study design [46].

In another study by Pignot et al. [47], the microRNA 
status was investigated in frozen tissue specimens from 
166 BC patients (86 NMIBC and 80 MIBC), followed for 
a median time of 15 months [47]. The patient popula-
tion was separated in a training (n = 14) and a validation 
set, consisting of BC patients (n = 152) and individuals 
 contributed with noncancerous bladder tissue (n = 11) 
[47]. Out of 804 microRNAs that were screened, a 
three‐microRNA signature (miR‐9, miR‐182, and miR‐
200b) was identified and further validated. Higher 
 tissue expression of miR‐9, miR‐182, and miR‐200b 
was significantly correlated with decreased recurrence‐
free survival (p = 0.025; p = 0.021; p = 0.023) and overall 
survival (p = 0.0025; p =0.024; p = 0.035). Importantly, 
based on the three‐microRNA signature expression 
levels, unsupervised hierarchical clustering enabled 
the classification of the BC patients into two groups 
[47]. Further assessment of the clustered BC patients 
by using the three‐microRNA signature also revealed 
significant differences between the two clusters in 
terms of recurrence‐free survival and overall survival 
(p = 0.035; p = 0.015) [47].

21.3.1.3 Predictive Molecular Profiles
Omics datasets have been extensively used in the 
investigation of mechanisms and/or signatures that are 
related to response to therapeutic schemes. A cross‐
correlation study was performed by Harryman et  al. 
[48], using publicly available datasets from 91 epithe-
lial cancer studies, representing a total of 12 different 
types of cancers, including a total of 5647 samples that 
provided DNA copy number alteration and/or muta-
tion data [48]. Available data were analyzed using 
cBioPortal (assessment of the alteration frequency of a 
gene signature, survival analysis, etc.) and Oncomine 
software (analysis of drug resistance profiles). Based on 
the cross‐correlation of the data, special emphasis was 
placed on genes related to the laminin–integrin axis 
and particularly a five‐gene signature (ITGA3, ITGB4, 
LAMB3, PLEC, and SYNE3) was studied further. 
Kaplan–Meier survival analysis indicated a significant 
difference in survival between cases with and without 
copy number alterations in the gene signature for blad-
der (p = 0.0143) and cervical squamous cell carcinoma 
and endocervical adenocarcinoma (p = 0.0432). In par-
allel, genes included in the signature were queried in 
the Oncomine database to generate heat maps of gene 
expression for drug‐resistant and drug‐sensitive cells. 
Data were available for the four out of five genes (i.e., 
ITGA3, ITGB4, LAMB3, PLEC). Based on the heatmap 
plot analysis, a positive correlation was shown for the 
two histone deacetylase (HDAC) inhibitors, namely 
vorinostat and panobinostat, and topoisomerase II 
inhibitor Irinotecan [48].
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21.3.1.4 Molecular Sub‐Classification
Phenotypic diversity in bladder tumors, reflected by the 
presence of multiple subtypes, is generally delaying the 
translation of clinical trials to new standard treatments 
for patients. To address this point, substantial efforts are 
dedicated in improving the classification of BC patients 
based on molecular disease profiles rather than using 
the classical pathological assessment (e.g., Refs. [27–29, 
35, 36, 49–51]).

Sjödahl et al. performed a gene expression profiling 
of tissue samples from 308 patients with BC (both 
NMIBC and MIBC). Extensive hierarchical clustering 
of the molecular tumor profiles indicated a presence of 
five distinct tumor subtypes (i) urobasal A, (ii) genomi-
cally unstable, (iii) urobasal B, (iv) squamous cell carci-
noma (SCC)‐like, and (v) highly infiltrated by nontumor 
cells [27]. These subtypes exhibited differences in both 
expression profiles and disease outcome. The most 
favorable prognosis was observed for urobasal A sub-
type whereas adverse prognosis was observed for 
urobasal B and the SCC‐like subtypes. The main molec-
ular differences were associated with the expression of 
cell‐cycle genes, receptor tyrosine kinases (i.e., FGFR3, 
ERBB2, EGFR), cytokeratins, as well as cell adhesion 
genes [27]. In addition, differences in the FGFR3, 
PIK3CA, and TP53 mutation frequencies were observed. 
Specifically, significantly higher frequency of FGFR3 
and PIK3CA mutations was observed for urobasal A 
subtype in comparison to the genomically unstable 
subtype, whereas significantly higher frequency of 
TP53 mutations was shown in the genomically unstable 
subtype, compared to the urobasal A subtype. In addi-
tion, there was no significant difference in the fre-
quency of FGFR3 and PIK3CA between urobasal A and 
B tumors. Similarly, in the case of TP53, there was no 
significant difference in the mutation frequency 
between the genomically unstable and the urobasal B 
tumors. Importantly, it has been shown that the molec-
ular subtypes are an intrinsic feature of the tumors, as 
the defined gene signatures show coordinated expres-
sion independently of tumor stage/grade [27].

Integrative analysis of 131 subjects with MIBC was 
conducted, as a part of The Cancer Genome Atlas initia-
tive, aiming at the thorough characterization of disease‐
associated changes at the level of genome, transcriptome, 
and proteome [28]. Multiple mutations in genes related 
to regulation of cell‐cycle, chromatin remodeling, and 
kinase signaling were found. Further analysis of mRNA, 
miRNA, and protein resulted in identification of distinct 
BC subtypes. Specifically, using RNA sequencing, a total 
of four expression  subtypes were defined, including two 
subtypes (papillary‐like and basal/squamous‐like), which 
were also supported by the miRNA and protein data. 

Furthermore, this study allowed for the identification of 
numerous genomic alterations in the context of PI3‐
kinase/AKT/mTOR, CDKN2A/CDK4/CCND1, and 
RTK/RAS pathways, as well as ERBB2 (Her‐2), ERBB3, 
and FGFR3, which are amenable in principle to thera-
peutic targeting [28].

In another study, Hedegaar et  al. investigated the 
transcriptome of patients with NMIBC (n = 460; 345 Ta, 
112 T1, 3 CIS), together with some patients from MIBC 
(n = 16) [29]. Total RNA sequencing analysis followed 
by unsupervised consensus clustering revealed the 
presence of three disease classes (classes 1, 2, and 3). 
Accordingly, the identified distinct molecular profiles 
differed regarding the clinical and histopathological 
characteristics as well as the progression‐free survival. 
For the latter, Kaplan–Meier analysis was performed for 
assessing progression‐free survival and indicated a bet-
ter prognosis for tumors assigned into the classes 1 and 3 
in comparison to class 2. Specifically, high‐stage/‐grade 
as well as high‐risk tumors (EORTC system) fall into 
class 2 or 3. Interestingly, most of the MIBC cases were 
classified as class 2, indicating high similarity with high‐
risk NMIBC. Further analysis of differentially expressed 
genes between the defined classes indicated that tumors 
corresponding to class 1 were characterized by increased 
expression of early cell‐cycle gene, while class 2 tumors 
exhibited elevated expression of late cell‐cycle genes. 
Both classes exhibited high expression of uroplakins, 
while cytokeratins (KRT5, KRT15) were found mostly in 
class 3 tumors. In addition, class 3 tumors had a high 
expression of CD44 (stem cell and basal cell marker), 
while class 2 were enriched by ALDH1A1, ALDH1A2, 
PROM1, NES, and THY1 (cancer stem cell markers) 
[29]. In addition, enhanced expression of transcription 
factors involved in EMT activation (for class 2) and dif-
ferentiation markers (for classes 1 and 2) were reported. 
Considering the molecular properties, it appears that 
class 1 and 2 tumors show luminal‐like characteristics, 
although the level of aggressiveness varies, and class 3 
tumors show basal‐like characteristics. Following the 
above results on the molecular sub‐classification, a 117‐
gene panel was established and further validated in four 
independent datasets for the molecular classification of 
NMIBC cancer [29]. The results in this study could 
demonstrate a potential upon the use of molecular fea-
tures to stratify the patients with NMIBC into molecular 
sub‐classes. This stratification of the patients could 
indicate those at higher risk for progression, thus better 
guide the current treatment schemes and adjust the 
monitoring frequency.

Similarly, in the study by Ross et  al., the main focus 
was placed on the characterization of genomic profiles 
of  advanced BC, aiming at identification of clinically 
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 relevant genomic alterations (CRGAs–genetic altera-
tions that are linked to available/under development 
drugs) [49]. DNA was extracted from formalin‐fixed 
paraffin‐embedded tissue sections from patients with 
recurrent/metastatic cancer (n = 295). For the vast 
majority of patients (>90%) at least one CRGA was 
found, and the most common target genes were 
CDKN2A, FGFR3, PIK3CA, and ERBB2. Different 
genetic alterations were observed, including fusions (for 
FGFR3), amplifications, and substitutions (for ERBB2) 
and others [49].

Hoadley et al. investigated similarities in molecular 
profiles across 12 cancer types (PanCancer‐12 analy-
sis), aiming to achieve an objective classification of 
cancer based on molecular features [50]. A total of 
3527 specimens were evaluated using genomics, tran-
scriptomics, and proteomics approaches. Classification 
was based on the following data types: DNA copy 
number, DNA methylation, mRNA expression, micro-
RNA expression, protein expression, and somatic point 
mutation. Through the integrated classification, dis-
tinct subtypes were identified including 11 subtypes 
that have more than 10 samples assigned [50]. From 
all cancers analyzed, BC (n = 120) was among the 
most diverse tumor types; bladder tumors were clus-
tered into 7 out of 11 major subtypes. However, most 
of the samples were mapped to three subtypes, that is, 
C1–LUAD (lung adenocarcinoma)‐enriched (n = 10), 
C2‐squamous‐like (n = 31), and C8–BLCA (BC) (n = 74) 
[50]. However, further studies are required to validate 
these findings.

Following the same principle, Mak et  al. aimed at 
molecular characterization of features associated with 
epithelial‐to‐mesenchymal transition (EMT) across 11 
tumor types and identification of some therapeutic 
vulnerabilities [51]. To that end, global genomic and pro-
teomic profiling of 1934 tumors led to the establishment 
of the EMT signature. The signature comprised of 77 
genes, for which mRNA levels correlated with the levels 
of canonical EMT markers such as E‐cadherin, vimentin, 
fibronectin, and N‐cadherin. Functional analysis of genes 
included in EMT signature components indicated an 
association with cellular movement, growth, and prolifera-
tion and cell‐to‐cell signaling. Importantly, it has been 
noted that the expression of 20 potentially targetable 
immune checkpoint genes were correlated with the EMT 
scores for each cancer type. Considering the running 
clinical trials and the interest in cancer immunotherapy 
(e.g., PD‐L1 inhibitors), information about the increased 
expression of immune checkpoint targets (PD1, PD‐L1, 
CTLA4, OX40L, and PD‐L2) in mesenchymal tumors 
appears to be of high clinical relevance. These findings 
support the use of EMT status as an additive to indicate 

which cancer patients might benefit from application of 
immune checkpoint inhibitors [51].

21.4  Outlook

Currently, extensive research is conducted in order to 
discover and validate BC biomarkers, for several clinical 
purposes (diagnosis and disease monitoring, prognosis, 
and patient stratification for prediction of treatment 
response to current therapies).

Starting from diagnosis, a great number of studies have 
been already reported, aiming at the development of non-
invasive biomarkers with high sensitivity in BC. Until 
recently, in most of the studies, the results although signifi-
cant, could not be efficiently introduced into the clinical 
settings. Successful implementation of single biomarkers is 
hampered by the increased intrinsic heterogeneity of BC as 
a result of distinct clonalities, and intratumor and interpa-
tient variations. Thus, the focus has shifted to the evalua-
tion and establishment of biomarker panels, consisting of 
multiple biomarkers that reflect more accurately the 
 disease‐associated changes and heterogeneity, in compari-
son to the single biomarkers. Toward this direction, novel 
diagnostic tests for timely and accurate disease detection 
and monitoring of recurrence are evaluated. The clinical 
concept relies on the principle that the application of accu-
rate, noninvasive, and cost‐effective biomarkers is expected 
to reduce the number of invasive and costly cystoscopies.

Increasing interest is also observed for the development of 
prognostic and predictive biomarkers to better stratify the 
patients and guide the treatment selection. Multidimensional 
molecular signatures based on ‐omics data (genomics, tran-
scriptomics, proteomics, and metabolomics) may enable to 
obtain more accurate clinical information about the disease, 
despite the heterogeneity of BC.

Recent studies on BC allowed the classification of 
tumors based on molecular features. Thus, the subclonal 
evolution of BC and the increased heterogeneity of the 
disease were partially elucidated. It is expected that 
future studies will contribute to additional molecular 
characteristics of BC tumor types and the identified 
features will be of great value to the identification of 
novel drug targets. These developments open the way for 
targeted therapy of BC tumors.
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